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Abstract

The nonlinear behavior of the drift-tearing instability is investigated within
the two fluid theory. It is shown analytically and verified in numerical
computations that the diamagnetic effects and ion gyroviscosity which
determine the frequency of the linear mode, are quenched at magnetic
island size of the order of the resistive layer width. For finite island
width growth and saturation of the mode depend only on resistivity and
current profile, while its frequency is determined by the rotation of the

plasma.




I. Introduction

Tearing modes appear to play an important role in tokamak plasmas.
While the linear theory of the tearing instability has been treated intensely

1)-4)

taking into account various nonideal effects as well as toroidal

geometry ), nonlinear theory is still mainly limited to the purely resistive

6),7),8) h . ‘ y ’
case . e main result of the latter is that the (exponential)
tearing instability is quenched at very low amplitude, below the observation
limit in most applications, and that the further development of magnetic
islands proceeds on the slow diffusive time scale given by the resistivity
instead of some fractional power there.of (An exception is the m = 1
mode, which continues growing on the linear time scale to large

: : . ... 06
amplitudes). In fact it can easily be shown for the resistive — as well

" 9) . - . . .

as the collisionless */ tearing instability that the driving mechanism is
switched off as soon as the island size exceeds the thin resistive or inertial
(in the collisionless case) layer width. One may therefore argue that the

tearing instability is an artifact due to the assumption of an idealized

equilibrium

In tokamaks tearing modes (we are restricting ourselves to mode numbers
m =2 2) are observed as Mirnov oscillations, i.e. magnetic perturbations
of a certain amplitude rotating with a certain frequency. Prior to a
major disruption the magnetic signals may grow considerably and the

frequency is often reduced. A nonlinear theory of tearing modes should



therefore predict the saturation amplitude of the mode (i.e. island size)
for a particular current profile and also the rotation frequency of the
island. In a previous paper ¢ an appropriate set of nonlinear equations
has been derived including effects of diamagnetic drifts and viscosity,
which give rise to mode rotation in the linear tearing instability. In
the present paper these equations, in a slightly modified form, are
investigated to treat the nonlinear behavior of tearing modes. The main
results are: 1) The nonlinear growth and saturation size of the magnetic
islands depend only on resistivity and current profile and are independent
of the additional nonideal effects like diamagnetic drifts and viscosity.
2) The island rotation frequency does not depend on the diamagnetic
frequencies, which determine the frequency of the linear mode, but only

on plasma rotation.

In section |l we first discuss the model equations and then briefly review
linear theory. In section Ill an estimate is given of the critical island
size where exponential growth stops and the mode frequency is strongly
changed. For finite island size a set of equations is obtained for the
change of the magnetic configuration and the mode frequency, section 1V,
Section V gives some results of numerical solutionsof the nonlinear

equations verifying the results of the previous sections.




I1. Discussion of the model

The model used in the present paper is based on the two-fluid equations
in cylindrical geometry using the tokamak ordering € = a/R « 1 and
q(a) ~ 1, where a is the plasma radius, 2Z&R the axial periodicity length
(R = major radius of equivalent torus), and q the safety factor. This
implies that the poloidal component of the magnetic field is small
Bp/Bz~ € , while the variation of the axial field Bz is small
SBZ/SBp~ € . Tdking into account only lowest order terms in €

we have B, = B0 = const. We further assume helical symmetry
f=1f(r,m6 -kz), k =n/Rp r, @, z cylindrical coordinates, restricting

consideration to the nonlinear evolution of a particular tearing mode.

Since the problem is two-dimensional, the canonical momentum in the
third direction is conserved and the component of the vector potential
in this direction Y defines magnetic surfaces In our case

Y is called the helical flux function satisfying the equations

VzxVy = B, —krB,,Vz

m
1) , .
%4 \P = J - C
where Bp = (Br’ B ), j= ]z and ¢ = 2|<Bo/ m. Neglecting
viscosity and inertia in the electron equation of motion, but

taking into account plasma compressibility, parallel plasma



flow and the ion stress tensor yields the following equations for Y,
the plasma density n, the vorticity function A and the parallel plasma

velocity v (for details see Ref. 3)

