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Abstract

The relation between the emissivity and the test signal is given

by ABEL's integral equation. It is nearly always assumed that the
emissivity has circular symmetry. This report presents a generalization
of ABEL's integral equation for asymmetric emissivities. Both the
emissivity and the test signal are expanded in FOURIER series. The
generalized ABEL equation is thereby decomposed into a completely

separate system of equations for the FOURIER components.
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Introduction

The ABEL integral equation describes the relation between the

emissivity F of a domain, which we call "plasma", and the test signal

U where the plasma has a circular cross—section and the emissivity F depends
only on the distance r from the centre M of the circle (§1).

In this report we investigate what generalizations have to be made to
ABEL's integral equation if the emissivity F is not circularly symmetric
(eq. (2.2.)). The emissivity F and the test signal U then depend on the
angle. If F and U are expanded in FOURIER series, the components satisfy
integral equations (2.6) which are partly identical with ABEL's equation
and partly of similar construction.

In practice, unfortunately, there are fewer experimental data

available than are necessary for proper determination of the emissivity
function F. We present the simplest possible interpretation (e.g. at

the end of §2) but draw attention to other possibilities (§4, Fig. 12).

There are also completely different methods such as /3/.

In § 3 we describe how to determine the plasma centre and radius from
the signal functions.
In § 4 we treat the special case of plasmas with quasi-circular

symmetry; this primarily concerns elliptical plasmas.




§ 1 Circular symmetry

The plasma cross—section with radius R and centre M is bisected by

the line of sight DD' of a detector (Fig. 1).

The detector records all radiation emitted along DD'. With circular
symmetry the emissivity F depends only on r, where r denotes the
distance of the emitting element ds from the centre M. The detector
signal depends only on the position p, where p is the distance of

the line of sight from the centre M.

In transparent plasmas it holds that U(p) = ds F(r) (1.1

g—c

From s = r —Pp (1.2)
\

‘j) A6, = r dr
(1.3)
|/ r2_p2

one gets ABEL's integral equation

2 2

R
U(p) = 2 [ S R e (1.4)
P r -p
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None of this is new. We have merely repeated these equations here
because they are to be generalized later for asymmetric cases.

The factor 2 in eq. (l1.4) is present because for every r value there
are two line elements on DD'; see Fig. 3 in §3.

Below we present a table of ABEL transforms similar to TABLE 1|

ABEL TRANSFORMS in /1/, but with a different selection of functions.

Table 1 ABEL transforms (R = 1)

1 2
F(r) U(p) = 2 J dr r F(r) a V1+za
2 2
P Yr -p
- % Gisp oyl ! 1.3328 (% = 1.3333)
('1-r2)2 % (1—1:2)2'5 2 1.0665 (-:-gi = 1.0666)
2.3 32 ... % .55 B2 _
1-r°) 35 (1-p") 3 0.9142 (35 = 0.9143)
. 2.-0.5 2
§(q-r )] (q-p™) q>p
2.a 2 2.a+0.5
& i (1-p")
l+za




" a+l.
Here one has z 1.+0.273 g i) 5 (1.5)

¢

In column 4 the amplitude is calculated using the approximation

equation (1.5). For a > 3 the inaccuracy is of the order of 10_4.
as numerical tests for a < 17 have shown.
The inversion: is performed as follows:
2B
Let up) = (1-p7) i (1.6)
This gives
B-0.5 \
ol s 2 _ B +0.5 -
F(r) = 3 (I-r) L.+ (8-0.5) [1.+0.273 35|

Fig. 2a

(for Table 1, line 4)
23
F(r) = (I-r7) Profile with @ = 3

is approximately reproduced

u(p) = %% (l-p2) in ABEL transformation
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Fig. 2b

(for Table 1, line 5)

Y

plotted versus p.
This signal is generated
by a ring-shaped emission

region of thickness d + O.

Fig. 2c

Ring-shaped emission region

which produces approximately
up) = 1-/V q-p*

(see Fig. 2b). Line of sight

also marked. For the part

in the interior of the ring

it holds that

=2 al-130%es Q.7

where d = ring thickness.

The factor 2 indicates that the line of sight intersects the ring twice.




