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ABSTRACT

The stochastic stability in the large of stationary
equilibria of ideal and dissipative magnetohydro-
dynamics under the influence of stationary random
fluctuations is studied using the direct Liapunov
method. Sufficient and necessary conditions for
stability of the linearized Euler-Lagrangian systems
are given. The destabilizing effect of stochastic

fluctuations is demonstrated.



1. INTRODUCTION

The stability of static and stationary magneto-
hydrodynamic equilibria has been intensively studied
in the past in the framework of the so-called Energy
Principles based on the Lagrangian formulation1
The Energy Principles and similar criteria established
for a non-ideal magnetohydrodynamic equilibrium confi-
guration remain an appealing method yielding qualita-
tive information about the stability of the equilibrium
by relatively simple means without the necessity of an
eigenmode analysis. In connection with these principles
it was demonstrated® '8 for a broad class of MHD
equilibria that the linearized equation of motion in the
Euler-Lagrange description takes the form of an evo-
lutional equation of the second order (assuming isentropic

flow) :
» D€ (¢) + (D+E) f(£) =0
Afo—fa {(f) +(B+C)5@f (1)

Here gktj is the n-dimensional vector of Lagrange dis-
placements of the fluid from its equilibrium position

% =0, A, B, C, D and E are the linear time-independent
operators defined in the corresponding inner product

space.




The operator A is a Hermitian positive-definite
operator which represents inertia, B is a Hermitian
operator describing resistive and viscous damping, C is
an anti-Hermitian operator of Lorentz forces which in-
cludes the damping due to the anti-symmetric part of the
viscosity tensor and the asymmetric contribution of the
intrinsic acceleration of the fluid, D is a Hermitian
operator of conservative forces including those due to
the perturbation of the fluid pressure, and E is the
anti-Hermitian operator of non-conservative forces due to
resistivity and viscosity. Equation (1) encompasses
several limiting cases. For B=C=E=(0 eq. (1) corresponds

2,3

to the static equilibrium of the ideal MHD The

system (1) with B=E=0 corresponds to the stationary

equilibrium of ideal MHDS, for B, C # 0O and E = 0 eq. (1)

13, 14, 15

I

describes the static equilibrium with resistivity
and for B, C # O and E = 0 the system (1) corresponds
exactly to the static equilibrium with resistivity and

viscosity 18.

=48 necessary and sufficient

In the previous studies £
conditions for exponential stability of the deterministic
system (1) were given when E = 0. The same stability
analysis can be extended under several restrictive con-
ditions on the class of the permissible displacements
to the case of stationary equilibria of resistive and

viscous fluid when B, C # O and simultaneously E = O 18.



Sufficient and necessary conditions for the stability
of the dissipative isentropic flow (general system

(1) with E # O)were recently given by the author LA

In this note we discuss the stability of the magneto-
hydrodynamic equilibria described by the system (1)

under the influence of random fluctuations 20.

The first section summarizes the stability analysis
of the deterministic system (1). We give sufficient and
necessary stability conditions for eq. (1) using the
direct method of Liapunov. These conditions correspond
in the limiting case B=C=E=0 to the criteria derived

from the Energy Principle for ideal MHD 24 9.

The next section generalizes this analysis to the
case when the equilibrium is subjected to random fluctu-
ations of one or more parameters of the fluid. Based on
It8 calculus, the stochastic countrepart of the
Liapunov functional is found and stochastic stability con-

ditions are established.

The last section gives an example of stochastic
destabilization in some simple particular cases - ideal
MHD, the one-fluid resistive MHD model and two-fluid
resistive magnetohydrodynamics. The influence of stochastic
fluctuations of different plasma parameters on the sta-
bility in the large of the equilibrium is demonstrated. We
discuss the question of self-consistency and limitations

of the stochastic model chosen.



