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Abstract

It is shown that the threshold for growth of tearing modes at
island size exceeding the resistive layer width is A' = 0, in-
dependent of effects such as parallel sound wave propagation and

radial equilibrium plasma flow.



Tearing modes, or resistive kink modes as they are sometimes called,
are the predominant internal macroscopic modes in low-8 current
carrying torii, since ideal MHD modes are either stable or saturate

at low amplitudes. Because of their potential importance, in
particular in causing current disruptions, these modes have attracted
much interest. Most theoretical work was devoted to the linear tearing
instability taking into account various refinements of the original

D) 2)3)

theory , e.g. diamagnetic effects and a kinetic description of
the electrons 4). These additional nonideal effects not only lead to
a modification of the (complex) eigenfrequencies but may also change

the thresholds for instability 2 6).

It has recently been pointed out, however, that the characteristics
of the linear tearing instability, i.e. exponential growth with
growth rates proportional to a fractional power of the resistivity
n and with frequencies given by the diamagnetic frequencies, are
radically changed at small amplitude corresponding to a magnetic
island size AI of the order of the resistive layer width § 728)

(an exception is the m = 1 mode). Further island growth proceeds

on the resistive diffusion time scale, while mode rotation is
determined by plasma flows and not by diamagnetic drifts. Since
experimentally only magnetic perturbations of a certain amplitude are

observed usually exceeding that corresponding to islands width 61%6, the

linear properties are of little relevance.

In this letter it is pointed out that also the modifications of the

threshold for instability, as discussed in Refs. 5), 6), vanish for



I 8 and that the threshold for nonlinear growth is A' = O.

Let us briefly review the essentials of linear and nonlinear theory
of the tearing instability. Resistivity and other nonideal effects
play a role only within a narrow layer § around the mode rational
surface where q = m/n. We restrict ourselves to the most commonly
treated case of y = const across &, thus excluding m = | for instance.
Eigenfrequencies are obtained by matching the inside solution b, to
the ideal outside solution wa and are characterized by the jump in

slope of wa across the resistive layer, A'= 0p;+ - w;_)/¢a .

To be definite we consider the following set of equations derived from
two-fluid theory in the limit of large aspect ratio ("cylindrical
torus", for details see Ref. 9), neglecting ion temperature and

viscosity for simplicity:
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Units are the plasma radius a, a typical poloidal magnetic

field B a typical density n_. Thus the normalized resistivity

-1 1)
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is n = TA/TS =S and o c/w .a, € = Beo/Bz’ ¢y = helical

Pl
Vf ¢, b x V6 = u, b = B/|B| . In the

flux function qfw = ju-2, A

linearized limit eqs. (1) - (4) yield the dispersion relation
for drift tearing modes, where the real part of the frequency is

proportional to the diamagnetic frequency W¥=-=

eaT n'/n_.

e oo
The threshold for instability, which for pure tearing modes in the
absence of equilibrium flow is A' = 0, may be different from zero,
5)

if effects like parallel plasma motion (sound waves) or a

zero order radial plasmae) are included.

Let me now discuss the modificatioms of the linear instability
that occur at finite but very low (in most applications) amplitude.
There are two effects that radically change the properties of linear

drift tearing modes:

i) Equation (1) gives rise to a nonlinear current contribution

8] = %<§% (6 V), which inserted into the equation of

1
o n
motion (4) yields that the inertia terms are negligible for
magnetic island size AI=4 v /¢; exceeding the resistive
layer width § . Hence B + Vj = O for AI > 6 , the further
development proceeding on the resistive diffusion time scale
as a sequence of MHD equilibrium states. When averaged over

flux surfaces V(V(r,t) being the volume enclosed by a

surface ¥ = const), the set (1) - (4) reduces to the



equations first discussed in Ref. 10 ,

Y (V,t)
A - 2
(5) 5t "NawEmw o E s K=< | vv|©>
2 .
(6) v = j(v,t) -2 .

Evidently the development of | decouples from that of the density.

i1) According to (2) the density will become a flux function
for AI > & since V,j, = O from i) . Because of the high
parallel thermal conduction Te is also a flux function. Hence
there can be no net azimuthal diamagnetic current across the
islands, né(rs) = 0, i.e. w* = 0. Consequently a rotation
of the mode cannot be due to diamagnetic drifts but only
to plasma rotation. It is shown in Ref. 8, that w¥* = 0

for AI z 6.

