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The possibility of heating the plasma of the W VII A
experiment by coupling to the plasma a fast Alfred wave

at By= 2Ll s is investigated. The power adsorbed by
the plasma is evaluated, taking into account the inhomo-
geneity of the static magnetic field and the effect of

the rotational transform. The R.F. power absorbed by the
plasma is then compared with the power lost by ohmic
heating of the wall and of the coupling structure. It is
found that a large amount of R.F. power can be coupled

to the plasma (up to 90 %), if the plasma parameters are
such that toroidal eigenmodes set up, in spite of the fact
that the coupling structure in the W VII A experiment must

be very close to the conducting wall.




Recent experiments on Ion Cyclotron Heating (ICH) in toroi-
dal devices have shown that coupling efficiencies up to 90 %
and heating efficiencies of 20 % to 40 % can be achieved by

this method1'2'3’4

. The heating efficiency is relatively low
as compared to the coupling efficiency (it is nevertheless
one of the highest obtained by RF heating methods) only due
to the particular conditions in which the ICH experiments
were performed rather than to be peculiar of any such ex-
periment. In fact, in all these experiments (with exception
of the TFR experiment where, on the other hand, very low
power levels were used, so that the heating efficiency could
not be measured), the RF frequency was relatively low

(21 - 25 MHz), so that to meet the condition w= 252 the
magnetic field had to be reduced to less than 16 kT' and a

deuterium plasma had to be used.

Under these conditions the banana orbits for energetic
ions were quite large and eventually could become comparable
with the plasma radius. The poor heating efficiency and the
observed influx of impurities at high power levels could then
be explained by the bad confinement of the energetic ions.
Moreover, a few percent of resonant hydrogen ions (& =
20, =<X1y ), which are always present in a deuterium plasma,
could absorb a large amount of RF power and be accelerated to
very high energies. This fact has been clearly shown in the
Kurchatov experiment where, by means of a mass-energy
analyzer, it was found that the tail of the distribution

function after ICH was occupied exclusively by hydrogen ions.




A further complication arising from the use of a deuterium
plasma is that, owing to the inhomogeneity of the static
magnetic field and to the presence of a minority hydrogen
ions, there is inside the plasma a surface where the con-
ditions for the two-ions hybrid resonance are met. At this
surface mode conversion can occur and the behaviour of the
wave will strongly depend on the concentration of the

minority hydrogen ions.

All these difficulties could be avoided in the WVIIa
Stellarator if a pure hydrogen plasma is to be heated (a
small quantity of residual deuterium plasma will not be
relevant, because the frequency w = 2.0, is everywhere
in the plasma different from the resonance frequency of
deuterium, wy ) and if the frequency of the RF power is
chosen appropriately (f o 100 MHz) in order to meet the con-
dition w=20, at high field strength (B, 30 K" ).

An advantage of WVIIa with respect to other devices is the
large aspect ratio R/r 2 15, since the RF power absorbed

by the plasma is, as we shall see, roughly proportional to
R/r. Moreover, as the toroidal eigenmodes are very close

to each other in WVIIa, overlapping of modes can occur and
the coupling efficiency becomes less sensitive to changes
in the plasma density. In the following we evaluate first
the RF power absorbed by the plasma taking into acccunt
both the inhomogeneity of the state magnetic field and the
effect of the rational transform, and then the resistive

loading of a coupling structure.



Basic eguations

We approximate in the following the toroidal plasma by

a straight cylinder confined by a magnetic field of the form

B, - B, (4- (n cosd9)/R)

(1)
By= B, 2/qR 18,]« B,

and impose that all quantities are periodic in z with

period 27 R.

To evaluate the characteristics of the Vlasov equation
we derive first the motion of a particle in the magnetic

field given by eq. (1). After introducing the variables
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Eg.(3) is of course incorrect for particles which are
trapped or quasi trapped; however, owing to the large aspect
ratio of W7, their number is quite small, so that we can
assume that their contribution to the plasma currents can

be neglected.