2. DETERMINISTIC STABILITY

Let us consider the linearized system (1). The
operators A, B, C, D and E are linear time-independent
operators with domain and range in the n-dimensional
Hilbert spacel}ﬁnéb) defined on the spatial domain =)
occupied by the fluid, with the inner product Ly B
and norm Il Il . f meH @, terT, T= [ 0,00).
The operators A , B and D are Hermitian, A is positive
definite. The operators C and E are anti-Hermitian.
Let A admit the positive, compact, Hermitian inverse
A_1. Let us introduce the congruent mapping K from

gﬂn(ﬁ) onto ﬂﬂ,nkb), defined as follows:

£-KE, Kak=T) M=KBK, N= KK,

P- KDK , Q= KEX,

(2)
\&{ e W (&)
Using the mapping (2), eq. (1) reads
A e " £)+ (P 4(£):=O-
g (¢) + (MeN)§ () (P+Q) & o

Letg{n(cb) xf}P,n(;é) denote the 2n-dimensional Hilbert

space. Introducing the 2n-dimensional displacement vector
- -~

g: = ( f r g )T, we may rewrite eq. (3) in canonical form
0 T A

{.(f)= e o f(tq . (4)

The initial conditions read ;'(O)
A

£ (0) - g‘; e N, (D).




We now analyse the stability of the system (4)
using the direct Liapunov method. For this purpose we
havi to construct a suitable Liapunov functional "
V(;,tﬂ which is positive-definite for arbitrary {
and t. Owing to the general formulation of the system
(4), the only functa?nal which assures the desired de-
finitixpess for‘](f,t) and for the time derivative
%E V(z,tj taken along the tﬁijectoE&es (4) is a
guadratic form in variables F- and F" It is easy to
define V(f?,‘t), provided that the operator E = 0. In
a gineral case, Q # O (E # 0), a suitable functional
\J(f, t) has not yet been found. Nevertheless, a
generalized functional transform, applied to tﬁs system

(4) allows one to construct the functional V( (, t)

having the desired properties.

Let us introduce the time-dependent linear unitary

A
transform L(t), L(t) f e A @) such that 19

EAY

g L 0\ /7

/\. = . . (5)

§ TL L "
Let L(t) be bounded in the time interval [ 0,N), have
a bounded continuous derivative L' (t) and have a lower
bound 0< m< || L(t) || for t = 0. Let the isometry L(t)

verify simultaneously the differential egquation

L (f)=%~ (Mm)1~ (Q+H) + [ T-(M+ NY(MJFN) Mls L (¢)-
=T L (%) o



and the constraint
t*(t) L(t) = L¥(0) L) = I.

Let us further suppose that the operator (M+N) is bounded
with closed range. Then (M+N)+ is the Moore-Penrose

. . + ;
generalized inverse and (M+N) GLQK,IIGB). The arbitrary
bounded operators H and R are defined from the con-

ditions (6), H being Hermitian. Introducing eqg. (5) into

L* o
eq. (4) and premultiplying eq. (4) by( 0 ﬁt) , one ob-

tains in the space ’X’,n@) X gﬁn@)
0 T

§Z' () = (45\(6) ——‘q ““mﬂ) E({)’ (7)

—

where f. = (4?,7))T. The transformed operators are now
time-dependent and are defined as follows:
A ~R - A % A 4 AR A E3
M=M=1L ML)— N =N=1L (2T+N)L, p =P =1L (P+TT+S) L

(8)

S = & (MP-TM) + % (NT+TN) .

1
2
The initial conditions are now E- (0) =["1 103, ’7. (O)]T.
We observe that the system (7) does not have the operator
a ' a = 0. Thus a usual procedure may be followed in
constructing the functional VD(g ,£). Without the
limitation on the generality of our result, we can assume
that the null solution of eq. (7) is f—(O) = (O,O)T.

Let us define the Liapunov functional VD(gr,t ) to be

positive-definite on ’an(%) % gfna) , continuously



differentiable in t and{‘ , defined for all t >0 in a
Set\—():,n-l: HZH = a, VD(O,t) = Q0 for t= 0O,
VD(( AYas O (f‘) for all(— in Ll and all t> 0. These

properties possesses a functional
= = IN g
VD (§;f) = £ () 5{ > 7O) (9)

where Q'is a Hermitian 2n-dimensional operator. Let us
5 & P O
take for S: S = o /- Then if the time derivative

dt D ( ,t) taken along the trajectories (7)

