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Abstract

A new Abel inversion method is presented. Allowance for the second order expansion
over a given spatial interval (piecewise fit) and allowance for the spatial resolution

inherent in the detector system is made.

A comparison is made with a previous method due to Gorenflo | 1| using test
functions. A significant improvement is found. The degree of smoothness of the

raw data prior to the Abel inversion can be obtained.
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1. Introduction

In line of sight measurements where Abel inversion must be carried out allowance is
not usually made for the finite spatial resolution (i.e. the "beam" width). This is
sometimes overcome by having a narrow beam of sight at the cost of highly wanted
flux but it is often simply neglected reducing the significance of the measurement.
By taking into account the complete geometry of the "optics" and including the
second order expansion the region of validity of the Abel inversion is greatly

extended.

2. The Abel-Integral

The usual well-known Abel-integral is | 11

t
ci)=J (-2 g(s) s, 0gsg Trogtgl, Glo)=o m
o]

Here g (s) can be, for example, the local emissivity and G (t) is the line integrated
emission or the measured flux as a function of the radial position. The problems connected
with the inversion of (1) are well known. Three possible numerical solutions are

given by Gorenflo | 1 1.

If very steep gradients are present (the soft X-ray emission from hot plasmas for
example) or if the spatial resolution is not sufficiently good, these more simple
methods will break down.

A more complete treatment of the problem is necessary, in which steeper gradients

and a limited spatial resolution are taken into account.

3. The Flux Integral

In order to calculate the flux integral one has to start with the detector geometry.
This geometry is given by the area of the detector together with beam stops. These

define the plasma volume that illuminates the detector. (Hatched area in Fig.1).
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The calculations presented here are based on a geometry consisting of two slit
beam stops S, and S, . The slits are orientated such that the plasma can be
assumed homogeneous along the slit direction. In principle, the final computer
code could be slightly modified for any detector configuration, however the
assumption of the axial plasma symmetry is always necessary. Also apart from the
axial symmetry the usual azimuthal symmetry is assumed. In praxis, however, local

azimuthal asymmetries may give rise to errors in the Abel inversion.

If \{/ is the parameter, which determines the circular magnetic surface, then

the flux falling upon the detector is given by

o (y) = j‘jjj_j’_ol " olSy A8, 2)
!
S. Sl? \P' Lt)l
with W = 2 and g(v/‘) is the emissivity at the magnetic surface l}/h (Fig.2).

For the particular case, shown in Fig.2, there is a movable slit S] together with
a fixed slit 52.

The flux falling on S] is then

@W’) - jj‘tfa gy dp" cos'x  Coolo-8)asads, {33

0o Y \I;n - |" C'Zn_ (chl:.-&'a,)-fm’-)"

where ¢ is given by

A-é(o() = Al —S — ("(ﬂ-/?- -S..)¢0:38- (4)
2, + (&rfp —Si) kb

@ is defined by the geomeiry of the beam stops.

%
l{;‘ < X Grain)® where (5)
2 (mi+1)

Aﬁ (b —o) (6)

With any test function g (lr) it is now possible to calculate accurately the flux

falling upon the detector.
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4. The Abel Inversion = Method A of Gorenflo

As indicated by Gorenflo | 11, the method A is, in most cases, the most accurate
of the three solutions he discusses. Therefore, it is appropriate to compare this

method with the new method presented in this paper.

We briefly review this method A of Gorenflo (hencefore referred to as Gorenflo-A).

Flux measurements at equally spaced radial position are taken:

r=(i-1h = (-1 a/N; j=1,N

such that
Q N Xia
FEx) = 2_5‘ E(r) v dv ar Z.Z f‘g‘ r olv (7)
% Vre- xX ¢sh x‘.Uh‘- X

with fi =f (ri +h/2), a zero order expansion over the interval r and S

Therefore we can write

N
Foo= Flxw) = Z o(n,i) ? 5 he LN (s

izh
The ®& (n,i)’s form a triangular matrix, which is simple toinvert.
Each &¢ (n,i) is in fact twice the length of the section of chord between r = r.

and r, . os shown in Fig.3.

The new approach presented here has many similarities of the Gorenflo-A method.