Equations (5), (6) have been treated in the limit of small island
7), 11)

size , where one obtains

BAI
(7 S =W AY + O(ﬂl)
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Thus the threshold for island growth is A' = 0. Equation (7) can

easily be verified qualitatively. For small island size AI = § we



have in the vicinity of the singular surface y = wo(r) + w!(t) cos mb,
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since 6w0/wl Vo . Considering (1) at the O-point

where the convective term disappears, one obtains

with n, = (Gnlﬁw)wl, where n(y) is determined by the electron

1

energy balance. The average value of the perturbed current j1 which

is concentrated within the islands is

. = "o 2_ - " 1 .
(9) dy = wl wl A wo AI A
Insertion into (10) yields
aA
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(10) 7t N, A d v AI ,
where A' is a function of AI, too, A' = A'o + O(AI). It is

worthwhile to note that in (7) the growth rate for AI v g

essentially equals the linear growth rate Y., since

A T W T
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Hence in constrast to the diamagnetic frequency w* , which
vanishes for AI > §, the growth rate is only gradually reduced as

the islands grow to finite size AI >> 8 .




The threshold A' = 0 also follows from energy considerations. It

2 that —wlzﬂ' is the magnetic energy of the

has been shown
tearing mode. Energy conservation implies that the mode may grow if

A' > 0. This argument remains valid for AI > 8§ as long as AI is

small, since wa and therefore A' are not changed. A' thus characterizes
the free magnetic energy of the global configuration, i.e. the

current distribution, which is the only major energy source in a

low-B plasma.

It has been pointed out in Ref. 5, that in the linear theory
parallel sound waves, eq.(3), give rise to a finite positive
threshold value of A'. The essential effect in the linearized
equation is caused by a term V%n = - kﬁn. Now according to ii)

for finite island size V,m = 0, so that the contribution becomes
negligible. It is easy to see directly how kﬁn is strongly affected

for AI 2 6:

Vﬁn - (k.z.o + (Gku)z) n

2 2 4
kﬁo xn - AIn“), X=r-r_ .
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2 . . .
As n" ~ n/é8”, the nonlinear term is apparently important for
AI = §. Since the threshold for further island growth is A' = O,
tearing modes may be linearily stable, but nonlinearily unstable,

the necessary amplitude being small, however.




In ref. 6 it is found that a radial equilibrium plasma flow Vi
necessary to establish true resistive equilibrium if (nojo)' £ 0,

1 = 2 s =
Vo lpo Nod Eo Y5 O(no) 4

o]
gives rise to a finite threshold A" % O for the linear tearing
instability. Assumption of a non.vanishing equilibrium flow leads
to additional convective terms on the l.h.s. of the linearized
equations. It can be seen that the term voaAllar in (4) is the
most important one, while v, awllar in (1) is negligible because
of the constant y property. For AI > §, however, inertia effects
in (4) including voaAl/Br are negligible. On the other hand the
voaw/ar term in (1) is still small as long as AI << 1. Therefore
the threshold for island growth beyond the resistive layer width
is A' = O independent of the magnitude and direction of a radial

equilibrium flow v, = o(n).

At finite island size AI n~ 1, the behavior of the resistivity
6n/6y in (12) and also a radial plasma flow become important
effects. Obviously én/8y < O within the islands is stabilizing,
while 6n/8y > O caused for instance by impurity radiation cooling
in the island interior enhances island growth. It can also be
seen that a radial outward flow WL # 0 is destabilizing, while an

inward flow has a stabilizing effect.

In this letter we have pointed out that the threshold for growth
of tearing modes at island size exceeding the resistive layer

width is determined by the free energy of the magnetic configuration




characterized by the quantity A' and not by effects like parallel
soundwaves or radial plasma flow that are important only within
the resistive layer § for AI < 6. In particular the threshold for
island growth at amplitudes Ar > 8 is A' = 0, at least for

sufficiently simple geometry as assumed in the present note.
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