éV‘g = i)gs? +<§; ; H>§.$E)é°

dt P

is negative-semi-definite, the trivial solution of

eqg. (7) { = 0 is stable in the sense of Liapunov; if the
derivative (10) is negative-definite, the null solution
is asymptotically stable. These conditions are sufficient
and necessary owing to the validity of the converse
theorem. Using egs. (7) and (8), we may write the stabi-

lity conditions in the form

<E}§€->70 ) <<JJ§>éO ) (11)

where

" [ (p+s)T ~T(P48)] L 0

X
0 -2 L ML



Let us note that if P and M are Hermitian, J is
Hermitian. Then both VD(E-'t) and %E VD(fr,t) are ex-
pressed in the form of quadratic functionals in ;?
The stability of the system (7) implies the stability
of the system (1). In the case = 0 in eq. (1) we have
L(t) = ﬁ*(t) =I, T=0, VD(§§ and the stability

conditions read

<E\)§(?> =0 <?)J§\>i—o

with

These conditions correspond to previous studies2-18.

Let us note that in the case E = O the operator N is

irrelevant for stability in contrast to the general case
E # 0. If, furthermore, M = O, as is the case with ideal
MHD, the time derivative HE D(f) = 0 and the system (1)

cannot be asymptotically stable.

Let us note that the operator A is nonsingular in
correctly defined fluid equations. In the case of singular A,
the intrinsic symmetry between the dynamic variables and the
corresponding electromagnetic field is violated (e.g. by
neglecting the displacement current). In dissipative fluids,
the displacement current must not be neglected in the
field equation, even if apparently small. In the limiting

case of ideal MHD, the operator A becomes the identity

operator I.



3. STOCHASTIC STABILITY

Let us write the deterministic system (4) in the form
A A
d ( ()=F({€) ) 02£&T. (13)
at

The operator F is a function of equilibrium fluid para-
meters such as density, magnetic field, etc. Under the
influence of MHD turbulence, turbulence due to kinetic
effects, fluctuations of external fields and forces,

one or more of the fluid parameters may vary randomly
around a certain mean value with relatively small ampli-
tudes. We may thus assume that the operator F is in

general a function of one or more stochastic variables.

Random variables are tacitly referred to an under-
lying probability space ({L , 2 ., pj, P being the proba-
bility measure on a(g'-algebra Gt of subsets oftfl.

t € T, T is a linear index set.

Assuming that eq. (13) admits a unique solution
~ -~ -~
((t, {o) , t€T for every initial state 60(0) , we

write for the randomly perturbed evolutional equation (13)

A

R TR R A LSO T

A
G is the 2nxm matrix valued functional of (-, t and

represents the m—-dimensional Gaussian process. The drift



term F (f, t) is additively perturbed by a disturbance
V(t), which is a stationary random process normally
distributed with zero mean having the spectral density
approximativly constant up to frequencies which are

high relative to the time scale of (13). The effective
disturbance magnltude may depend on t and f the re-
sulting paths ; (t) are continuous. To be able to bene-
fit from the powerful apparatus of the stochastic cal-
culus, we have to use instead of eq. (14) a precisely
defined mathematical model. A suitable model equation is

It8's stochastic differential equation 21

A A 3 W, By
al{(f)=F(§Jﬂdt+G(f'£) Y ) & ) (15)

where Wt is the m—-dimensional vector-valued standard

Wiener process. W_(t) = [ W1(t), - Wm(t)] T, where

Wj(t) are mutually independent scalar-valued Wiener

processes such that

Eﬂ\\/}-(f)—%(s}’szo CEe
‘C‘“Wi‘ (4) _w}‘.mf?s - | £-5)

for all t, s € T. E.i gdenotes the expectation operator.
It is assumed that F and G are measurable in t, ( 1O

a\
t € T and (é 932“(21) , G being a non-anticipating operator.
A
With a suitable hypothesis on F, G and f the solution
A

process of eq. (15) ( (t) is unique and is a separable



measurable Markov process. We also assume that the
A
sample paths of the process ( (t) are defined for all

t€é T i.e. we suppose that the killing time is equal to

infinity with probability one 22.
A
The solution process ( (t) of eg. (15) is asso-
ciated w1th the dlfferential generator e
L = 'ﬂ Z () )@f;{
P
2
2n 2
A T N
L5 [ G (£,f) — - 8
+5 2 GW'“ | L‘;“Jf‘.’if-
:,a=1 X d

The first two terms of the generator (16) represent the
Eulerian time derivative along the deterministic paths

of eq. (15). The last term containing the Hessian ‘Uff\

expresses the diffusion due to the Wiener process Wt'