5. The Extended Abel Inversion

The Abel inversion routine proposed in this paper is a two-way extension of Gorenflo-A
method. Firstly, the intensity function f(r) is expanded to second order over the
interval (ri, Feoy ]). Note, that for each interval there is a separate expansion.
Secondly, the spatial integral is extended over the width of the chord in the

plasma defined by the beam stops.
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The flux as function of o~ F(r ) = F can then be written:
}tﬂ. f. )
j { (‘___eL' r A ds.as, ; N
r 5 h=xl-.-.
oo Vi ® (9)
3
A = ces o¢ COOC“"S) ana 4’,![-"/_'—-

C21s + (dol2 = S1).5enb)?

We expand f(r)=f(b)+f (b)(r=b)+f(b)(r-
and i=1, N

b)%/2 with b= (r, +r.,,)/2
ANTRRCE This can be written

for T<i€<N as
1

F(r) = (< #6 R 43R, -
g ) (10)
R i i O ;_:2 h=a/N
for i=1
(r) = (6f +2f,) " %
b (-f, Ry - (1)
+(—2fi+2fi+])-(2r;_g)2
and for i = N
f(r) = (3F, -IOFI_]+15fi)1§
F(f, -3F +2f) - 0 - n(1g)
¥ (F, -2f +6) LT -b)2

The F are the unknown emissivities at r = r.

quen outside the integrals.

: 2h2

. These are constants, which can be
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With aid of expressions (10), (11) and (12) we can write (9) as
N-1
F =2 (-, g +6 £ +3F )T, (n,i)

n
T f ) Ty0,0)

H( Fy =28 4+F,0) Tg(n,i)

+ (SFN-Z - IOFN_] + Tst) T] (n,N)
+ ( fN_z— 3fN-T + 2fN) T2 (n,N)
T3 (n:N)

+.(: F f

N2 = 2fNapt i)

For n=1 the f._, terms become f.1q in expression (13).

The Ti (n,i) are:

-
8
)

{""

T] (n,i) =

0y

e _dr’ R ds, ds,

P (rib) dr' A ds. ds,
ey

et ar g ds, ols
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After some reorganization we can write the fluxes at r = r, as:

N

n e
i=m

For example: in case of an infinitly good spatial resolution m =n-1 for n>1,

and m=1 for n=1.

F=2 A (n,i) fi ; where m is defined by the spatial resolution.

(13)

(14)

(15)

(16)

The matrix elements A (n,i) are constructed from Tj (n,i) in the following way

for m+1<i<N

A(n,i) = 3T, (n,i=1) +T,5 (n,i=1) + T4 (n,i-1)
t6T, (n,i) +T, (n,i) -2T3 (n,i)
= Ty (n,i+1) + Tg(n,itl)
A(n,m) = - T'l (n,m+1) + T3 (n,m+1)
A (n,m+l)= 6T, (n,m+1)-T2(n,m+'|)—2 Ty (n,m+1) +
- Ty (n,mt2) + T, (n,m+2)
A(n,N) = 3T;(n,N-1)+T, (n,N-1)+ T, (n,N=1) +

+15T, (n,N)+2T, (n,N) + T5(n,N)

(17)
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For i =2 in case of m=1 we have the additional terms:

A(n,2)=A(n,2)-T; (n,1) +Tq(n,1) (18)

And in all cases for i = N-2 and N-1 we get the additional terms

A (n,N-2)=A(n,N-2)+3 T, (n,N) + Ty (n,N)+T5 (n,N) (19)

A(n,N-1)=A(n,N-1)-9 T, (n,N) -3 Tp (n,N) -3 Ty (n,N)
Fig.4 illustrates the term T, (n,i) in asimilar way to Fig.3 for the terms:
©¢(n,i) in Gorenflo-A. The hatched area corresponds to eight times the term T {n,i]:
For the situation shown in Fig.4 the values of n and i are: n=6and i =7.

Thus, the value of m for this case would be m = 2,

It should be noted that, in the case presented, the integration over the segment

(ri, ri+1) is made by taking a parabolic fit for Fi-] g Fi and fi+] (the left hand fit).
It is also possible to take fr Fi+'| and Fi+2 (the right hand fit), which leads

to only minor differences for the case of bell shaped intensity profiles. However,

the left hand fit does give more accurate results for hollow radial profiles.

In the computer code a choice between the left and right hand fit or their

average can be made.