It should be noted that the first line of TABLE | from /1/ is wrong:

There F(r) is calculated from U(p) according to the formula

=1
U

du

F(r) = dp

(P) (1.8)

- e L
no
[a W
o
N

(in our report we have B .

The first line of the table treats the example

u(p) = 1. (1.9)
It is concluded from it that

au 0 and hence F(r) = 0.
dp

This, however, is not true because it is assumed in deriving

eq. (1.8) that
F(r) = U(p) = 0. for r,p > 1.

Consequently, U(p) is a step function and %g is singular at p = 1.
It is also obvious that:
If a plasma generates a signal U(p) > O,

its emissivity F must also be > O.

From eqs. (1.6) and (1.9) it follows that

F(r) = 0.315/V1-22 . (1.10)

The exact solution from eqs. (1.8) and (1.9) is

F(r) = : ; (1.11)

T ¥ l—r2



§2 FOURIER analysis

We now generalize the results from §1 for asymmetric cases.
In §1 R was the plasma radius

and M the plasma centre.

In general, however, we know neither the plasma radius — perhaps
there is none - nor the plasma centre. We nevertheless require a
reference point M and a radius R. We therefore introduce M and R
arbitrarily, but so that the plasma is contained wholly within the

circle with radius R and centre M; see Fig. 5.

Fig. 3 shows

circle of radius R,
line of sight with
position p and angle ¢,
and two points

at a distance r from M.




10

Equation (l.1) is retained.

But F also depends on the azimuth ¢y , and U on the angle ¢ :

D

U(¢,p) = I ds F(y(s), r(s)).
Dl

As in §1, we substitute r for s by means of eq. (1.2-3).

From Fig. 3 it can be seen that:

Along D'M' one has y(s) = wl(r) =¢ + 8 and (2.1a)
i DM' omne has y(s) = wz(r) = ¢ ~.8 , (2.1b)
where cosf = p/r. (2.1¢)

Equation (1.4) is then generalized as follows:

M' D
U(¢,p) = J ds F(y(s),r(s)) + j ds F(y(s),r(s)),
D' M'
(
dr r -
Up) = | == [ FO,;®,0) *+ F()0) |. @2.2)
P rz'P2

We now introduce a FOURIER ansatz for F(y,r):

F(y,r) = fo(r) + fl(r) r cosy + gl(r) r siny

+ £, (1) rlcos(2y) + g, (¥) rlsin(2y) (2.3)
+ .

The effect of the factor r" is that the fn' g, need not vanish

at ¥ = 0. Substituting ansatz (2.3) in eq. (2.2) yields
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cos(nwl) + cos(nwz) = cos(n(¢+8)) + cos(n(¢=-6))

= 2 cos(nB) cos(nd¢), (2.4a)

sin(nwl) + sin(nwz) = 2 cos(n®) sin(nd). (2.4b)

One may now ask why there are no terms with sin(n6). The answer

is to be found in the peculiarity of the problem:

Emissivities are always positive and are thus added; see eq. (2.2). In
other problems where there are emissivity "sinks', in addition to

"sources" one may also have sin(n8): e.g.
cos(nwl) = cos(mpz) = 2 sin(nB) sin(nb). (2.4¢)

The question is what must the FOURIER ansatz for U(¢,p) look
like so that the components for p - O neither are singular nor vanish

trivially. The answer is to be found in the behaviour of cos(n6):

cosBh = E )
3

cos(28) = -—12— [2p2 r2:| (2.1¢)

T

2 . 2=

cos(36) = -%- E-’-&p -3r° |

4
cos (48) = -—II [8p4—8p2r2+r4 i

T
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The odd components have therefore to be multiplied by p,
but not the even components:

The FOURIER ansatz for U(¢,p) thus reads

U(¢,p) = uo(p) + u (p) p cos¢ + v,(p) p sing £2.5)

+ uz(p) cos(2¢) + vz(p) sin(2¢)
+ u3(p) p cos(3¢) + v3(p) p sin(3¢)

If U(¢,p) is regarded as defining a function which assigns
the value U to every point ¢,p (in Fig. 3 this is point M') U is
singular at p = O (in Fig. 3 this is at point M).