(2) %” & @Vy: = .9y ~E, = aiyiv,:-v,pxw

a_l‘_') +u.Vn = O(VZVWXVJ = VnV

(] y

ot -
2
(4) g-'-: + V(u-y*)A —Vz-anv%

Vz - VyxVj + V-uVA

anVﬂ 2
O T e C(TAsT)Yn +an T

with

/

vV, = éﬂszVwa

In these equations u is the incompressible part of the perpendicular
plasma velocity U = Vz ngb , A = Vz. Vx hu = V-n\7¢ 5
woasme T (n) | G =0, nTi = 4T Vn,

3
V-

A is the ion diamagnetic drift, the term V‘l{-*A in (4)

representing the effect of nondissipative gyroviscosity; M is the
perpendicular magnetic viscosity, Mo the parallel viscosity. The
equationsare written in dimensionless form with plasma radius a,

typical poloidal magnetic field Bp and typical plasma density n, as
o




>
units. Temperatures are in units of 8P° /4'.'.':n° and hence
characterize Bp, the poloidal 8. Normalization of h is such that

, which is the inverse of the parameter S introduced
in Ref. 1. The parameter X = (C./wp; Q) 8, /B.p

together with 7: give the magnitude of the diamagnetic effects.

)L
The o -term in (3) represents perpendicular plasma compression,
3)

connected with the ion polarization drift Equation (4) has an

obvious constant of motion, the total vorticity W ""IA rdrdb.

Integrating (4) over the plasma cross section yields

dw 0A
(6) —— = =
dt 2-IT/"" or 'r=

Hence if/u vanishes at the boundary, W is conserved. In addition
to the vorticity we expect the total angular momentum to be constant
. *)
in time, P = 5—{_ f!"h 2—@ rdrd@ =0 . To investigate
r

conservation of P in eq. (4), the following identity is useful
L (2 Ly o9
P = -—EJ‘FA rdrde o Zn or /r_-_-,
TV A + L
L (r2A rdrd® + LW

Multiplying (4) by r* and integrating, however, yields that P is not
strictly conserved even for = O , the nonconservation arising
through the gyro-viscosity term V_V;'A . This is inconsistent

with the original equation of motion, which conserves angular momentum

for any symmetric stress tensor -”_r.'k =TE=£ (apart from boundary effects) ;

The compressible part of the plasma motion does not contribute to P.



(dF-(rx V) = o

The solution of this discrepancy is that the term V-VfA represents
the gyroviscous effect only to first order in the ion pressure variation.

The exact form is

V2 Vx VI = - [ Vex VUV

orrob or r or ré 2e*
9'p: 2 4 D L 3‘¢)
- E(rEER AT

10)
where 17-9 is the part of the stress tensor Tr not depending on the

collision time T; , and p; = hT; . In the linear limit the first
term on the |.h.s. of (8) is dominating, since n,u (P’ 5 (ﬁo” !
& hi ¢" . Only in this limit (8) reduces to - V'Vi*A . For
finite amplitude the termscontaining second order derivatives of Pe
have to be taken into account to conserve angular momentum. Because
of the approximate nature of the fluid stress tensor when applied to a
hot plasma, it does not appear worthwhile to retain the complex
expression (8). Instead we assume that the coefficient &¢p; multiplying
the strain tensor O /9x, + aUg /axg in ?_J_, do not contain

a fluctuating (i.e. 6-dependent) part but only the average quantity

po(r,t). In this approximation Vi* has only an azimuthal component.




This is a reasonable model conserving angular momentum, and

reproducing the linear properties briefly reviewed in the

remainder of this section, as well as the nonlinear quenching

of the diamagnetic effects discussed in section V.

It will be

shown in section 1V, that the effect of gyroviscosity vanishes for finite

amplitude also in the exact form (8).

Let us briefly summarize the results of linear theory using the

linearized form of eqs. (2) - (5), see for instance Ref. 3. We

need consider only the resistive layer, since outside this layer

the nonideal effects are in general negligible. For

a tearing

mode of mode number m, m » 2 (the axial mode number, i.e.

the helicity of the mode, is contained in the helical flux function

Ve ) we obtain after elimination of the density perturbation and

neglecting the parallel flow term and the perpendicular viscosity

a =t W F,_-,§ = L
o) (o Wy + Q) (+

(9b)

~ I

ho (R - w!)d

]
|
~n

w*=we+w£¥'
J
/
* m h e RO
CUC_—‘-F_—O‘(TQ___C[ )C{)‘
o
!
_9'2=co—.".’3¢ F =
F (o ) =




