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Abstract

It is shown that for the lower-hybrid wave (the slower of the
two cold-plasma modes propagating at an angle to the static magnetic
field), the WKB requirements are satisfied in almost the entire region
from the antenna upto and including the ion-cyclotron-harmonic
resonance. Expressions for the electric field and the energy density
in the WKB approximation are derived. Both the collisionless and
collisional damping become significant near the resonance and the wave
attenuation due to the two processes is estimated. From the differen-
tial euqgation for the electric field valid near the resonance, it is
found that the wave energy would be completely absorbed even in the
absence of a damping mechanism. The effect of impurities, although
negligible near the plasma edge, becomes important following wave
conversions and a significant fraction of the wave energy may end up
heating the impurity ions in the plasma interior. The implications of
using the "local" dielectric tensor approximation in the above context
are examined.




1. INTRODUCTION

Although impressive progress has been made in understanding the
problems of accessibi?ityl'S, coup11n92'7 and conversion® 13 of the Tower-
-hybrid wave (the slower of the two cold-plasma modes propagating at an
angle to the static magnetic field) to the "plasma" and the "electrostatic"
waves respectively, the precise linear mechanism involved in its eventual
absorption remains elusive. In this paper we examine the various absorption

processes namely collisional, cyclotron-harmonic and "singular-turning-point"

attenuation of the lower-hybrid wave.

Fig. 1 shows the computed dispersion characteristics of the lower-
-hybrid wave in the presence of simultaneous density and magnetic field
gradients. After conversions to the "plasma" and "electrostatic" waves
respectively, the wave encounters the ion-cyclotron-harmonic resonance.
The fate of the wave as it approaches this resonance is the principal sub-
ject of study of this paper. It is assumed throughout that the plasma may
be described by the "local" dielectric tensor. A posteriori justification

for this assumption is presented.

An isotropic, Maxwellian plasma at temperature T, uniform in the y
and z directions is taken to be immersed in a static magnetic field B0
along the z-direction. The plasma density and B0 increase in the x-direc-
tion; the effects due to the gradient drifts and the currents necessary to
maintain the magnetic field gradients in a slab geometry are ignored. All
field quantities are assumed to vary as expi (kzz-ot) with no variation

in the y-direction.
1. LINEAR AMPLIFICATION

Assuming that both the density and magnetic field gradients are

sufficiently weak to allow geometric optics description of the plasma,

the Maxwell's equations may be written in the approximation formlq’ 15

o H
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where € = € + 0(5), § is a small parameter of the order of fractional

change in € over one wavelength, € is the hot-plasma dielectric tensor

for the "locally homogeneous" plasma and may be written as
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Zp is the plasma dispersion function defined by
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and v, is the ion thermal speed. In writing € in the form (3) - (6), terms

of the order of (Vth/c) 2, where vyp is the particle thermal speed have
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been neglected. In confernity with the geometric optics assumption, all

field quantities will be assumed to possess the WKB form
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is chosen so as to conserve the total energy flux and is equivalent to

15 In Ref. 15 it is shown that the

the statement of energy conservation
electric field amplitude obtained in the above manner is accurate to the
Towest order expansion in . The refractive indices n, =k, /k  and

n; = kz/k0 where k0 =ed/c are the values for the "locally homogeneous"
plasmas. In the slab-plasma model, nz, the refractive index in the direc-

tion of the static magnetic field is chosen so as to be compatible with

the requirements of accessibility and <:oup]1’ngl_7 while ny, is given by

PeeInt +m(e)n, +t,Ce) =0 (11)
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where

= p A i 2
Y C(E) =€ v & + 6N, -6, (13)




2 Fa 2 4
i to(_g__) - (€ + ey -Zexnz +n, ) ; (14)

For the validity of the geometric optics description one requires that

§1 = |(@e&;/ax)/ky €] <<1 (15)

for each element i of the dielectric tensor €, plus the WKB requirements

(=]
1]

| (29/5%)/k, 9] << 1, (16)
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and 64 = |(@k,/5%)/k, | «1. (17)
Near the plasma edge, R ¥ P and it can be readily shown from (15) -
(17) that for the Tower-hybrid wave, the WKB condition requires that

2 () >> 1,

pe

a condition fulfilled easily close to the edge of the plasma; and perhaps
at the antenna surface itself in case a tenuous plasma extends upto the

antenna.