6. The Bell=Shaped Radial Profiles - Ideal Spatial Resolution

The improvement of the extended Abel inversion over the Gorenflo-A method will
be shown. The intensity radial profiles of the form

o e (20)

140

L2
are taken. These radial profiles are often a good fit to experimental radial profiles.
Thus lending more significance to the conclusions drawn from the comparison made below.
In order to distinguish the two newly introduced effects in the Abel inversion,

we firstly show the influence of the second order expansion.

The effect of the integration over the volume seen by the detector will be shown in
section 7. For an ideal infinite spatial resolution figures 5 to 10 show the differences

between Gorenflo-A and the second order expansion method for several different profiles,
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as marked in each figure. The radial profiles of the line integrated intensity,
the intensity,and the errors for both Abel inversions are indicated. The error is
a relative error and is the difference between the test function and the Abel
inverted calculated flux divided by the test function. The flux is normalized

to that of a detector system with two stops of area 1 cm2 and 1 cm apart.

It can be seen that for small gradients (Fig.6) both methods yield a good

Abel inversion, but for steep gradients (8= 16) only the second order

Abel inversion produces a good profile (Fig.16). The average between left
and right hand fit for the extended Abel inversion matrix has been used. More
than 15 points are needed in order to obtain a correct Abel inversion for steep

gradients (& = 16). In the example given here 21 points have been used.

7. Bell=Shaped Radial Profiles = Finite Spatial Resolution

The Abel inversion matrix is calculated for a system of finite size stops. Also

for the same system of stops the flux integrals at different radial positions are
computed. In this way the radial profile of the flux is obtained. Neglecting the
finite spatial resolution, Gorenflo-A is used for an Abel inversion together with
the extended Abel version. The latter of course including the dependence on the

finite spatial resolution.

Again the Abel inversion matrix is taken to be 21 x 21 points and calculated in
double precision. The width of the plasma volume on the median plane seen by the
detector system is varied from & = o up to 4 cm. The two light stops are of equal
width and variable size, 10 cm apart; and the second stop is positioned 15 cm from
the plasma centre. The plasma radius is fixed at 11 cm. As in the previous section

the flux is normalized for a detector system of unity dimension.

Fig.11 shows the variation of @ (r) for various spatial resolutions. As can be seen
from this figure the influence of the spatial resolution on the flux in the central

part of the plasma (r € 6 cm) is rather small (€ 15%). Thus, when using Gorenflo-A
for Abel inversion with a bad spatial resolution (& =4 cm), one still gets a good
agreement with the test function in the central part of the profile. However, in

the wings the error becomes substantial and is increasing with decreasing spatial
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resolution. In addition, the errors due to the flux measurements and multiplied

by some factor by the Abel inversion,are masked if one uses the Gorenflo-A

Abel inversion routine to handle badly spatial resolved radial profiles. (This

will be treated later in section 10). It should be noted that, of course, Gorenflo~A

was only developed to handle radial profiles with very good spatial resolution.

Again for very steep profiles (& = 16) Figs.12 and 13 show the relative deviation
from the original test function of the Abel inverted flux. Fig.12 is due to the
Gorenflo-A routine and Fig.13 is due to the extended Abel inversion; both for

a spatial resolution of & =3 cm. As can be seen from the figures Gorenflo-A
causes a smooth buth large deviation, with a maximum at r = 7.5 cm of 70%.

The extended Abel inversion has a maximal systematic deviation at r = 8 ecm of 3%!
In addition to this there is an oscillating deviation, which grows towards the
outside and is about 3.5% at 9.5 cm . The cause of this oscillation is not

precisely known, but is believed to be a numerical problem at the pl.qsmq edge,

that propagates inwards  and which increases with decreasing spatial resolution.

Fig.14 shows the following as a function of A (the spatial resolution):

- the smooth maximal systematic error due to Gorenflo-A (upper trace)

- the oscillating error due to the extended Abel inversion (middle and
dotted trace)

- the maximal systematic error due to the latter Abel inversion method

(lower trace)

It should be noted, that these three errors are all very much dependent on the
type of profile, and especially on the steepness (¢ ). For o = 4 for example

all three errors are strongly reduced as shown in Fig.15.
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8. Hollow Radial Profiles - Ideal Spatial Resolution

Hollow radial profiles are especially vulnerable to misinterpretation due to errors
inherent in the Abel inversion technique. Thus, they serve as good test criteria
for Abel inversion routines. Again we take a test function, integrate this function
along the chord length. Then, both Abel inversion routines are applied to the
calculated flux and the calculated radial profiles compared with the original

test function. We have taken a deviation of the function used for the bell-shaped

radial profiles, i.e.