Now we approximate the value of the magnetic field en-
countered by a particle at a point (r,??,t?) by the wvalue

at the gyrocenter (T, ’19,?7), whose equations of motion are

assumed to be

(4) $

[,,}'__: 9 . wb/qR,

+ .
After introducing rotating coordinates V= lQ:fizUF

we obtain for the characteristics the expressions
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where W:(tlt)ﬁo—i&'—ﬂo 440‘/(494-?% (t'_t')/_. Sl 19'—/
In deriving eqgs.(5) we have neglected the radial shifts

due to toroidal drifts although they are of the same order

of magnitude, i.e. p:/2 , of the terms retained. We shall



however show in the appendix that this is allowed, when

evaluating the power absorbed by the plasma.

Since (r—§ /L,) is a constant of the motion, as

g@ Ué/ﬂ )&(IJ[/‘\I)

m
eq.(5) shows, we can choose % %;ﬁsa

as the zero order distribution functlon, n is the plasma
density (we assume ni=ne) and V4 is the thermal velocity
of the j-th species.

The solution of the linearized Vlasov equation can then

be written
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where flj' ej, mj are the first order distribution function,
the charge and the mass of the j-th species; Vi, Ei are the
rotating components of Ei'El;u'Ew are the components of v

and E parallel to B; v 1is the collision frequency and the

prime indicates that a quantity is taken along the charac-

teristics.

As the magnetic field does not depend on z, we can
write the electric field in the form

(L2 wt) (N=0=21,...)
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After a time larger than 1/v we can neglect the term

[.f £—Vt
U1 in eq. (6),

so that the plasma currents are
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Since the integrands are, for ilﬁ-»-y and
fhijg /qn , rapidly oscillating functions of t', the

largest contribution to the integral in eq.( ) will come
from the neighbourhoods of the time t' where the phase is

stationary, i.e. where
= - ,
wr Q .Zi-lk ca:(éhuiij_.é) =0
(8) OJ R,n q Qa /

or from the neighbourhoods of the integration limit t'=t.
When W= 21}bi eqg.(8) is never fulfilled; we can then ex-
pand the exponents of the integrand around t'=t and obtain

an expression for the plasma currents to lowest order in

pi/%; ¢
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Power absorption

The RF power absorbed by the plasma is given by
J : + L= p= ¥ ' >*
oy P-4 Re (¢ E7]=1 Re (4% €20 EL)

If we neglect the RF power absorbed via collisions or elec-
tron Landau damping it is evident from eq. (9) that the lo-
west order in ei/r the absorbed power is zero. Only to a
higher order in Pi/r the plasma current has a component in
phase with the electric field and contributes to the power

absorption.

In order to evaluate the higher order plasma current jl'
we assume that _ig(r,'ﬁ') and g(r+vf /_Qo.._) do not change appre-

ciably over a distance comparable with an ion Larmor radius,

so that we can write
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When we insert expressions (11) in the integrand of
_ p(w-29,:)T

ed. (10) , the terms proportional to

oscillate much slowlier than the other terms in the inte-

grand when w = 2.f%i, and therefore give the largest con-

tribution to the integral (this will be clear in the follow-
A

ing). Retaining therefore only terms proportional to & Y

we obtain
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Taking into account that, after integration over v, for

symmetry reasons only the terms proportional to('v+v—)2

+
are not zero and that v§ =- X ;V , we get
j.—z 0
1
2 f:) +00 . g
-l z_-W 2Ly
2 N o2 u /v
(14) o s Bl 5 i [6
34 S
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T g2t i 2

The power absorbed by the plasma per unit volume will then

be given by

Pot Re 487

QIS R A S A R

Now we have to evaluate the self-consistent electric field

+ .
E- = E_ + 1 Eg;

absorbed by the plasma it is sufficient to insert in the

note that in order to evaluate the power

Maxwell equations the zero order plasma currents, given by
eq.(9), since the first order correction of the plasma
currents, 11, will only slightly affect the form of the
electric field and will give no appreciable contribution

to the power absorbed by the plasma, as given by eq.(15).
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When terms of the order r/R are neglected, the poloidal
modes are decoupled, so that for the poloidal mode m=0,

the only one we shall consider here, we have

2 7 c?®
P (41 2 ¥ 1
""j—fL ({L }()_4_: \’t \99 = /2-' %1} = 4?‘1-;4*6‘)