We now visualize this in an example:

Let fz = |, fn+2=0 2
1T
g, = 0 + = 4
2 3 4
F(Y,r) = r cos(2y). oy +
- ] -

There are then

two quadrants with positive and
two quadrants with negative
emissivity (see Fig. 4).

A detector with the y axis as line of sight
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receives a positive signal U > 0;

a detector with the z axis as line of sight

receives a negative signal U < 0.

In contrast, it would be expected with an ansatz of type (2.3) that
U(p = 0) tends to zero as p2.

If one defines

and puts eqs. (2.3), (2.5) in eq. (2.2), one obtains by comparing

coefficients:

u_(p) = 2 J Lt @, (2.6a)
u (@) =2 [ L of @, (2.6b)
v, () =2 J EL 5@, (2.6¢)
e =2 | EL £ @) @’rh, (2.64)
N =2 [ g @ e, (2.6e)
uy@) =2 | LI (r) (pP-ard), (2.6£)
va@) =2 | SEE g wpl-arh, (2.68)
u, () =2 J, d’wr £, (x) (Bp*igp2rie £y, (2.7h)
v, =2 | &L g (r) (sp-sp’r? + ). (2.71)

LIT AR AN AN N
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All integrals go from p to R. Complete separation is thus achieved
with the FOURIER ansatz. Equations (2.6a-c) are identical with

eq. (1.4) The other equations differ from it by a factor
proportional to cos(nf).

R does not necessarily denote the plasma radius but is the rather

arbitrarily selectable radius of the definition domain.

Fig. 5

We now determine the FOURIER components from the given test signals.
Let 2N lines of sight be given which all pass the point M at the same
distance p; see Fig. 6a,b. The lines of sight differ by the angle ¢J.
On each line of sight there is a decetor which delivers the test

signal

Uj = U(¢J,p), J=1,2...N.
It then follows from eq. (2.5) that
UJ =u + u,p cosqbJ + v,P Sln¢J 2.7)
+u, cos(2¢J) * v, 51n(2¢J)

+ u,p cos(3¢J) + .,



i

r
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This makes 2N equations for an infinite number of unknowns. A finite
number of test signals thus always admit of an infinite number of
interpretations. Examples of this are presented in §4. Here we content

ourselves with the '"simplest possible interpretation': we set

v =0, (2.8)
v, =u, =0 for K> 2N+ 1.

Equation (2.7) is then a system of 2N linear equations for the

2N unknowns us u v

12 Yoy Voo ot Von-p ¢

S m
If the ¢J are equidistant: ¢J =J X (2.9)

the solution according to ZURMUHL /2/, §23, eq. (19) is then

u = L U (2.10a)

o = E%,z U =157, (2.10b)

w =% I U; cos(Ke) (2.10¢)
K= 1,2 .. N-I

ve =3 1 U sin(Ke)) (2.10d)

All sums go from J

1 to J = 2N. The argument p was omitted:

UJ = UJ(p).

Finally, it should be mentioned that GOTTARDI in /3/ calculates the
asymmetric electron density according to a completely different

method which roughly corresponds to the case N = | in our scheme.
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In Fig.6 we give examples of lines of sight with the same position

p for the case N = 3.

With ¢5 equidistant one observation port is needed for each line of
sight (Fig. 6a), while for non-equidistant 6y two lines of sight can
be taken through one observation port, so that only N ports are

sufficient (Fig. 6b).

Fig. 6a

Fig. 6b




§3 Signal functions and plasma centre

To calculate the emissivity F(y,r), it is necessary that U(¢,p) be
given, in principle for all points ¢,p . This, however, is hardly
ever the case in practice. If U is not completely given, one has to
resort to arbitrary interpretations; see examples at the end of §2

and §4. It seems important to choose the plasma centre properly on the

basis of the measured data; this is the subject of this section.

First we describe how the measured data are obtained in principle:

Let a few observations ports GK be given; through each port there

~

pass lines of sight defined by their angle ¢ to the ordinate.
For each line of sight a detector somewhere measures a signal WK

depending on the angle ¢ of the line of sight. The function WK(¢)

is called the "signal function'". It holds that

W (8) = U(o,p). (3.1)

Only when we have determined M

~

will we assign to each ¢ a pair

e

of values ¢,p (eqs.(3.4-5).

