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Abstract

Variational theory is used to derive a generalized Euler equation
and a new energy functional which are convenient for analytical
studies of ideal MHD stability in tokamaks. This generalized Euler
equation, which is an explicit function of magnetic surface
coordinate ujonly, represents an infinite set of equations coupled
together by poloidal m mode coupling. In the infinite aspect ratio
limit, the toroidal curvature and mode coupling terms disappear
and an infinite set of uncoupled Euler equations for the diffuse
linear pinch (Hain-Liist equation) for each m value result. The
continous spectrum is discussed for the circular toroidal case.

In this case, the equations are specialized further to three

modes m, m~1, m+*l and in the marginal stability limit reduce to known
results. Analytically eliminating the m-1 and m+]| modes for
arbitrary current profiles provides results on limiting B poloidal

for tokamaks.
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I. INTRODUCTION

There has been renewed interest in analytical studies of mode coupling
in tokamaks. Recently, Zakharov] has shown, in a circular cross section
toroidal plasma having a fixed boundary, that the stability of the
plasma deteriorates with rise in pressure gradient as a result of
poloidal mode coupling of the fundamental mode m, where m is the
poloidal wave number, with the associated modes m + 1 and m - 1.
Zakharov's work is an extension of the earlier work of Ware and Haasz,
in that the more recent work allows for non-uniform longitudinal
current and for the associated modes to be nonlocal in nature. Both
these works employ the same basic method of derivation. They start
with a minimized form of the potential energy functional and the
assumption of a circular tokamak. The perturbation is expanded in a
Fourier series in m, with the azimuthal wave number n being fixed
because the plasma is axisymmetric. The method of successive
approximations is then applied to the system, and then finally,

after integrating over poloidal angle, a minimized potential energy
functional is obtained. Minimizing the potential energy functional

results in three Euler equations.

The approach used here is different. Basically, variational theory

is used to first derive the Euler equations. Specifically, a IP, x, ¢
orthogonal coordinate system is considered where the constant QJ surfaces
correspond to the magnetic flux surfaces, and the constant X

surfaces radiate out from the magnetic axis and are perpendicular to

the UJ surfaces.




Using variational theory, the explicit )( dependence is eliminated by
an infinite expansion in m and an integral over X . This elimination
results in a generalized Euler equation which explicitly depends only
on q} and is the principal derivation. From this equation, the

energy functional is obtained.

Our main result is a generalized Euler equation, which has the

following properties:

(1) The generalized Euler equation is an explicit function of the q’
coordinate only, and represents an infinite set of coupled m

equations.

(2) In the infinite aspect ratio limit, the mode coupling terms
and noncoupling curvature terms disappear and the infinite coupled
set of Euler equations now uncouple. The infinite set of uncoupled
Euler equations is identical to the infinite set of ideal MHD
equations of motion for a diffuse linear pinch, or the Hain-—Liist3

equation, one equation for each different mode number m.

(3) In the circular tokamak case, the continua are obtained as an

2 2
infinite set of Alfven continua, w"., and slow continua, wzm s
corresponding to each mode number m. The cluster point at

infinity is also present.

A secondary result is the derivation of an energy functional which
follows from the generalized Euler equation. This energy functional

has the following properties:




(1) When minimized it yields an infinite set of Euler equations for

each m : the generalized Euler equation.

(2) In the marginal stability limit, UJZ = 0, and considering only
the my m -1, m +] modes for the case of a circular tokamak, the

potential energy functional of Ware and Haas and that of Zakharov

are obtained.