Here ¢o is the zero order azimuthal plasma flow which was taken

zero in Ref. 3. The dispersion relation obtained from (9) is

3 - &

(10) RIL-WINL -wS) = gy,

where )’T‘ is the purely resistive tearing mode growth rate. Equation (10)

yields for LO* X XYr

)

(1 Q= iy

while for w*> Jr + typical for a hot plasma, the growth rate is

reduced

3

(12) R = w4 -z'-igr(ffz )

W we

Note that the frequency in (12) is determined by the diamagnetic

{
frequency o and the plasma rotation ¢a taken at the singular surface re-
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I1l. Saturation of the exponential drift tearing instability

It is not difficult to estimate the amplitude Y, , or island size
~ M : . . _
Afc. , AI' -._-..4[/?;/(},’ , at which the linear eigen
frequency is strongly changed (For the purely resistive case this
has been done in Ref. é). The main stabilizing term arises from

the second order current contribution JJ'O on the r.h.s. of (4)

. e . T o :
(13) + (WA +c§-090y' =2y

d
ot
Here t{/o is determined by eq. (2):

3G, Sl * )
WS End - B-)g kdoud ] 2o,

where the right hand side equality arises,since the relaxation of the
current (&o across the resistive layer S occurs in a time short

é-z
compared to the growth time, '2/ >> X . In (14) the notation

~ .
l]u = l/JR-P Ll}/r etc. is used., Since the variation of ¢ across

the resistive layer is stronger than that of ;F , one has
/ / 2 ¥*
p [acd — ——-m - — -u—)—
(15) {/a = an F (‘f’e A, s‘3'*:'4»'? )(I W )

Inserting (15) into (13) the critical island size Al'c. is obtained by
the condition that the nonlinear term equals the inertia term. For

A . A P 3 6) H «
w < yr the result is known to be Ie . Hence we limit

»* :
ourselves to the opposite case W > Jr o+ where W, ¥ are given
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by (12). Here we find

% W w*w*n, \#3
(16) Arc ~ ———-7: ‘zho ~ _’_"_.‘.’
J o a'E'*

since

- y ~ 3’:/5/ e ia f}’:"’ 234’45'2/17,,
= 2y
The resistive layer width § is estimated using eq. (9a),
*) -
Cw—w*)s?; ~ 52';7"" N yfru"' ga' ) 4= ‘E@TV’J
yalid within @ .-shich wields, fhe genecl relailon indasendsat: of ‘the
ratio WY Yr ’

A
. §~ 18

Inserting (17) into (18), comparison with (16) gives Arc_“'é‘ also for

u)* e )/T , which is thus independent of w*/y,. (the magnitude of J,

of course, depends on u)*/a'r ).

At this point one might argue that because of the nonlinear reduction
of tearing mode growth just discussed, the system always reaches a
state where w»y even if initially w< ) , so that modifications
due to a nonlocal behaviour of drift modes in the tearing instability
for w> y (see Ref. 3) would be very important nonlinearily. This

*) This is a very rough estimate, though it gives the correct g .
eq. (18). For a more elaborate analysis see Ref. 4




is, however, not true, since there is a rapid nonlinear quenching of
the diamagnetic frequencies, due to a flattening of the density profile
no(r) around re- The island size necessary for quenching of wW* can

be estimated by assuming that the gradient of ng is compensated by
the gradient of the density perturbation which has a much shorter scale
length, typically dq,

|
Nﬂo

(19)

*

? Ky,

Equation (3) yields ('m/r)no ¢/w , while from eq. (2)
CF o~ ("'"/"X‘h:' c{)¢/w . We thus recover

Ar Lo J "-’A[c_
Hence the diamagnetic frequencies vanish for island size Ar > Al'c
The flattening of the density profile around the singular radius re can
also be seen from the quasi-linear diffusion equation which is easily

derived to describe the change of no(r,t):

aho ) ano 2 2
e T =psrD3r , D=2 g

This equation gives the same estimate of the island size required to

flatten the density profile around re-

The rapid nonlinear quenching of the diamagnetic frequencies leads to
a peculiar behavior of the growth rate. For a drift tearing mode

with ¥ >> )’-r , where the linear growth rate is strongly reduced




13

y<< yr , see eq. (12), the quenching of w" leads to a nonlinear
increase of ‘)) , until at island size d[ ~ J one has ) Rad J}T

The initially nonlocal mode for a)*>> 3}7‘ (due to drift wave

24 .