By analogy with the deterministic case we discuss
the stability of eqg. (15) using the stochastic direct
Liapunov method. The stochastic analogy with the de-

terministic time derivative (r ,t) is now the back-

=%
~
ward diffusion operatorag VS ( )

Using the solution process f (t) of eq. (15), we

define the stochastic Liapunov functional

'V;(f,f\=<fd)5§ ’ (17)

A
A
with the Hermitian operator S . The functional VS( ( (t)



with compact support is supposed to be non-negative,
-~

continuous in both f and t and posssessing a partial
“A

derivative in t and partial derivatives in ( up to the

second order. V5 is defined in the domain of the opera-

tordg. The stochastic stability can be defined in many
22, 23

ways . For our purpose, we use only the definition

of the stability in probability, which requires that
4

for an equilibrium solution ; (t) =0
P‘lSup “f(f)uﬁggao ) 570) ufou{é—_
04 {4 2

Similarly, the asymptotic stability in probability is

defined by
A, A
. . —.-:O "'-"/['
1}?’0 B { lzﬁ;aqf (ﬁu) R

The sufficient conditions for stochastic stability

(asymptotic stability) are thus22

E{dvs(f)f)ié() _ (18)

A
In the case of the eq. (15), the process Vs({ L) ds
again associated withthe differential generator eq. (16) .

E1av (4] -E1LV(§8) e

the condition (18) reads



- 13 -

W, (£, =4V (f] «0;2=T. oo

This condition expresses simultaneously the supermartingale

4
property = of the process VS(( ple) o

In the case of a stochastic analogue to the deterministic

evolutional equation (7) we write Itd's equation (15) in

the form

Af)- Qf (et + [V ) €eT.

(20)

Then, the conditions for stability (asymptotic stability)

in probability read
< §,§f> =0,
£ {(QF, $§> +<, $QE> + <, L

2n
! A T
+3¢2 G (G,(8) 7 77 (§,87)§<0,
“If =1 =P
(21)
Here the symbol ( , ) defines the inner product without

integration in space.

Owing to the definition of the inner product the condi-
tions (11), (12) and (21) describe the stability in the

large.



Let us consider in more detail the properties of the
system (7). We observe that stochastic perturbations
affect the operators E, &, and ﬁ in eq. (7). Thus in
the diffusion matrix operator G (E , t) all elements for
which 0£ 1, j < "N vanish. The Hessian in eg. (16) then
operates only on that part of the Liapunov functional
which is proportional to velocities ﬂi . Taking for the
drift operator F in eqg. (15) the form (7) and defining
the operator 5 in eq. (17) identically as was done in

eq. (9), we obtain the sufficient conditions for sto-

chastic stability (21) in the form

+£) E(f@f) = 0

- _— — - ~ — AT e

W (f.t) s(f,Jf%(Sp[G.'\f,t) G(fi)])é

(22)

<
0
sremant

The operator J is defined for different forms of the de-
terministic eguation (1) in egs. (11) and (12). The opera-
— A

tor G (f ,t) is obtained from G (f ,t) as defined in eq.

(15) with the help of the transform (5).

I1f we consider the functional W (f t) as a total time
derivative of the process (f f ), we may solve the system
(20) with respect to the functional V’ (( ,t) to obtain

P - a7 W(
30y =iy o { @ V—f—;
e ( )

: G

=]

(23)



This relation may serve as a definition of the growth

of the Lagrangian deplacement f in the case of instabi-

lity.

Let us note that owing to the fact that for ideal MHD

equilibria the operator J O and the term

A ~

{ sp G(§ ,t) GT(g,t)>

is positive-definite, the stochastic fluctuations of

any plasma parameter in the ideal MHD lead to instabili-
ty. We observe also that for dissipative fluid at rest,
i.e. when in eg. (1) the operator E = 0, any random distur-
bation leading to the perturbed operator PS results in un-

A
stable growth of ( (t).



4. EXAMPLES

As a first example we discuss the stochastic per-
turbation of a static equilibrium of an ideal magneto-

hydrodynamic fluid. The corresponding fluid equations are
g 4= - 3 %
th@[— UP-\.N-% )

d—Q+V.(Q@:\=O y

(24)

(pet)=0

QJICL
ot

The perturbation algorithm is formalized by intro-
ducing two independent small parameters A-and 6 . &"
corresponds to the small parameter of Euler-Lagrangian
displacements and measures the departure from the equi-
librium state. This equilibrium depends on time owing to
the random modulation of the basic fluid quantities.