Near the cyclotron-harmonic resonance, n, >> 1, R i Q so that
2
P (x) = -k, oe, / 2k, (18)

and 5. = (-5-6,‘/ ok, a")/ (2 Kk, Eéx/'akx) # (19)
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From (11), one obtains the approximate dispersion relation

€ Y0 as n, > 1, (20)



This is the familiar dispersion relation for the electrostatic Grossl7-

Ber-nstein18 waves with finite value of kz. The successive conversions of
the lower-hybrid wave to the "plasma" and "electrostatic" waves near A~ 1
has been treated in detail by several author58'13. In a narrow range de-

fined by

0

A
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in the vincinty of the pth cyclotron harmonic, (20) simplifies to

PRY Z

SrEE =5t . O (22)

kx cL

where
2

® = 1 * (wpc/wc0) (23)

—1/2_ rs
(p = 2W (‘*DP;,/“""c'») (24)
and Y = ¢/n Vv, . (25)

In (21) € should be sufficiently small so that the pth term in the
summation in (4) dominates. For the case of a single ion-species plasma,

this requirement would be satisfied for € < 0.1. Therefore we take

2 = o (e/nVa) . (26)
ma x
In the case of a multispecies plasma or for an impurity harmonic the

condition for the dominance of the pth term in (4) becomes
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where the asterik denotes impurity fon contribution and the right-hand side
represents the maximum of contributions from among the neighbouring cyclo-

tron harmonics. From (22)
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where R is the scale length of variation of B,- From (1) (17) and (28) -

(31) one finally obtains
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In deriving (28) - (31) it was assumed that the quantities X,ax,§,y and Fei

possess derivatives small compared to that of Z_ which is given by

P

EEEEE ~ 2 Y P Wel .
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For the assumed reactor parameters of Table I, &, £ 1072 £ 107 and

62‘.
S 3 N 10'3, i.e. the WKB approximation is valid from close to the plasma



edge upto and including the resonant layer. A similar test in the wave-
conversion region where A~ 1 would show that § << 1 and the WKB assump-
tion is valid. This implies that the lower-hybrid wave propagates without
reflection and the entire wave energy coupled into the plasma by the
Taunching antenna is somehow assimilated into the plasma. The particular
manner of energy assimilation in the plasma will be examined in the next

three sections.

From (9), (28) and (30) the magnitude of the electric field in the
plasma is given by
1/1
-2/3
A nR 1/6
E:(_ﬁ-n-—)ak YpZ . 34
= 3 kA ((% P “p ) (34)
For an energy flux of 1 watt/cmz, E. attains the value of approximately
450 volt/cm near the cyclotron-harmonic resonance for the parameters of

Table I. The corresponding energy density in the wave

» 2

A 2 .
W, = o 'a‘;(“’.-_e-)'ﬁ > SB yy PYu 1+ GpZp (35)
2 z,

is about 10'4 J/cm3. Not until the energy flux is increased to about

2

1 kW/cm™ with a corresponding vacuum field of over 1 kV/cm near the

launching antenna, does the energy density at the resonance approach the

value of the thermal energy density of 0.1 J/cm3.

3. WAVE ABSORPTION

Form (28) using (7) one obtains the imaginary part of k  as

2
G 13 -1fc 4/DG, M5, '
K =1.~¢_i'1 (a(ir_'.YP) [rr e "__2;__(,_.1)1:3.‘. 2;5] (36)

xv




where the two terms in the parenthesis arise from the cyclotron-harmonic
and collisional dissipation respectively. The electron-ion momentum

transfer collisions have been simulated by replacing the electron mass Me

by mg (1+ 1Veik°) in (28). The total wave attenuation in the WKB approxi-
X

mation is given by e *, where
; 5
max
X = [l de = 2R 2 / k, dg - (37)
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In obtaining (38) from (37), the integration ]1mit"max was replaced by «
in view of the rapidly decaying exponent exp (-ﬁiJ) in the integrand.
Also since most of the contribution in (39) comes from values ofgp > 1,

Zp in (37) was approximated by —4§p-1 while the relatively minor contri-

bution from the lower 1limit in the integral was ignored.

Note that Xealt = 0 as vg; > 0 but is independent of ns. ey, on

ei
the other hand, vanishes as nzz/3 with n, > 0. For the parameters of

5

Table I Y 380 2 4.6 x 10 (“ei/w)’ and together they would

> XCH > Xcoll
ensure complete absorption of the rf energy in the vicinity of the

cyclotron-harmonic resonance in a fusion type machine.

For the smaller machines currently in operation, however, x'ﬁ 1 and
the wave energy is only partially absorbed. Yet & in (32) - (34) is still

small enough to allow WKB propagation without reflection. What happens to



the wave energy in such a case warrants a closer look at the wave propa-
gation in the vicinity of the resonance. We proceed to resolve this problem

in the next section.