)
?_(mﬁ"é) EE%?_(/L%)_éTwJ

whee from eq. (9)
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As wP’; Ye=tat f‘%uj <‘(/Ué,_l, fﬁtpj) , so that

neglecting again terms of higher order in r/R we obtain:
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The last term in eq.(17) is, for the parameters of WVIIa
very small and can be neglected. This term however is pro-
portional to the azimuthal number N and will change the
form of the electric field according to the sign of N.
This effect is responsible for the splitting of the toroi-

dal modes observed in some experiments.

Note that expression (18) can become very large when
k2 + 6~ 0, i.e. when W?/c?) ~ 0"+ N°/RZ. This is possible
only for small values of N and at very low plasma density
(n £ 1.5-1011 cm_3 for WVIIa parameters). We do not consider
here plasma regions of such low densities and assume that

o2, c..}z/c2 everywhere.

A solution of eq.(17), regular for r— O can be obtained
numericafly, for a given density profile; if we call it.i%

the general form of the electric field in the plasma is

€

conditions (if the density were constant, it would be

= Aﬁ, where A is a constant determined by the boundary

‘9,9= AT (k1)) .
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Resistive loading of an external coupling structure

We assume that at a radius s>p (p = plasma radius) there

is a sheet current distribution of the form
. ~g,2
-—Lu)t L
- _ ] e "o
(19) ngt_ € 8(/1, é)ZH N y

and at a radius w > s a conducting wall. Then the electric

field has the form

L g N
%wf e o ZN e R %19
with
N P
Lep ¢ =A%

o Peves 0= B L (8. (K (Y

” N
KL LW 8}} = DN Iﬂ(?:"")-;— E.‘ K,,(%m)
3] -2/
WL %,, = Gy e
2 1/
where 5=(ﬁ/QXLuU)/ is the skin depth of the conducting
wall and we have assumed W & . The boundary conditions for

the electric field are

%] - L,J% 2]

(21)
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where the brackets indicate the jumps at the boundary

surfaces.

After straightforward calculations one obtains

fy= i s [K (o)LL (8s)- (3 8) L ()

- 45 K (59K T@“’)]

(22) N
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Whereas A Qc {OL I ) ,6” K (ﬂ_w } can be
obtained by solving eq. (17), the quantity
AIN= J«m{dn I,(%'W) ~Fn K4 (%,WJ could be obtained by
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evaluating the imaginary part of the electric field, i.e.
by taking into account the first order correction of the
plasma currents,‘il, which has been neglected in eq. (17).
However, as Mrm/ ?’:2 l(< ]_Tfe g,:/ + in general it will be
lAIn!«l(Agn} so that the contribution of Ary

to ’OH becomes important only if, for particular values
of the parameters, [ARH’ becomes small, i.e. if a
toroidal eigenmode sets up. In this case 'AIH

determines the amplitude and the width of the eigenmode and
can be evaluated without evaluating Im(ég) explicitely.

In fact, .AI” can be obtained by equating the sum of the
total power absorbed by the plasma plus the power absorbed

by the wall, to the power lost by the external structure.

From eq. (15) we have that the total power absorbed by

the plasma is given by
2w T

P
D _ d_-&fcifffq,f‘dﬂ,

[

g R g S % 2 (12 €)He) oo

46 71-4/& "U'

=+ M-wm/w o T
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The power lost on the wall is
2rRe LW 00

wr T

° A
N 2
. trusRe S Zo & 1 [ty LBo)-4 k&Y.