. 3 .
propagation ~') becomes localized for AI’

. * . ..
Since @) =0 nonlinearly, the mode frequency is given by
/
m ' . . .
= — ¢°(r;;) . In contrast to n the rotation velocity ¢° is
not strongly changed by the nonlinear development of the mode for
dr < 5 . First we note that the value of Ao is not strongly

changed, since it satisfies an equation of the type

PA. yars = O
3¢ 7 r‘arF

where F is bilinear in the perturbed quantities and thus strongly localized

/
around re- Now ¢o is given in terms of A by

- o, _2.? o ?
rar"""gi: = A, r or’ h“‘“,‘f""h ;;i

hence

r
/ / /
{
Y SR ROy
Let us estimate the last term on the r.h.s. of (21). Using
oy PO i ~ it
RWow 2@l grwp/iyd o 4~

we find

f7¢’~ CO i CC./
g g T

Thus ¢ remains essentially unchanged for ﬂ ﬂ-c; and w is determined

by the original plasma rotation at r = ree The case A.C Sy J will

be discussed in the following section.
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IV. Behavior of tearing modes at finite island size

The equations (2) - (5) yield several general properties for finite island
size, A.L' > Cy It has been shown in section Il that inertia effects
are negligible for the evolution of the magnetic configuration, in
particular the island growth, hence from eq. (4) VYIX VJ' =0 ,

i.e. J ‘J.("F) . Thus the o« -term in the n-equation (3), which is
due to the compressible part of the perpendicular plasma motion, is
negligible, so that the plasma is incompressible perpendicular to B.
Equation (3) now implies that n moves essentially along with ¥, where
slight variations of n on a magnetic surface are smoothed out by the
last term, since they would give rise to sound waves rapidly propagating
along B, eq. (5) (the parallel flow term is important within the islands).
For n=n(y) the diamagnetic term in (2) vanishes, as predicted in
section |Il. Taking averages over flux surfaces characterized by the
volume V[l'; 9'{') enclosed by a flux surface = const, V(‘f’,f) g

we obtain the following equations, using the notation Yy = o/dV etc,

(22) a—%%t) = *Z[CK,%,)V + c] -

on(V,¢)
ot

—
-

(24 7%y = Jve) - ¢

where K, is a geometrical factor



15

(25) K, = <iovi*>

Here the normalization g ds/ilovi =1 ;s used, hence
K = <V2V> These equations are identical to those

wv ’
introduced and treated in Ref. 7. They describe a sequence of MHD
equilibria developing on the resistive time scale. Since we do not
consider plasma cross-field diffusion, the density on a magnetic surface
/= const remains constant. The change of geometry is described by
eq. (24), which determines the perpendicular velocity in Q_-Vl,u up

to a rigid rotation of the magnetic configuration.

In the absence of perpendicular particle and momentum transport the
rotation frequency of the magnetic islands is determined kinematically
by the initial plasma rotation (h: (r, f-O) and the geometry of the
magnetic configuration given by V(l", 9,'&) (the actual definition
of |/ is quite complicated in our case because of the existence of
more than one magnetic axis). We consider the evolution of the
magnetic islands on a quasi-infinitely slow time scale, i.e. '2-—‘? 0.
In this limit (2) describes a rigid rotation of the magnetic configuration

with rotation frequency Wy
e ¢ = ¢(V) y = V(r,0-wt)

and the streamfunction

2
gy poiw plV)itaBL
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For finite }Z . ¢ contains a term ¢2(q 9, t) describing the change

of geometry due to island growth

{
oV(r6,t) w7V = O
5t =

/

G @ =t iy Y = VZ”V"S? :

(28)

The resistive change of geometry which is described by (22) - (25)
leads to quasi-static change of ? = ?(lﬁ f) and W, = W, {f)
These quantities are determined by eq. (4). Averaging over flux

surfaces /= const yields

e <X +wTA> =0, A=V

or, splitting off the rotational time dependence ,

dA(r, 0,¢)
(30) <____'_L + w.-VA = 0 .
ot = 2
It is interesting to note that in the averaged equation (29) the gyro-

viscosity term given by (8) vanishes exactly for Pi=pr (ld and ¢

as given in (27).