1 -1

I (r)= a2 tor mp iy (21)
oo 1 ‘+(r2r_s)

An example is given in Fig.16 on a semi-log scale for I, =.0001, r, =6 cm,

§= 5cmand & =16. Using various parameters the radial profiles of the line
emission in plasmas can be simulated. The lower hatched line in Fig.17 is

a linear representation of the same function. As can be seen, the radial character

of the function is very similar as that observed in real experiments with spectroscopic
measurements. Therefore, we will study the problems of the Abel inversion by means

of this function.

The parameter Io is especially important for the accuracy of the Abel inversion

in the centre of the plasma. Fig.18 shows the systematic errors of the Gorenflo-A
Abel inversion method for ideal spatial resolution as a function of parameter -

The value of the intensity in the wings is more or less independent of the parameter Il
and it can be seen that the error in the wings is constant and about 17%.

However, it has been found that the systematic overestimation of the Abel inverted
flux becomes substantial for lower values of l, and that the Abel inverted central
value saturates to a constant value (Fig.19). This saturated value is dependent

on the number of points used for the inversion (Fig.20). An approximate

extrapolation of Fig.20 indicates that an uncomfor tably high number of points

is needed for an accurate Abel inversion with Gorenflo-A for the case of
(o) =10"%.
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Since the difference in the central flux is only 0.5%, when decreasing | (o)
from ]0_3

flux profiles (curve c of Fig.17). But even when | (o) = % -3 the systematic error

to ]0-4,i'r is practically impossible to distinguish the Abel inverted

for Gorenflo-A is still substantial (around a factor of 2).

The extended Abel inversion routine shows much improved characteristics regarding
the inversion of hollow profiles (Fig.21). Typically, with Gorenflo-A, the errors

in the centre are a factor of 30 and in the wings a factor of 5 larger than with

the extended Abel inversion routine. Thus, even when the minimum measurable
central intensity is of the order of 10-3, the errors due to this Abel inversion remain

acceptable over the complete cross section.

9. Hollow Radial Profiles - Finite Spatial Resolution

In the previous section we have seen the dependence of the accuracy of the

Abel inversion routines on the central value of the local intensity | (o). If one
can measure the radial flux profile with sufficient precision (.5%), it would

be possible to determine the central value of the intensity by Abel inversion down
to values of 1073 or less.  Values of (o )=10"3 will thus be used to provide
a comparison between the Gorenflo-A and the extended Abel inversion methods

with finite spatial resolution.

In Fig.22 is given the systematic error by the Gorenflo-A method for various

radial positions as a function of the full spatial resolution & . At the radial position
(r = 3.5 cm) with the steepest gradient in the test function (1 (o) = 10-3 and & = 16)
the error is obviously largest and increases (curve b) with decreasing spatial resolution
(increasing & ). There the Abel inverted radial profile is about a factor of 8 larger
than the original test function. The error at the edge (r = 8 cm) also increases with
decreasing resolution, although, the error in the centre is not much affected in

this particular example.

The behaviour of the extended Abel inversion method, including the dependence
of the spatial resolution, is shown in Fig.23 as a function of & . The total error
is again split into an oscillating and a systematic error. As can be seen from the

figure the systematic error is not very dependent of the spatial resolution.
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Also it remains at an acceptable level (£ 15%) in the presence of very steep profiles.
However, the oscillating error is a steep function of &\ making good Abel inversion
impossible for values of &\ beyond 2 cm for particularly steep profiles. The
oscillating error is as large as the systematic error of Gorenflo-A for & =3.5cm.
The reasons for this large increase of the oscillating error with decreasing spatial

resolution is discussed in the next section.

10. The Error Transmission

The most striking feature of figures 14 and 23 is the rapid increase of the oscillating
error with decreasing spatial resolution (increasing & ). Provided this error is not
too large it may be reduced with a smoothing routine, sacrificing of course the

fine structure.