4. ENERGY ACCUMULATION AT THE SINGULAR TURNING POINT

Near the resonance since n, >> 1, one obtains from (1) and (2) after

neglecting terms of the order n compared to unity

X
atE ~/ s
X € °oFE k ~2 2 - (40)
2 X ° = =
i i 2 (- ) 0
€, x €,
Introducing
E (x) = € E (X (41)

/,
in (40) and neglecting terms containing Zx’ » one obtains
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Near the resonance writing ex(x) =ex(o) + xc-x(o) y)

and £ = [€,(0)/€}(0)1 + x, (42) gives

DE M 2
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K, 2
2 ~ e
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We assume that:?z(x) is almost constant in a narrow neighbourhood of the

resonance; the justification for this assumption occurs later in the
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section. Fory:z(x) constant (43) has the solution
112 (2) 1)2
£, () =% H' " (2¢3 ) (45)
which together with (41) gives
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where H1(1,2) are the Hankel functions of kind 1 and 2 and of order unity

and
~ 2 2 v
e * €, -n5 €
- z
k, = k, 2 = z (47)
€, (%)
Y .
For 2kxg>>1 f.e. For
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we may use the asymptotic form of (46) and obtain,

-4/ L2k, ¥ -2k, g
E () = 3/"(ak /{ +Be }, {5

where the tildas have been dropped from € and k, because away from the
resonance %’ +~€ and kq; + ky. For x ~0, k, has the form (see Appendix A)

k, v C +iD , D>C >0. (50)

In order that EX remains finite for x>>x., B =0 in (49). This implies

19, 20

the absence of a reflected wave . In Ref. 19 it is explained that

in such a case the energy transported by the incoming wave would simply
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accumulate in the region of Tow group velocity near the resonance in the
absence of dissipative processes. In obtaining the above result, it is
not required to assume that |kx| + » at the resonance; it is only
necessary that (i) for large x, the waves possess propagating and
evanescent character for x <0 and x > 0 respgctive1y and (ii) the
asymptotic expansion (49) be valid in the region of interest. This latter
condition is satisfied forvlz(x) = constant for -2 <M <O. One may

readily verify that in the narrow range |x| = | x the condition

0|’
wz(x)ciconstant is indeed well satisfied. The results of this section
are a generalization of the "singular turning point" analysis of Budden19
to the case where there is no actual resonance of the type |kyx| + « at
some physical Tocation in the plasma. Since an indefinite energy accumula-
tion in a finite region of space is contrary to the spirit of the
linearized theory, the problem has to be reformulated allowing for the

existence of non-linear processes.

5. IMPURITY ABSORPTION

During its passage from the edge towards the plasma interior, the
lower-hybrid wave is intercepted by a number of ion-cylcotron harmonics
(Fig. 1) including those of the impurity ions. Prior to wave conversions,
A %1, and the primarily electromagnetic wave is correctly described
only by the full dispersion relation (11). As the wave crosses a cyclotron
harmonic, part of the wave energy is removed by the particular ion species.

This appears as a perturbation sn, (or gk,) in g and one obtains from (11)

ka=.[_5ex+55€7+k561 (51)
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The wave attentuation due to the pth impurity harmonic is given by
exp ('Ximp)’ where
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the asterik denotes the impurity contribution and the integration is

carried across the harmonic over the region where 6kx. becomes significant.

1/2 p?
G ®

of 45p; (54) - (55) show that its net contribution to Ximp vanishes. One

From (7), one observes that Im§ € Zﬂ—-Z- T is an odd function

can also show that the attenuation due to the term containing aey in (51)
is small compared to the contribution from the term with &€, so that (55)

becomes
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In obtaining (57) from (56) all quantities varying slowly with x were

taken out of the integrand while the limits of integration were extended

to ¥« in view of the fast decaying function exp (-5Ff2).
For A% & 1 corresponding to the region before wave conversions,

KR sy < "'20 < 5 KA A 2 < 5 .
Iﬁ'm"} ~ 10 , f« 107, @Jﬁiﬂdﬁﬁ) ~ 10° while R~ 1 so that there

is negligible wave attenuation due to the impurity ions or for that matter

by the ions of the majority species itself.

Following wave conversions, however, [ increases rapidly and the
wave is subject to significant damping at the impurity cyclotron harmonics.