The construction of this state involves an other small
parameter 6‘, which expresses the rate of modulation
imposed on fluid parameters. Let us introduce the
constraint E{ ’L"(ﬂk = 0, i.e. the equilibrium
randomly unmodulated is a static equilibrium @c)= 0.
For the equilibrium gquantities, we introduce

o (B
=B 7 6 & ¢ (4),

=0 (25)



w 1T

where (fn(t) are the random processes depending on the
parameter t € T, having zero mean values. The Euler-
-Lagrangian displacements will be developed around the
equilibrium (25). In the framework of the linearized
theory, we keep only terms of the orders 6', dﬁ and 5"éi

Completing the system (24) by the Maxwell equations, we

observe that the zeroth-order equilibrium is

O .-.--—VPD + _Jox:?)u
* By = o

The first-order equilibrium equations are then

)
Qo AL 45 =-9Jp, + (_'3\? x_E)aJr ('JJ x_g?oj

0 L. B,
394 %00)=0) 4B Ix (L2,

These equations allow us to find the first two terms

in series eqg. (25). We have

B= Bt 6B ylt) ~0(6%)
Q=8 +o g, ¢ + T ()
s & A L%(f) +0 (8°)

~4

9p= VP, + ER,) 9(t) +8 (9p,) § (E) + 0 (6)

where



_18_

The Euler-Lagrangian displacements then around the

time-dependent equilibrium are now

(JQ) =-v.(Qc@—6‘k{J ‘J'U\’,E) )

-~

dp) =P (9. §) ‘E-VR’ ~a Sl Y¥ Pu N'E) -9 fe W'E)

-y é.q\ou_ ‘f E-Vﬁzg

L o oY

EAS

Q4 = % *G%Q(gfﬂgﬁq(

~

oB)

N
s
1]

(24)

J % (E‘"%"\"’GTQXL

Lad

2N

With these displacements, the momentum transfer equation

in (24) yields

where D is the usual force operator

D% --y (e, (V‘%H“ ‘Q(E.‘TIPD)— éowx%)x[ﬂx (EXE"“

~r

A (ox (9% ( *iBo\) x B,
L Gon (90 (X210 R

and
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In all practical situations the process W (t) will be
Gaussian. In this case ¢ (t) is independent of LP(t)
and lﬁ (t) but @ (t) depends on LP(t). We assume that
Q (t) is a continuous time process. In order to make the
transition from the evolutional equation (27) to the
desired mathematical model (15), we assume that kp(t),

q (t), Lf(t) are represented by three Gaussian white

noise processes V1(t), "Vz(t), )g(t), so that

£{N@Y=0 | £{n@ -t C, @),

where Cr is the Dirac delta function, C%A: the nonsingular,
positive, symmetric cross-covariance matrix with elements
of the order 1. Assuming that })1(t) correlates with V3(t),
and that )é(t) correlates neither with }ﬁ(t) nor with

))3(t), the cross-covariance matrix reads

¢. 0 0
a"%’ ('E) = ( 0 sz G20y
0 C, 0, C:
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Let us construct the process Y (t) which has Y, (t)

d
as components
AY &) = DY), %)% W) dt,
and which verifies the relation
. wmin (£,9)
£ive) Y <s>§=£auc:(u) L C=Cy

We can express Y(t) using the Wiener process Ws
— 12
AV @) = ¢ (9 AW

For a positive-definite nonsingular matrix it is always

possible to extract a square root. Thus

7} ¢, C
[Q (sﬂ _c”[c, ()

o :2'3'
d,s V ) l/g
¢, +c,,
The process WS has now three independent components,
- T -3 | .
dws = [ dW%’ dwz, dW3_\ . ITtd's model evolutional

equation related to the eq. (23) takes the form

a10 1o DW*) rGUf ¢) AW (28)




_21_

With these definitions we construct the Liapunov functional
Vg( {,t) according to eq. (17) as a process

V- (680 we S(ED 5

The stability conditions (22) now read

S §>+<§ £y -0,
STRCATIRREE wRSCE Rt

c,-l' ~ ~ o~ 2]

3

¥ %?1<(C2C3Q2§+CZQ3@J (C1C5Q2§+C: ‘M\) % <0

(29)

Evidently, the second stability condition is not satisfied
for 6'# 0. Thus the stochastic perturbation of an
equilibrium of ideal MHD has a destabilizing influence.
The temporal growth of the Lagrangian displacement f:(t)

is given by eq. (23).