(24) c*

We must now equate the sum of P_ and P_ to the power P
P w ext

lost by the external structure:
R, o ¥

b= fdz /dﬁ‘ o dop b AN

2 o

_ 4mtwatRe S J i {24: [%L(%ﬂ)~/@,~.fﬁ(€—a=9]

(24) et

(8L, (1 o) - Fi (g 2) L GL) - 43K (%a)/wm(_gw)]} .

as A, becomes important only when A4, is of the
same order of magnitude as AIH , we can neglect the terms
proportional to 4, j% o or to Arzm’ jm/[‘;” in

eq. (25). Furthermore, as the coefficient JH can be varied
arbitrarily without changing AH , we can equate each term
of the sum over N in eq.(23),(24) to the corresponding one
of the sum in eq. (25). By noting finally that from eq. (17)

for &,szfloi it follows

f 1] —.b‘:; ]
(26) % = _4,JZ__%F_ i@»)
o+ Q,
we get
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The function H(r) is evaluated in the appendix. When
ﬂCd=O, i.e. when the resonant plane coincide with the mid-

plane of the plasma cylinder, one has

. -2 G/e)” S
(28) H(n)~ 255 & ° I"(i’(?%@)}'

e /
i
L

We note here that if AW=0 and if the power absorbed in
3/2
the region r<pN 1is neglected, we can write H(r):&=3n'/9/¢

and eq.(23) for the power absorbed by the plasma reduces to

'9%* *
(29) PA": b, M f? db

¢ > Np

This expression is identical with the one given in ref. (6 )5
only if there the total power absorbed by the plasma is con-

sidered.

We emphasize here that the power absorbed by the plasma
per unit volume, P = % (J*E) , can be negative in some inter-
val of r (see eq.(23)); this behaviour however does not mean
that the plasma is cooled in that region, as the heat trans-

ported by the plasma should also be included. Consequently,

the expression P = % (j-E) should not be used to evaluate
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the local heating rate of the plasma; when integrated
over r, however, it yields the correct value of the total

power absorbed by the plasma.

For a more detailed discussion of this problem, see
ref. (?), where the heating of a plasma by TTMP has been

considered.




- 18 -

Conclusions

We have solved eq. (17) numerically for a density profile

of the form

{n ng (1—r2/p2) + 1.15 - 1011 cm-3 r.< P

n 0 r>p

We have assumed that the RF field is generated by a single

turn coil and that the current in the coil has the form:

Jext = Jo 7 [Z2]¢ A 4-0<n 44+ 3

J = 0 otherwise,
ext

with A= 2.5 cm; 5=cC (2Two ) 1/2

is the skin depth;
the value 0O = 0.14 x 107 mhos/m corresponding to stain-
less-steel has been choosen both for the conducting wall

and the RF coil.

For the WVIIa parameters

RO = 200 cm ' p = 10 cm
s = 14,5cm ’ w=17,5 cm
q = 2.5 . B8 = 3¢ kT

we have then evaluated the RF power absorbed by the plasma
and the ohmic losses in the wall and the RF coil.

Fig. 1 shows the equivalent series resistance for the sum
of the power absorbed by the plasma and the ohmic losses in
the wall and in the conducting coil, as a function of the
plasma density, for two ions temperatures:

a) T, = 100 eV

1

b) T,

400 eV.

I
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Fig. 2 shows the fraction of the total RF power absorbed
by the plasma (a), by ohmic losses in the coil (b), and
in the wall (c¢) as a function of the plasma density. The

ion temperature is Ti = 100 eV.

Fig. 3 shows the same quantities as fig. 2 for T, = 400 eV.




_20_

Appendix 1

We shall evaluate the expression
wils

~ u,/m wy V(Be-wT .
(1a) ‘/(JL} _’L @e[fdﬂ'f f«@ 2 2 cé‘r:}

Q

in the limit of small @/r.

We consider here the situation where the mean free
path is much smaller than a connection length, i.e.
V»v.;/.&rrc’ R, . Then 4{,1:/? R, «4 and we can

expand the expression
y ' - M _ S
'\f/: -QOI: T- Qi‘ QO& [dw(’&l q/tr t/ e 1}]
around T= 0; we obtain:

2]
ot av(hvyu_ dw_ 2280 cos+9)
e e Re

21T -]
Ho v aee,fw/a'“atw
Re 4 L ;

