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Abstract

Assuming the validity of the Tocal dielectric tensor approximation,
a description of Alfvén wave propagation in a quasi-homogeneous hot plasma
is obtained. The Alfvén velocity surface is found to be a linear (cut-off)
rather than a singular (resonance) turning point with no evidence of wave
conversion. The kinetic (finite temperature) effects occur predominantly
through electron inertia rather than due to the finite ion-gyroradius.
Boundary value solutions in a slab geometry and using idealized antennas
are obtained. While the compressional Alfven wave (TTMP) is found to possess
extremely weak damping, the shear Alfvén wave may encounter difficulty in
penetrating to the interior of a thermonuclear plasma.
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I. Introduction

Fl 8-11

Both compressiona]l_ (TTMP) and shear Alfvén waves have been
considered as possible candidates for radio-frequency heating of thermo-
nuclear plasmas. The different theoretical treatments use either the
MHDS’g 1-7, 10-11

treatment of the shear Alfvén wave, Hasegawa and ChenlO identify the

or the kinetic description of the plasma. In the kinetic
kinetic Alfvén wave propagating in the interior of the plasma which causes
heating through absorption by Landau daming and collisional dissipation,

In this paper we extend the work of Refs. 10-11 and derive the
relevant differential equations from the Maxwell's equations in which the
local value of the dielectric tensor is assumed to be valid. This
approximation is valid provided the elements of the dielectric tensor €
have a small fractional variation over a wavelength or if the wave length
is large compared to the ion-gyroradius. The compressional (c) and the
shear (s) modes decouple if we assume w << Wej and that ky =0, 3/3z = ikz,
the static magnetic field B0 in the z-direction is constant and the density

variation is along the x-direction. The effects due to gradient drifts is




neglected and the plasma is assumed to possess an isotropic Maxwellian
velocity distribution. The dissipation due to the electron-ion momentum
transfer collisions is included by replacing the electron mass by

ma(1+ ivei/w).

II1. The differential equation

The Maxwell's equations assuming the validity of the local
approximation may be written as

-i k, E)’ = ¢.,,/,‘o g (1)

ik E, D;t = tw o By (2)
%5;7— = LW Hy (3)

ik, H7 = -tlwe € B, (4)

(K H, - Eail_z. - —iwe, &E, (5)

oH .
Sy TS bl (6)

where ey,has been dropped being negligibly small for the frequency

range o < w ;s while € and €, are given by
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Here j represents the particle species, Ip is the modified Bessel function,
Ip = Ztﬁp) is the plasma dispersion function approximated for small and
large real values of the parameter‘fp by

z(tz ) = =i W/ae-€;' = 2“-’;,, 2 ép << 1 (9)
z (§) ~ - L “ U P (10)
% r\:vzj (1~ Iy (11)
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Ip = 37 /a%lj, Ip = 3lp/aA, V23 is the particle thermal speed. From (1),
(3) and (5), one obtains the differential equation for the compressional

wave as

28 . K(e,-ni)E

=0 . (13)
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Similarly from (2), (4) and (6) the differential equation for the shear-
-wave amplitude becomes

&—L‘J—%—l+k(e :_)E‘H

—_ = 0. (14)
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In the next two sections we treat the propagation and coupling properties
for the two waves separately.




IIT. The compressional (TTMP) wave

Using ka for 3/ 3 in (13) one obtains the dispersion relation for
the compressional wave in a uniform plasma,

2 2
= - (15
nx = ex n, )
Expanding in powers of A one obtains from (7),
- ko
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w2 war "‘:.“’z.

Because of the presence of p in the summation product in (7) the term

p = 0 vanishes identically and there can be no Landau damping of the
compressional (TTMP) wave. The second damping term in (16) is from the
first cyclotron-harmonic (p=1) contribution and is negligibly small
compared to the first damping term arising due to the collisional dissi-
pation. Since for the compressional wave A << 1 (16) becomes

L a
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From (15) and (17) it may be seen that the compressional wave has a ~cutoff

e 0) when the phase velocity w/k; of the wave along the static magnetic i
field direction equals the local Alfvén speed. We shall refer to this

Tinear turning point as the Alfvéen cutoff. An electromagnetic wave

launched into the plasma of monotonically increasing density is evanescent

(kx2 < 0) outside the ATfvén cutoff and propagating within.