The same results are obtained for a non-correlated

white noise Gaussian processes. In this case C = I and

SP[G(QQ G (f){ﬂ:é% (Q4§J Q1§:)+(Qa§_) Qz%) + (QSE) QSE)% :

Again,qta VS((,t) = 0 for 6 # 0 and the equilibrium is

unstable.
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To generalize the previous discussion, we assume

that the magnetostatic field BO is perturbed by two

~

stochastic components - one in the direction of Bo' the

other one in a direction perpendicular to Bo' The equi-
2 As
librium quantities up to the order 6 are now

PRy
I
W
+4
=

-
!
+
=y
™~
—
—-@
4
-G
.——-—.
ot~
—_—
-"E)

p_p + LY BRY ﬂﬂz%»@’{_({(f)ﬂ_ﬁl? )P |,

where Qj’ ‘Dij and @fj are defined from the equilibrium
equations. Substantially the same calculations as before

give the evolutional equation

%' + = '\)§ B (67,@ Q1 *6141@ \€+(67’ U(”Qz,,,**élqi@,ﬂf

Q it YL
A ~~
o . (30)
+6 U Q % = 0.

* (6;1 L{)” Q3,ll * Uex ‘1’/'\°\ )
The operators Qj g} are obtained from the operators
Qj " defined in eq. ( ) by replacing the subscript

r

1 by 2, with the exception of the last term in the

operator Q2 g which now reads
[ r
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| >

—

L4 LB [ (B0 (B D (2]

Vo (9% (B W w B, + (30 (9 (Ex BN 1x B,

2

The evolutional equation (30) is now modelled by
It8's equation with a Wiener process having 6 components.
If one assumes for simplicity that all Wiener processes
wj are uncorrelated, the additional term in the second

stability condition (22) is

<SPG(§§ GT(0> '—*-6,}251 <Q‘///§'/(?‘/li§>+<(p%/r?)@2,#€>

48,6, 0,601
. ei %(QA,L%: J QA/L%. A <Q2,L§ ; Q2,1€>*<Q51L§; 0, 6>

= 31

Again, the stability conditions (22) are not verified

for 5; ” 6: # 0.
y L

The destabilizing influence of the random gravi-
tational force will be illustrated on the model of

one-fluid dissipative MHD, as described in Appendix A.

In contrast to the previous example, we assume that

the gravitational force varies independently of other
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plasma parameters. In the evolutional equation (A.2) the
stochastic term is given by

Dsé;= (—V. (Qi\vlis )G“L?({‘)-

0

~

The corresponding Itd's equation encompasses only the
one-dimensional scalar Wiener process. Transforming the
system (A.2) with the help of the congruent mapping

K = 1/2, defining the functional V (f in the form
(17) and performing the operatlonK,V (f ) » we obtain

after returning to the original variabless ; ?

The stability conditions read explicitly (/55 g‘hf (cr:% )\

§d\/§—§-[v (§9P)+ 9 (PO G (nion(fxBIE]

. 2 (m[w(nmﬁmngéz ERAY m(w(Exgm
AL B WmeW%U]WH 1%

Wi Gf + Gy AT Lm0
2ar] 9y AV A

l

(33)




2
Here again the term proportional to 6 leads

to instability, with the growth given by eq. (23).

For a third example we take the two-fluid magneto-
hydrodynamic equilibrium perturbed by an electrostatic

turbulence with the field

£ (8)--9 B @-eytE,

Let us suppose that the equilibrium is characterized by
E, = O. Then It6's model equation (15) reads

N

_. )

= 0 T A A
dgz (“P —(M*H\l)\(‘ * (Gﬂ o W,

The operators M, N and P are given in the Appendix B,

eq. (B.1). The Wiener process is here only a one-dimen-

sional scalar process. We have neglected the self-consistent

random fluctuations of all parameters but the field ET.
This approximation is only permissible if the turbulent
field is low enough that its influence on other plasma

parameters can be neglected in the equilibrium equations.