Because of (28) equation (30) implies

dD<A>
E

Using (27) we therefore obtain

(31) (thf’v)v + Wol2n +n,K) = d(v),

4
where d(i/) is determined by the initial conditions,and Kz-'- <"'§“;>

)
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Given the magnetic configuration, i.e. the coefficients K,; ¥ P is
determined  as a function of W, . To fix the value of W, in
terms of the initial conditions d , a further equation is needed.
This is provided by the conservation of angular momentum (note

that by eq. (29) the total vorticity is automatically conserved):

P = jn[<r‘>w, + f K,_]dl/

yielding

w, = P - jnﬁ,K,_dV
fn<r1>dl/

(32)

Hence for finite island size the mode frequency W} =mW, is

determined by certain average values over ? and & .

In the presence of viscosity I the r.h.s. of (30) does not vanish,

and a differential equation in time has to be solved. Since, however,
the effect of collisional viscosity is usually weak, equation (31) is a
good approximation to determine ?(V) f) with changing geometry.
Asymptotically the presence of the i -term leads to a rigid rotor

motion A = 20y 148 50 = 0, if no other effects driving a differential

rotation are present.
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V. Numerical computations

To verify the results of sections Il - IV we have developed a simple
but rather efficient numerical programme. From previous calculations
using a two-dimensional Eulerian code, we find that for the m > 2
tearing mode the azimuthal variation is smooth (in contrast to the

m = 1, where rather localized sheath currents are found close to the
x-point). Hence Fourier analysing equations (2) - (5) and taking into
account only the zeroth and first harmonics yields a reliable and
particularly simple model, which is essentially one-dimensional in
space. It should be noted that it would in general be of little use to

include the second harmonics. If there were localized structures in 9,

a Fourier approach would not be suitable at all.

The numerical model allows to use very small values oflz , corresponding
(-4 3 . ) :

to S= /o , which makes a clear separation of the various time scales

such as co*) Yr ‘72 possible.  The results confirm the qualitative

predictions of the previous sections:

i) Diamagnetic effects are rapidly quenched, so that w*=0 for
S . Inth f a drift tearing mode with w”

A.Z' > . In the case of a drift tearing mode wi Sr
initially, the growth rate in fact increases nonlinearily up to

a) =3 the corresponding growth rate for w* < yr

ii) For finite island size dz_— > J the further growth and saturation of

the magnetic islands only depends on —z and the current profile.
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Plasma density and current density become flux functions, exhibiting

the same island structure in the contour plots as the magnetic surfaces,

~ ¥ -y
with n(r} 9) = ne(r) + netme ™ ;7\ - tmb o

iii) The rotation frequency of the mode is essentially given by the initial

/
plasma rotation ¢° ('3) . A change of W, as described by

(31), (32) is not seen but at very large island size.

Details of the numerical model and results will be given elsewhere.
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VI. Conclusions

In the present paper we have investigated the nonlinear properties

of drift tearing modes within the framework of two fluid theory of a
tokamak-like plasma in cylindrical approximation. We have discussed
analytically and verified numerically that diamagnetic drifts and ion
(collisionless) gyroviscosity, which strongly modify the linear properties
of tearing modes, are quenched at small amplitude corresponding to
magnetic island size of the order of the resistive layer width. The
reason is that for finite amplitude n and T are functions of Y, so
that no net diamagnetic current can flow within the islands. The
rotation of the magnetic configuration is due to plasma rotation,

i = % c‘ﬁ: (rs) . It thus appears that the interpretation of

the experimentally observed frequency of the Mirnow oscillations in

terms of the diamagnetic frequency is in general not correct. Instead
these oscillations give insight into the rotational motion of the plasma.
Of course conditions in a real tokamak are more complicated. Poloidal ¢
rotation should be damped by compressional ion heating due to the periodic
variation of the toroidal field. On the other hand large toroidal plasma
rofation is possible due to neoclassical effects. [t appears experimentally
that at large island size the magnetic configuration is rotating rigidly in
the toroidal direction. A discussion of the theory of the various forms
of plasma rotation in a toroidal plasma are, however, beyond the scope

of the present paper.
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We have demonstrated that the linear properties of the drift tearing
mode, in particular w~w¥ and af &Y, for w*» a/r , are
due to the assumption of an idealized equilibrium and are changed
basically already at a small amplitude. For finite island size the
behavior of tearing modes in a cylindrical low-8 plasma is well
described by egs. (22) - (25) as first given by Grad et al. 2 and

(31), (32) to describe plasma and mode rotation.
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