Fig. 7a

Signal function W, versus ¢

K
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Fig. 7b
Plasma,

observation port GK’

lines of sight

The observation ports and the respective signal functions are thus

experimentally given.
It can be seen from Fig. 7 that there must be two angles ¢£K), ¢R(K)
with the property

A
WK(¢) =0 for ¢ < ¢L(K)

bl

and 4 > ¢R(K) . (3.2)

For the example in Fig. 7 one has

¢L(K) s 400:



The index (K) indicates that these angles are different for every
observation port, i.e. they depend on the port index K.
To determine the plasma centre M we form

(K)

+ 4,00 ]

6, =5 [ ¢ (3.3)

(K)

and draw the line of sight with ¢o for every port GK' These
lines mostly intersect approximately at a point which we use as the

plasma centre M (see Fig.8).

Fig. 8

Three observation ports

and the

lines of sight with the
(X)

angles ¢o

~

Once we have calculated M we can replace the variable ¢ in eq. (3.2)
by the position p:

Here a distinction has to be made between two cases:

1.) ¢ > ¢0(K) ; P = g sin E¢ 2 ¢0(K) :‘ (3.4a)
¢ = -9, (3.4b)
29 ¢<0, %, p-gsin [0, % -4], (3.5a)
¢ = '& s (3.5b)
where g = distance GKM

(see Fig. 9)
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Fig. 9a

For eq. (3.4)

Fig. 9b

For eq. (3.5)

: + -
We now define SK and SK by

+ _ " . - (K)

Sp(®) = We (o) if 6> e, (3.6)
= _ - . (K) N

SK(P) - WK(¢) it ¢0 > 9,
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| VJK Fig. 10a
: A WK versus ¢
T > ¢
(k) (K)
2 $q
I
+
I 'SK I
| |
I [
7 Nt Fig. 10b
- = I Sk = T) + -
o 12% SK‘ SK versus p
where RK = g sin E ¢R(K) - ¢0(K):|

= plasma radius, seen from GK'

§4 Quasi-circular symmetry

We call a plasma ''quasi-circularly symmetric' when the signal

functions satisfy (see eq. (3.6))

+ -—
Sg(P) = S, (p) = S (P)
S.(®) R
and sL(p) g ﬁ; for two port indices K,L

For SK see eq. (3.6); for RK see eq. (3.7).
If eqs. (4.1-2) are satisfied, it is mostly possible by linear
transformation (the lines of sight thus remaining straight) to

achieve that U no longer depends on ¢ , and §! can be applied.

(3.7)

(4.1)

(4.2)

Quasi-circularly symmetric plasmas include such elliptical plasmas

as satisfy eq. (4.2), but also, for example, triangular plasmas if
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the observation ports are suitably located. It thus often depends

on the position of the ports whether the plasma is quasi-circularly
symmetric or not (see Fig. 12b).

We now treat a few examples, for which we offer the simplest possible
interpretation, but bring attention to other possibilities of inter-
pretation.

Exgggle 1: two observation ports, R1 > R2

Simplest interpretation: the plasma is elliptical. Gl is located on
one of the principal axes of the ellipse.

Example | can be reduced to example 2 (circular symmetry) by linear

transformation.

Other interpretations are afforded by dropping the assumption that
GK is located on one of the principal axes (see Fig. 12a).
If there at least three observation ports present, it is possible

to determine the position of the principal axes.

Fig. 11
Simplest possibility for
example 1:

2

l
I
|
I
| GI and G, are located
|
I on the principal axes.
[
|

From G‘ the plasma radius R,

appears large, the signal S

weak because the lines of

- = sight cover only a short

distance R2 inside the

plasma.
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Example 2:

SK(p) = U(p) independent of K

Simplest interpretation: the emissivity F is circularly symmetric as

in §1. It is obtained by solving the ABEL integral equation (l.4).

There are, however, other possibilities of interpretation, two of

which are given in Fig. 12. The common feature of these is that the

observation ports GK have the same location relative to the axes of

symmetry of the plasma.

.GA

Fig. 12a

Elliptical plasma:

two observation ports, which,
however, should be further from
the plasma than in the drawing;
eq. (4.1) is satisfied for both

observation port$ .