The operator G has the components

where ?% L A (v- V1, é\A)ET'
A
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The stability conditions in coordinates f; are

~ ~d
+&0\Vizma\“d\ P -+L°Ef_25,§k70)
v A A md
2 N . . bd ’ ef }
) vdVSth; 2 EA.EA " é. v.gd(g)\-.?/qc nen; §
2 ~N ~
e 2
+6\agvdv Z: f“ﬁw'mi")”Tk £ 0
(34)

Similarly to previous examples, the second condition

(34) cannot be satisfied for all © # O and all t. The

electrostatic turbulence also drives the equilibrium to

the unstable regime.

When instead of the fluctuating electrostatic field

the gravitational force randomly oscillates, then under

the assumption that the stochastic gravitational force

’%—5 - @q W(ﬁ)




- T —

does not influence the equilibrium, the second term in

eq. (34) reads
zg\/dvg %: [(v.ndgd}v-l_{ 12

Again, the equilibrium is unstable in probability.
We also observe that the non-self-consistent fluctuations

of the magnetic field B { 1 + 6'LF(t)] lead to the term

2
de>_‘- (Bx§, ). (Borf )
Y-
In this case, the second stability condition (31) gives
the stability threshold

PP T RS AT TIN5

~ A~

) )

A
Y (35)

~

This condition shows that for small relative amplitude
of fluctuations 5’, the deterministic stability is pre-
served. Nevertheless the non-self-consistent description
is valid only for a low level of random fluctuations of

the magnetostatic field BO

Finally, the non-self-consistent stochastic disturbance

of the density

= nd\\:’H- 6 Lf(fﬂ

&
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leads to the threshold value of 6 given by the relation

-

(v 2z CEEf - € ) o TR

v ~ ~ N~/$ A

s fatzmn [y (e -3 C) e T ()]

(36)

In deriving this condition we have supposed that for the
equilibrium 4§' =0, Eg=0 and’g{ = 0.
~
It is interesting to note that for small amplitu-
des 6 the stochastic non-self-consistent perturbation of
the magnetostatic field Bo and the density iﬂd may be

stabilized by the resistivity and viscosity of the fluid.




CONCLUSION

In the present study we describe the influence of
random fluctuations of one or, more precisely, several
plasma parameters on the stability of the equilibrium of
the magnetohydrodynamic fluid. Such fluctuations are due
to the presence of MHD or kinetic turbulence in the plasma,
random variations of the confining magnetic field or den-
sity generated from external sources. Discharges in many
plasma devices, such as tokamaks, are characterized by a

large proportion of random magnetic field components.

We established the general stability criteria for a
stochastically perturbed equilibrium of dissipative MHD
based on earlier results obtained for deterministic dissi-
pative systems 19. We examined the influence of random
variation of plasma parameters on the MHD stability of a

static plasma equilibrium in several cases - ideal MHD,

and one-component and two-fluid dissipative MHD.

The results obtained are pessimistic. In all cases
(with the exception of the case of non-self-consistent
fluctuation of the magnetic field and density in the two-
=fluid model, when the perturbations are proportional to the
Lagrangian veiocity f" only) the random modulation of
the fluid parameters has a destabilizing influence pro-
portional to 0’2, §" being the relative amplitude of sto-

chastic disturbances. Thus, the stochastic fluctuations




destroy the equilibrium (if such equilibrium exists in the
deterministic case) with growth for which we have defined

a general estimate.

Nevertheless, the approach used has several basic
limitations. First, the considered fluctuations should have
small relative amplitudes & such that @ can be considered
as a small parameter. In several practical situations
(strong stochastic magnetic fields in the tokamak discharge
in the regime close to disruptions) our theory does not
apply. In these cases it would be desirable to derive a
new hierarchy of transport equations including the random
fields. Some attempts in this direction have already been
made 24. From the same standpoint all calculations, based
on the assumption of non-self-consistent variation of
one plasma parameter, apply only if the initial stage of
evolution of the random fluctuations where 6 is small

enough.