The wave propagates as a TE (finite Ey,iix and H;) electromagnetic
wave with the electric field transverse to the direction of propagation.
Such a wave may be launched by imposing a y-directed current antenna
carrying a current Iy =J exp (i kzz). We assume symmetric excitation of a
slab plasma model with density varying linearly from the plasma edges
towards the center as shown in Fig. 1. Writing €, as

€ =1 + ¥ (x+a), x &0
* (18)
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equation (13) takes the form of an Airy equation

Lo k:{v’x + (1 +""*-“’£)§ By 5Q.4 - uf20)
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with the solution
! * A " BL(X)
E (3) = p AL(X) +q Bt (21)

where £ = (x + a) + (1-n22)/y2 and X = (w,fko)z/3 £. Writing down
expressions for the electric field in regions II and III as

o oL KX O -K, X
E, () = p e’ +qe , (22)
o W KX
and Ey (xy = p e 5 (23)
_ 2 2:1/2 .
where Ky = (k,” - T and upon applying the relevant boundary con-

ditions foy Ey and H, at x = -a and x = -b one finally obtains the
electric field everywhere within and without the plasma from Eqs. (21) -

(23) where p! = a1/8, ol = a2/a, P = ag/a, q!1 = agm, pIMT = ag/a
_K’
% b
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3= v\x/(Y.kO)z/?’ and(x)o= [x],., etc. The energy fluxF, into the plasma is
given by
P, = %J— Re[E{JX:-b =%.TP e (24)

and in order to obtain the field quantities normalized to the unit energy
flux, they should all be multiplied by Fi;,l. The power dissipated per unit
area in the antenna is given by

< A
diss ~ 2 (25)

>
§

where p and § are the specific resistence and skin depth of the antenna
material. The heating efficiency n is given by



n = P . (26)

Pl'.n * Pd.I:SS

The heating efficiency n in (26) is typically less than one percent for
a plasma of thermonuclear parameters. Nor is the situation much improved
by including ion-ion collisions in the treatment of a three component
plasma.

IV. The shear wave

From (14), the dispersion relation for the shear wave in a uniform
plasma becomes

3 € 2
N = Z (e-np) . (27)
X

In case the wave travels exactly along the ambient static magnetic field
(kx2 = 0) one obtaigs the well known form of the shear Alfvén wave dis-
persion relation n, ==Ek which we now recognize as the Alfvén cutoff.

For this wave A is no longer small compared to unity and attains values

as high as 0.5 as found through computations using the full hot-plasma
dispersion relations without simplifying approximations. From (16) we
observe that € is still given within 10 % accuracy by the approximate
expression (17). The actual accuracy is better by a factor of 2 due to

the diminishing values of Zp for higher values of p. This process, in fact,

dominates in the summation (8) so that €, is given within close approxima-

tion by

W, - 2 7/ kx
€.~ 4 - L ) o e s P L /
- LT SO 2

In a cold plasma -50 = c/nzwZ + @ , Zc')-yqo_z and €, has the familiar form

e, =1- 2 . (29)

]




In addition to the Alfvén cutoff, the shear wave in a cold plasma has a
plasma cutoff (ez = 0) very near the plasma edge. In practice a tenuous
plasma is Tikely to extend upto the antenna surface and the plasma cutoff
may not play any significant role. Figure 2 shows a plot of kx2 versus
density in a cold, collisionless plasma both for the compressional and
the shear Alfvén waves where

n, ~ b (30)
Wee

was chosen for the Alfvén cutoff to 1ie midway between the plasma edge

15 -3

(ne =0) and the maximum plasma density (ne = 107" cm 7). With increasing

plasma temperature V> the particle thermal speed increases and

K
goe - £ el (31)
Vze L°PL

decreases and as it passes through a value near unity, the sign of the
real part of Zée and hence €, reverses and the propagating and evanescent
regions for the shear wave in the plasma are interchanged. Since the
finite gyroradius has only a nominal quantitative effect on the plasma
dispersion relation, one may identify the finite electron inertia as the
dominating kinetic process causing modifications of the shear Alfvén

wave propagation. Figure 3 is a plot of the compressional and shear wave
dispersion characteristics as a function of density in a hot Maxwellian
plasma. The approximate dispersion relation for the case € < 1 may be
obtained from (17), (27), and (28) as

™

W = k:v:{1 + 34 E—p-"kzz (32)

[\
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which is similar but not identical to Eq. (8) of Ref. 10. Writing (32)
in the form

R 18 e iy e S (33)
k::ﬂ: {Dc 121

one can also see that the kinetic Alfvén wave (named after Ref. 10)




propagates on the high density side of the Alfvén cutoff but is evanescent
on the Tow density side. Using the same approximation namely Ek, €, >> s
ez/ex = constant and ex varies linearly with x one may reduce (14) to an
Airy equation and calculate the field components proceeding in a manner
identical to the one used for the compressional wave. Since the shear