(2a)
1} EL4““1} o
) ‘Y T rF A dT.
L .
When k, «Y/a; and u(”i R, "} qf;“ 5 the collisional

damping dominates. In this case it is convenient to per-

form the integration over u first; we get

Ho oF 2 ff%e/d#f T o (40 s S Co)
( .+‘!:"U'/bd4~»1,)
Vi -——-——P--—" dt

e:
~4‘1& G&.fdﬁ"f 2 “’(M’J’%‘Q" mwtd-a

—4/2
Y, R&[U— Qaw) +(.J§:.Sl.; +&Lp.du]

L]
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Note that for r o 4 AR=R%L-L the function H has a
X o

maximum. When one of the two before mentioned conditions
2 '
is not fulfilled (i.e. when either o> (Eﬂ”—i&’—)_&ﬂ
vy 73q din ®
or the parallel wavelength is shorter than the mean free
path) the collisional damping can be neglected. In this
case we write eqg. (2a) in the form
T o0 g
=T ‘(b v - Aw—2% Q,; 0P
He Vo ﬂfow/p, du,fe,”’("' Ro /
2R A
—00 __00

z [
:'TL U-,_J ___._._...QM D 1}
e pr RS AL a.c

After integration over T we get

o2 2 I \ R:e,’ (h\)}p(,_.aw-l"_"_ﬂ.;{-oaﬁ'):'
- T e
ﬂe/& d,u,f._@,_ /
v;
- oo 0

H. v LmQe g viam d?
- EE; L AL Adn VP

For Q/r’* O the integrand is a rapidly oscillating function
of " , so that we can use again the method of the station-
ary phase for the integration over % ; the points where

the phase is stationary are given by
(3a) cod Vs =%%—(k.. fo = Aw/.Qa,').

For the ions with velocity such that /bh@wu- d&vxh;ﬁ>$¢/R°
i.e. for the ions which do not cross the resonant region,
there are no points of stationary phase. For these ions the
integral over %+ is a factor ¢@E7; smaller than the inte-

gral over > for the ions which have points of stationary
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phase, i.e. which cross the resonant region. From the

leading term of the integral over 2+ it follows

—ut
|‘ e oot d'u
41y M= TE I

where the integration is over the values of u which
satisfy eq.(3a). It is evident that eq. (4a) is the correct
expression for H only if the bulk of the particles crosses
the resonant region,Al.e. 4F T ZiQ/, otherwise the small
contribution to the integral over ) coming from the
integration limits (0,270 ) should also be taken into

account.

Let us now use Jt as new integration variable, in-

stead of u; then
2

T Z
He .ﬁ-”; f - (2% /No:) " (coav,- AR /2%) d

NS

Q

In the interesting case A R=0 the integral can be evaluated

exactly and one gets:

. -4 (Ln/Ne:)*

Hx — U I;(f(2¢/ﬁejj-

N
When A R#0 the following approximations are valid:

a) H=z 2n*/N For 4« oy

b) H=x .I«Ttslg'_gi (4_ (AQ-/.M,)y"{/J’ For A > ”67.' :
n /
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In the neighbourhood of r =,%¥: the last formula is not

valid; for r » AR one gets directly

Hay 2 fwe' (2r/Nes)™8"/4
TN o

& 44470 (o /Na )"/"

dd

The results we have derived justify the assumption made
earlier in deriving eq.(13), that the terms proportional

- &L‘ (U—&-Qaf.)t

are the most important; in fact, all
other terms would have a much larger value of gJw , of
the order ,; or e ;, so that eq.(3a) would be never
fulfilled. The same is true for the terms which would
come from the radjal shifts due to toroidal drifts as

they are small and oscillate too slowly as compared with

the ion cyclotron frequency.
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Figure Captions

Fig.1 shows the equivalent series resistance for the sum of
the power absorbed by the plasma and the ohmic losses in
the wall and in the conducting coil, as a function of the
plasma density, for two ions temperatures:

a) Ti = 100 eV
b) Ti = 400 eV.

Fig.2 shows the fraction of the total RF power absorbed by the
plasma (a), by ohmic losses in the coil (b), and in the
wall (c) as a function of the plasma density. The ion
temperature is Ti = 100 eV.

Fig.3 shows the same quantities as Fig.2 for Ti = 400 eV.
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