The second objection may be raised against the
assumption of the white-noise character of the stochastic
process, which represents the real random fluctuations.
Although the white-noise process is a mathematical arti-
fice, it approximates quite well the behaviour of a number
of real stochastic processes as verified on numerous
25

examples in technical applications. Experience also shows

that the use of the white-noise model leads to good results




even if we deal with a small portion of the frequency
spectrum. However, the replacing of a Gaussian process by
the Gaussian white noise is a non-trivial matter. A fun-

damental discussion of this point may be found in 26.

An alternative approach which would allow the
mathematical model to be related closely to the real
spectrum of fluctuations will be the use of the non-

linear Kalman-Bucy filtering & 20

and consequently
the solution of the evolutional equation based on the
method of moments. This approach represents a consider-
able mathematical task and does not afford the transpar-
ency of the Liapunov technique used in this paper. The
resulting conditions for stochastic stability of the

evolutional equation (1), although more precise, will not

be qualitatively different from our results.
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Appendix A

We consider a viscous, resistive MHD fluid. Tak-

ing Ohm's law in the form

€ vgxB-qL=0

where'q (ﬁ) is the resistivity, we have for the equi-
librium mass velocity A = O the following perturbed

first-order equations for Lagrangian displacements G 'cfg,:

Q gh-'é; (V%B\X(é—}i) _1 [Vn ({E’)}X%“V(g-‘]fﬂ

~ ©

_xq{pﬁvﬁ)l[N<&§ﬂvw+V-H§)—0;
€1 (EBY "+ (IBY +27‘V1[A] Ux(6¥)] -9« (fxlﬁ)
9 (486 - (%.w]\m xB) =0
(a.1)

Here p is the scalar pressure, JB the perturbation of
the magnetic induction, zg the viscosity tensor, and xi
the gravitational potential. The operator Y. “ (%

X
may be split into a Hermltlan K?Tq and a anti-Hermitian
component 10 < TY . Writing eq. (A.1) in the operator
form and expre551ng all involved operators as a sum of

Hermitian and anti-Hermitian components, eq.(A.1) takes

the form of eq. (1). In order to obtain simpler equation




= GF e

suitable for analysis of the stochastic stability, we
sacrifice the generality of eq. (A.1), assuming for the
equilibrium Y x B = O and neglecting the Eulerian per-
turbation of resistivity (Cﬁn). Then using the method pro-
posed by Barston 13, systematically neglecting the contri-
bution of the displacement current in the equation for

the momentum balance, we obtain

A

AE L (B)E A DE =0 .2

where % = ?, gdt (A-B))T. The operators in eq. (A.2)
o ~

have the following non-zero elements ( Q is the density):

. T
A= @ Azazg“”lBaa JB11~=V"T£ (E)

(@)
-Jﬂ"‘\
I
<

11 ]

@ T (f)

~

Dy4 E ="\7(§'VP) -[V[P (V-Eﬂ - (V-QEWIX "(éo[V*W* (f*%)] x B

12(55\—— Y fon (4 9% (EB)§xB

D21 %:-—-

% (§B) =

KY_/V}VX 9% Ex% iy
R[ﬂ]qy\(v‘/\ (ﬂ’ Ix (d¥))

%1*’}‘\*

d




In the limit 41~7 0, eq. (A.2) gives the form of the
corresponding equation of ideal MHD, with the constraint
¢V x B = 0. Equation (A.2) differs from the model pre-

viously discussed by Barston o

in that we keep the dis-
placement current in the field equation, take the full
viscosity tensor and do not require incompressibility

of the fluid.

In this as well as in other examples we assume a

perfectly conducting wall at the fluid boundary.
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Appendix B

The Euler-Lagrange equation (1) is derived in the
case of two-fluid magnetohydrodynamics on the assumption
of the static equilibrium ﬁﬂi = 0 (o is the plasma

species) and the gauge % = 0, @) being the electrostatic

potential. The first-order equations read

e ¢

mJ\Y\dE +en%hf +en A+ (V'ndfd\E +V--E,( (?;)

o E7p)- VLR o - (Y
nl;;? (hi éﬂ__ 4Y%’§§\ =0 /

After introducing the congruent mapping eq. (2), we can
cast the linearized evolutional equation in the form

A e A A

{7y e RE =0,

where the elements of the operators M, N and P are as

follows:

(B. 1)
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The displacement vector ? in eq. (B.1) is now
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