Alfvén wave is a TM (finite Ex’ E_ and Hy) wave, one must resort to

z
using a TM antenna which excites the relevant field components. Note that
since the electric field is finite along the direction of propagation,

this wave has a mixed electrostatic and electromagnetic character

Unlike its compressional counterpart, the shear Alfven wave is
readily absorbed by collisions as well as electron Landau damping both
occuring due to the presence of €, in the dispersion relation. The problem
in this case arises due to the rapid attenuation of the wave near the
plasma boundary either due to wave evanescence or absorption. A measure
of this attenuation is given by the integral

X

r - f ko dx (34)

(o]

where
4/2_
XL

k . = Im[% (k:éx—kz.l)]

which using (17) and (28) may be approximated as

12

v 0 . L(x)
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In (35) both\éi(x) and wbiz(x) are linear functions of density and of x
for a Tinear density profile. A1l other quantities are constants if no
gradients of magnetic field or temperature exist. Equation (34) in this
case can be exactly integrated to give
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R=a+bx + cx2 and the results are shown in Fig. 5 where the distance
from the plasma edge at which the wave amplitude falls by 90 % of its
value at the antenna is plotted versus n,. The effect of altering i is

to displace the Alfvén cutoff along x. For n, = 1 the Alfven cutoff occurs
at the plasma edge while for M= 100, this occurs very near the plasma
center. The increased penetration at T = 100 eV is due to ﬁe becoming
greater than unity and the wave propagates between the plasma edge and

the Alfvén cutoff as for the cold plasma (Fig. 2). For T < 100 eV,

electron-ion collisions contribute significantly to wave attenuation.

V. Discussion

Starting from Maxwell's equations and using the full hot-plasma
dielectric tensor formulism, it was found that there is no collisionless
damping term for the compressional (TTMP) Alfvén wave. Since this treat-
ment is quite general, one may conclude that the so called magnetic

Landau damping is misleading in so far as it fails to reveal other
obviously compensating mechanisms which exactly cancel this damping effect.
We are therefore left with "gyrore]axation"I as the sole mechanism

leading to a weak absorption of the wave at elevated plasma temperatures

occuring in fusion plasmas.

The more hopeful absorption processes occuring to damp the shear
wave, on the other hand, remain ineffective in heating the plasma interior
due to the strong attentuation of the wave occuring close to the plasma edge.

We are thus Teft in an uneviable position where the compressional
wave is able to penetrate to the plasma interior but is unable to damp
while the shear wave would have been able to heat the plasma, were it only
able to gain access to the interior. If it were only possible for the two
waves to couple efficiently in the plasma interior one might be able to
transport the energy by the compressional wave and dissipate the energy
converted into the shear wave.
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This is strictly not possible for the present case where the two
waves are decouplted for n, =0. We have ignored the weak coupling which
would occur if we had not assumed Iexl >> |€y| at the outset. Finite n,
helps to further couple these two waves. The extent of this coupling and
its effect on plasma heating are being presently investigated.

Parenthetically note that assuming the validity of the Tocal
dielectric tensor does not amount to the WKB or geometric optics
assumption which, in addition, requires that kyx vary slowly as well.
Local dielectric tensor assumption is a weaker assumption exactly valid
in a cold plasma even though the WKB assumption breaks down near resonances
or cutoffs. We were able to avoid the stronger WKB assumption because
the Airy differential equations obtained for both the compressional and
shear wave propagation in a plasma with linearly varying density profile
are exactly integerable.
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Slab geometry of the boundary value problem for the compressional
Alfvéen wave excited by an idealized antenna carrying a surface

current Iy - fbep(ikZz) on the two sides of the plasma. The

plasma density is assumed to vary from ng = 0 at the plasma edge

to T at x =0. In all the numerical results cited in this
paper n... = 10'° cn™3 and B, = 60 kG. Gas used is deuterium and

the parallel wavelength Az = 10 m, throughout.
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Fig. 2

The dispersion characteristics ki versus density for both the
compressional and shear waves in a cold, collisionless plasma.
The value of n, was chosen for the Alfvén cutoff to 1ie midway

between the plasma edge and center. The larger of the two roots
corresponds to the shear wave.
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Fig. 3

Same as Fig. 2 but for a hot plasma with T, = T. = 108 .

; K.
The dashed curve shows the Im(Ki) for the shear wave. These
dispersion curves are the computed roots of the full hot-plasma
dispersion relation in which all the six elements of the
3 are included. Naturally, the two roots for

the compressional and shear wave, in this case, are coupled.

dielectric tensor

The very slight coupling, however, does not significantly
alter the dispersion curves which would be obtained from the
simplified relations (15) and (27) in which e& has been
neglected. In particular, the compressional wave remains

essentially undamped.
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Fig. 4 Attenuation distance for which the shear wave amplitude drops
to one-tenth of its value at the plasma surface versus n,. The
humps to the left occur because at the low n, values G
becomes less than unity and the wave becomes propagating from the

plasma edge till the Alfvén cutoff layer.
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