The reason for the rapid increase of this error with & can be found in the increase
of the Abel inversion matrix elements. Since the oscillating error for the hollow
profiles is largest in the plasma centre, we only consider here the matrix elements

A (1,))for r=0 or | =1 as a function of the spatial resolution (& in cm),

as shown in the figures 24 to 29. With increasing & it can be seen that,

besides the increase of the matrix elements, there is also a broadening over r (or J).
The large oscillations in the value of the matrix elements versus J for & 2 3.5cm
are not fully understood. They could be due to too few steps for the integration

over the solid angle. However, for & < 3 cm the integrations have been
checked by reducing the number of steps by half, yielding essentially the same

Abel inversion matrices.

It should be noted, that for smooth test functions (bell-shaped with r, =6 cm and
ol = 4) a very good Abel inversion is obtained even for & =4 cm, the error being
less than one percent over most of the plasma cross-section. So, although the large
oscillations of the matrix elements may be real (i.e. they are not due to some
numerical problem), they will not be of further interest since in practice the

error transmitted by the Abel inversion matrix with a resolution of 3 cm will be
much larger. This can be shown with the aid of Fig.23: since the computing of

the flux is in single precision and has a precision of about 10'5, a test function
with a depression of the order of 10~3 and matrix elements in the order of unity,

would yield an error of 10'2, as indeed can been seen in the figure. It can



-B13 -

readily be verified in this way that a large oscillating error corresponds to
large matrix elements in the relevant Abel inversion matrix. Now consider

3

an optimistic measured radial flux profile of 5 x 107 accuracy. The error

(not necessarily oscillating), after Abel inversion for & =3 cm and an expected
depression of the hollow profile of ]0_3, is then a factor of 200 for the values

in the centre. Thus, a detector system with a bad spatial resolution is not

particularly suitable for measuring the central value of hollow profiles.

For & =3 cm we have found that the error is multiplied by a factor of hundred.

So in the case of bad spatial resolution the use of Gorenflo-A or equivalent methods

will mask the real error on the Abei inverted profiles.

11. Conclusion

It has been found, that for hollow and for bell-shaped radial intensity profiles the
newly presented, second order and spatially resolved Abel inversion routine leads
to a marked improvement over present methods. This improvement is typically a
factor of 25, although, for those profiles for which the classical Abel inversion
method works satisfactorily, this improvement is not so important. The method
presented here is particularly applicable to profiles with steep gradients and /or

hollow centres.

Since spatial resolutior. of each detector is taken into account detectors with
wider acceptance angles and therefore greater flux input can be used. Also fewer
detectors are needed to achieve the same accuracy of previous methods.

Also a major advantage of this method over previous methods is that the transfer
of errors in the flux data is handled correctly. Thus, the errors are not masked

as is the case when using Gorenflo-A for a detector with a wide acceptance angle.
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Figure Captions

Fig.1 General view of a two slit detection system showing the actual volume

of the cylindrical plasma seen by the detector.
Fig.2 The detailed geometry of the detection system used in the computer program .
Fig.3 Elements of the Abel-integral matrix ©{(n,i) used in Gorenflo-A.

Fig.4 The allocation of volume elements to the Abel integral matrix elements
as in figure 3.

Fig.5 Radial profiles of the local intensity | and its flux E with ry = 6 cm and

o{= 4 for an infinite spatial resolution. The plasma radius a is 11 em.

Fig.6 The error € as function of the radius due to Gorenflo-A for the functions

shown in Fig.5.

Fig.7 The error & as function of the radius due to the extended Abel inversion

for the functions in Fig.5.

Fig.8 Radial profiles of the local intensity | and its fluxf with ry = 6 cm and

ol= 16 for an infinite spatial resolution.

Fig.? The error € as a function of the radius due to Gorenflo-A for the functions

shown in Fig.8.

Fig.10  The error & as a function of the radius due to the extended Abel inversion

for the functions shown in Fig.8.

Fig.11 The flux § as function of the radius for detection systems with different

spatial resolution. & =0 and 4 cm respectively and with 5= 6 cm and

X =16.

Fig.12  The error & s function of the radius due to Gorenflo-A for a steep radial

intensity profile (r2 = 6 cm, & = 16) and a poor spatial resolution (A=3cm).