In the event whenw 2 is large enough to satisfy (27), the impurity

pi
absorption is no longer a perturbation and the rf wave will be fully

absorbed by the impurity ions. This could happen for relatively small

pi
interior could rob the wave of a considerable fraction of its energy.

values of w . Thus even minor impurity concentrations in the plasma

This picture changes somewhat if one were to attempt plasma heating

at a low cyclotron harmonic e.g. ate =« _. using the lower-hybrid wave

g1
(Fig. 2). The wave conversions, in this case, occur close to the plasma
edge (or alternatively if the antenna protrudes past the wave conversion
region, the electrostatic ion-cyclotron wave would be directly launched
by the antenna) and for small values of p*, Ximp becomes significant at

the plasma edge itself.
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5. THE LOCAL APPROXIMATION

An important assumption in the foregoing analysis involved
treating the plasma as "locally" homogeneous. Near the plasma edge where
the Tocal wavelength A(x) >>rc1(x) corresponding to A(x) << 1, the plasma
acts like a cold medium in which the "local" approximation is rigorously
valid even when the relations (15) - (17) are not satisfied. In the
interior of a thermonuclear plasma, the gradient length R >> rej and once
again Tittle error is incurred in describing the plasma by the local dielec-

tric tensor (3).

In the sensitive region surrounding the resonance we have already
seen that the geometric optics conditions (15) - (17) are easily satisfied.
However, since gA becomes comparable to gH (where A and H denote the
antihermetian and hermetian components respectively) near the resonance
one may sense an apparent conflict with the usage of the ray theory. This
problem, however, is only superficial. One may derive the results pertinent

H in the

to the usage of "local" approximation by retaining iA along with €
total € as a zeroeth order quantity in a treatment paralleling that of

Ref. 15; so that only the derivatives of € and the electric field multi-
plied with the zeroeth order quantities appear as higher order terms. Note
further that, in any case, the important result in Sec. 4 that the wave is
totally absorbed at the resonance is insensitive to the precise detail at
the resonance; only requiring the propagation constant to have propagating
and evanescent character respectively away from the resonance plus the
requisite conditions for the validity of the asymptotic expansion (49). The
quantitative results (38) and (39) should, in any case, be viewed as

estimates because of the approximations used in evaluating the integral

in (37).
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Another approximation inusing the "local" € near the resonance arises
from the rapid variation of the form exp(-ﬁ;ﬁﬁ of plasma dispersion
function Z (i;p) and hence of kx' Physically, the imaginary part of 2$
arises from an energy transfer from the wave to the group of particles
resonating at their doppler shifted frequency. In a uniform static magnetic
field, the particle velocity in the linearized theory in an electric field
E = Ej expi (kyx + k,z-wt) is given by

v(k,v, +p gl —w)t

Voo ~ £ T, (~) £ (58)
- kzv'z."' pwa — @

where w_., the particle gyrofrequency, is identical toe the "local"

gi ci’

cyclotron frequency, in a homogeneous plasma. For a given kZ near the pth

cyclotron harmonic, the group of particles with the parallel velocity

w - pWar

k

(59)
z

resonates with the wave. Ifouci varies with x,togi departs slightly from

W ;- Since v, varies rather rapidly involving a different group of particles

ci
from within the velocity distribution function in order to keep in step

with the resonance, this slight shift 1nldci causes a large change in the
energy transfer to the particles due to the exponentially varying energy
distribution function of the Maxwellian as exhibited by the exponent exp(-%4
in the imaginary part of Z (%b). Due to the systematic shift oftogi_from

Weis this subtle error excapes detection by the tests (15) - (17).

In the present context, fortunately, we are not so concerned with kxi
but only with its integral Ikxi dx which is insensitive to the precise
variations of ﬁp with x because ultimately all the particles get their

chance to partake of the wave energy. Therefore,these modifications of the

2
o)
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"Tocal" dielectric tensor may though lead to incorrect values of kxi in
an inhomogeneous plasma, the integrated attenuation y found in Sec.(2-4)

is still valid.

We thus conclude that the "local" dielectric tensor approximation

though crucial, is not critical in the present context.

7. DISCUSSION AND CONCLUSIONS

We saw in the last section that the slab inhomogeneity merely caused
the Tocal gyrofrequency¢091 to depart slightly from the Tocal cyclotron-

frequencytﬂc- causing a minor shift in the absorption profile without

i
affecting the total wave attenuation. In reality, however, the toroidal
drifts cause the particles guiding centers to move through a varying

magnetic field so that & _,

gi is a function of time as well. Naturally the

particles' phase relationship with the wave changes constantly both by the
finite gyroradius as well as its guiding center drift. The latter effect
may be simulated by introducing an element of stochasticity in the energy
absorption process represented by an effective collision frequency

v, = vthi/“QRS there Q, R and S are the safety factor, plasma radius and

S

the torus aspect ratio respectively. In practice, v. is Tow enough to

S
leave the absorption results of Sec. 2 - 4 substantially unaffected.
Another effect of the particle's drift would be to distribute the wave
energy over a larger number of particles and to cause a spatial spread
in the absorption profile. Both these effects, even when small,will tend

to 1Timit the non-linear buildup at the resonance.