Fig. 12b

Plasma with triangular symmetry:
three observation ports located on
the axes of symmetry, otherwise

eq. (4.1) would not be wvalid.
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§5 ABEL transformation program

We now solve the ABEL equation for the circularly symmetric case

[:eq. (1.4); (l.Bi]usIns arbitrary, possibly non-equidistant, mesh

points:
T » Py KL = 1,2, ..M M< 11.
It must hold that
=r = R(K) , (5.1)

P T ™k
UM = U(pM) = FM = F(rM) = 0,

i.e. mesh point M must be on the boundary.

Method: Stripwise integration,
The integrands of eqs. (1.4) and (1.8) are approximated by
sections of parabolas.

The approximations thenread

M

for eq. (1.4) UL = z VKLFK . (5.4)
K=L
M

for eq. (1.8) FK = E WKLUL : (5.8)
L=K

The coefficients VKL ’ WKL depend only on the mesh points.

They are computed with the VROUT subroutine.
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Use: (if NMAX data records UL are to be investigated)

1) Mesh point input (R(K), K = 1,M)
2) CALL VROUT (M,R)
3) D¢ loop
3,1) Data input (U(L), L = 1,M)
3,2) CALL ABEL (F, U, M) gives F from U

3,3) CALL UVABEL (F, U M) gives T from F

TEST? TEST

: ; '
For testing compare UTEST with U !

Advantage: for large NMAX the computing time required goes almost
only
entirelyYon summing according to eqs. (5.4) and (5.8)

because the lengthy computations of WKL and VKL are

done separately in VROUT subroutine.




VDo~ unmpH e
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$ SOURCE
SUBROUTINE VROUT U M, k)
DIMENSION O(11) oG(11) ,Q(11) 4R(11) ,WO(1l1)
CCMMON /suAB/ Villell) eW(ll,11)
COo 1 K=1,M
Q(K) = RI(K)*%2
pC 1 L=1yM
VIKsL) = Q.
1 w(KysL) = Q.
Ml = M =1
DO 2 K=1,M1
2 Ci(K) = Q(K+1) - Q{K)
cC 5 L=1,M1
LT = L + 1
G(L) = 0.
WD{L} = 0.
Do 3 K=L1l,M
WDI(K) = 2.% SQRT( Q(K) - QL))
3 G(K) = 0.333333 * WO(K) *{2.% Q(L) + Q(K))
W{LoL)} = 031831*%{(WD{(L+1) =-wl(L)) / DIL)
WL M) = 0.31831%(WD(NM=1) =WO(M)) / D{M=1)
ViLsL) = (QUL+L)®(WCIL+1) =-wD(L)) +G(L) =G(L+1))/ D(L)
VIMsL) = (QUM=L1)%(WC(M=1) =WD(M)) +G(M) =G(M=-1))/ DI(ML)
CC 4 K=L1l,M1
IF ( Ke GE. M) GO TC 5
WILsK) = 2.31831%( (WO(K+L)-WD(K))/DI(K)
1 + (WC{K=1)=-WD(K))/D{(K=1))
4 VIKeL) = (QIK+1)*{WD(K+1L)=WC(K))+G(K) =G(K+1)) / C(K)
1 + (QIK=1)*(WOIK=1)-wC(K))+G(K) -G{K~-1)) /Di(K=-1)
5 CONTINUE
RETURN
END
SUBRDUTINE UABEL ( Fy Uy M)
DIMENSION F(11) , uUlll)
COMMON /UAB/ V(ll,11) sW(Lllell)
FIM) = 0.
U{M)} = 0.
ML = M =1
DG 3 L=1,M1
SU = Q.
CC 1 K=LyML
1 SU = SU + VI(KyL) * F(K)
3 u(L) = SuU
RETURN
END
SUBKOUTINE ABEL ( Fye U, M)
DIMENSICGN F{11) o U(LL)
CCMMON /JUAB/ Villell) oW(1llell)
FiM) = 0.
UM) = Q. :
ML = M ~-=1 '
DO 3 K=1yM1 i
SU = 0. |
DC 1 L=K s M1 }
1 SU = SU + W{KyL) * U(L)
3 F(K) = SU
RETURN

ENC
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