Fig.13

Fig.14

Fig.15

Fig.16

Fig.17

Fig.18

Fig.19

Fig.20
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The error € as function of the radius due fo the extended Abel inversion for
the function used in Fig.12. The systematic error (dashed line) is sketched

into the figure,

The maximal error due to Gorenflo-A (trace a), the maximal systematic error
due to the extended Abel inversion for ra 10 cm (trace b) and its
oscillating error (trace c) as a function of the spatial resolution & for

a steep radial profile (r2 =6cmand & =16),

The maximal error due to Gorenflo-A (trace a), the maximal systematic error
due to the extended Abel inversion for r & 10 cm (trace b) and its

oscillating error (trace c) as a function of the spatial resolution & for
smooth radial profiles (rz =6 cmand & =4),

The radial hollow intensity profile | with l0 = '[0_4, ry= 6 cm, = = 16 and

§ = 0.5cm.

The same radial intensity profile as in Fig.16 given on a linear scale and its
radial flux profile (c). Curve (a) and (b) are the radial flux profiles for
radial intensity distributions with = 'IO_] and 10_2 respectively, The curve
for l0 = 10-3 coincides with that for Io = 10_4. All curves are for ideal

spatial resolution.

The dependence of the systematic error for Gorenflo-A on the central

depression Io at different radial positions for ideal spatial resolution

curve a: O <¢r< 2 cm
curve b: 2 L r ¢ 5 cem

curve c: 7 < r<10 ecm (peak position)

The saturation of the central intensity after Gorenflo-A Abel inversion
with the decreasing real central intensity dependent on the number of points

used in the inversion.

The central intensity after Gorenflo-A Abel inversion for two real central
: - -3 -4 - :
intensities: | (0) =10 ~ and 10 " respectively as a function of the number of

points used in the inversion,
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Fig.21 The maximum systematic error € due to the extended Abel inversion as a
function of the central value of the intensity | (o) at different radial

positions for ideal spatial resolution.

curvea: 0 «£r< 2,5cm

curveb: 2,5€r< 5cm

curvec: 5 < r <10 cm (peak position)
(Compare Fig.18.)

Fig.22  The systematic error € by Gorenflo-A for various radial positions as

a function of the spatial resolution

curvea: rm~™0 em
curveb: re3,5cm

curvec: re8 cm

Fig.23 The oscillating error (curve a) and the systematic error (curve b and c)

by the extended Abel inversion as a function of the spatial resolution.

curveb: 2<&r < 5cm

curvec: 5<r<€ 10 em

Fig.24  The Abel inversion matrix elements A (1, J) as a function of J
to 29 (I =1 for r = 0 cm) for several spatial resolutions &\ as marked in each figure.
Elements marked @ are positive, those marked © are negative.

Note the strong increase of the absolute value of the matrix elements
when going from A =1 to 3 ¢cm and then the strong oscillations of the
absolute values for & 2 3 cm.
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shown in Fig.8.
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for the functions shown in Fig.8.
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Fig.12 The error € as function of the radius due to Gorenflo-A for a steep radial
intensity profile (r2 =6 cm,ol = 16) and a poor spatial resolution (A= 3 cm).
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Fig.13 The error & as function of the radius due to the extended Abel inversion for
the function used in Fig.12. The systematic error (dashed line) is sketched

into the figure.
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The maximal error due to Gorenflo-A (trace a), the maximal systematic error
due to the extended Abel inversion for ra 10 cm (trace b) and its
oscillating error (trace c) as a function of the spatial resolution A for

smooth radial profiles (r, =6 cm and & = 4).
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Fig.17 The same radial intensity profile as in Fig.16 given on a linear scale and its radial flux profile {c).

Curve (a) and (b) are the radial flux profiles for radial intensity distributions with Io = 10_] and
]0-2 respectively. The curve for [0 = ]0-3 coincides with that for A 10_4. All curves are

for ideal spatial resolution.
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Fig.18 The dependence of the systematic error for Gorenflo-A on the central

depression |, at different radial positions for ideal spatial resolution
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The maximum systematic error € due to the extended Abel inversion as a
function of the central value of the intensity | (o) at different radial

positions for ideal spatial resolution. (Compare Fig.18).
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a function of the spatial resolution
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by the extended Abel inversion as a function of the spatial resolution.
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