In conclusion we note that within the context of the Tinearized
theory, the Tower-hybrid wave is fully absorbed at the ion cyclotron-

harmonic resonance following wave conversion to the Gross-Bernstein
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electrostatic wave. The wave though immune from impurity resonances near
the plasma edge may cause considerable heating of the impurity ions in the

plasma interior.
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FIGURE CAPTIONS

Fig. 1 Lower-hybrid wave dispersion characteristics at fixed ew in the
presence of simultaneous density and magnetic field gradients
for n, = 1.5, T, = T, = 100 eV, By = 60 kG at the lower-hybrid
resonance layer andbOLH = 3.5¢0Ci. The density is assumed to
vary Tinearly from n, = Q atw/e2; = 7 to ng = ny at w/fu =3.5.

The solid curve is for w/whi versus log(k and the dotted curve

xv)
shows 10g(kxi) versus 1og(kx7). The 1og(kx1) scale is iterated

for 4 $1og(kx1.) = 0 between each pair of cyclotron harmonics.

Fig.. 2 Same as Fig. 1 except thattJLH = 1.5¢oci.

TABLE CAPTIONS

Table I Assumed reactor parameters used for quantitative estimates in

this paper.
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APPENDIX A

From (4), the approximate dispersion relationn &x = 0 near the pth

cyclotron harmonic may be expressed as

Rie :
e Wy,
y = -PY B 2 (A1)
Ir,(f\ w "JCL
Above the harmonic ﬁb > 0 so that Re Zp < 0 and from (Al) {o* *%P 27 1
A A
e
= t A2
L,(~) 1@,) + i ¢, ,1@\> 181 (R
Since |A| >> 1 near the harmonic
A
LW~ ey 1T Al o (R3)
which gives from (A2)
W2 32 .
PRl |, + i ¢ (4)
or AN ~e i@ 1857 g, (AS5)

which is consistent with the region of validity of the asymptotic

expansion (A3).

Below the harmom'cﬁp <0, Re Z_ >0 and (Al) gives Jov \Jﬁp\>> 1

p
A

Al ~ - + L _
I(n ~ - | @_| ¢ 560 > 1 g (h6)

In this case it is not possible to find an asymptotic solution for (A6)

consistent with the region of validity in the manner of (A5). Writing




0%

(W | TP
1IN = T(-Ae )=e I (-A) (A7)
gives from (A6),
REA
- : =16, -1 ¢ (A8)
e P 1, (A

where A = -A. Using the asymptotic expansion

A
A)~ e 7 o 9
IP( ) )2 ’lavﬂ il 2 @
(2 A)
one gets
o _3/2 —(2A +CTp)
zm) A e =|@.1-i 8 (A10)
which allows a solution of the form
N = -le ) +i¢ (A11)

consistent with the requirement that lavql-n)|< v/ Finally from (All)
we observe that below the harmonics the wave has the evanescent character

of (50).

That (50) indeed represents evanescence rather than absorption is
clear from the fact that it is substantially the same as would be the case
if kZ = 0 in which case the perpendicularly propagating Gross-Bernstein
waves are strictly Tossless. For finite kZ the evanescent waves would

possess a small lossy component.
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In Ref. 6 it is further pointed out that even for the case of strictly
perpendicular propagation, the dielectric tensor component € is complex
in the region of complex waves so that € is non-hermetian i.e. the non-

hermiticity of € does not necessarily imply a Tossy medium in a hot plasma.




-24-

TABLE I

. Electron density 101° 3
5 Magnetic field on axis 100 kG
pi Ion plasma frequency 4.7 x 109 Hz
o Ion cyclotron frequency 7.7 X 107 Hz
Wave frequency 3.3 % 109 Hz
Plasma radius, gradient
length of BO 200 cm
5 Free space wavelength 9 cm
- Ion cyclotron radius 6.4 x 1072 cm
n 14 EFe/fia) 2
z pe’ ce
2 11 97
VT g
c/nzvZ 480
70
Plasma temperature 100 “K
: Parallel ion thermal speed 3.2 x 107 cm/s

f/fci

43
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