The analysis proceeds as follows: In Sec. II, variational theory is
used to derive an infinite set of Euler equations for each

poloidal mode number m,and they are explicitly a function of the [p
coordinate only. The theory includes the use of a force operator

in matrix form as developed by Goedbloeda. The derivation also
includes the development and reduction of an infinite set of
differential equations to a generalized Euler equation corresponding
to each m value. Section III contains the generalized Euler equation
corresponding to each m, which includes the coupling of the associated
modes, m + | and m - 1. The derivation of the energy functional is
given. Discussion of a general method for obtaining the continuous
spectrum is presented. In Section IV, we specialize the generalized
Euler equation to the circular tokamak. For the Lu”# 0 case, we
first explicitly obtain the Alfven and slow continua, which are then
discussed. Second, in the infinite aspect ratio limit it is shown

that an infinite set of Hain-Liist equations are obtained, one for each
m value. Then still considering the circular tokamak case and using

the energy functional for the marginal stability case, w 2 = 0, we




specialize further and consider only three modes m, m+l and ml.

The resulting potential energy functional reduces to that of

Zakharov, or correspondingly, when the gradient of the longitudinal

current equals zero, to that of Ware and Haas. Section V contains
a development to obtain B-poloidal limitations on stability. The
approach here is to analytically eliminate the m+] and m-1 mode
conponents resulting in a potential energy functional and Euler
equation which are a function of the m mode only. This approach

is more general than the previous approachl in that it allows for
arbitrary current profiles and explicitly includes j¢ in

the solution. The resulting limitations on Bp are less restrictive
than those obtained previously and are discussed in Sec. VI where

a summary of the principal results are given.



II BASIC EQUATIONS
A, Variational Theory

The variation of the Lagrangian is written as

SL::' SK"'SW=O ! (N

where 8W = variation in potential energy,

5K = w251 = variation in kinetic energy,

. 2 ) -iwt .
since Sw” = 0, and we are assumlng an e time dependence.

Thus, we have

w o W _ - UZ‘ X" Fin Xk Tdwdx
T X T ax ®
J

Here, an orthogonal \P s X s (b coordinate system

is used, where ¢ is the toroidal angle. Since we are ass.uming
axisymmetric toraids, ¢ 1is an ignorable coordinate.

The XJ'.s are components of the perturbed displacement. The
components are obtained by projecting the \V s X ,#components

of the perturbed displacement in directions normal to the magnetic
surface, X, , tangential to the magnetic surface and perpendicular
to field lines, X,_ , and parallel to the fields lines, )(3_

In a similar projection, the components of the force operator Fij are




obtained. The Fij's and dqu are taken directly from Goedbloed4

and are given in detail in Eqs.(10) and (12). Here J is the

Jacobian and p is the density.

The components of the perturbed displacement are now Fourier

expanded in the form

™Ms *0

imX +ind
Xy, x,9) = ) Xgn(W) e (3)
Me =0
where, since @ is an ignorable coordinate, n is fixed. Then,
the potential energy and virial variations can be expressed

as

SW= =T [d9) ) Xjn <Fomn> X' @

i R
»
1= }N’ Z_ﬂ };’ Xim LpXimm? Xim'

where m # m' in general, and where

27

U

mX

- mX i
LFjm km'> = %ch,xn F.-ik(w:x)e‘ ~ )
6

In obtaining the < F )}'s, we have integrated over all the X dependence.

It is easy to show using the force operator elements, F. , , that the

jk's

{F > 's are Hermitian, or



+ "
< F:,'m/hm'> = <F-|\m’,jm> , b

Thus, since $ L is variational with respect to the X'g ;

it follows that

oL, — W Slo Swo = 0
§X¥ SX* §X* bl

with SI.D:-TO , which gives

Z< ij, R’ (\P)> ka(w) =—-w? Z<ﬁb‘j(w)> ij' ). ®
kw’ wm’

Equation (8) is the principal equation used in the derivation

and it is instructive to compare it with the orignial form,
Y Fi %) Xe(WX) = — we(8) s X, (1),
R

Thus, the explicit X dependence has been

eliminated by an expansion in m and an integral over X .
B. Force Operator
The force operator, taken from Goedbloed, and several other

relations are repeated here, because several comments need to

be made about them, and also our notation is slightly different.



The force operator is

D(rp+8)D-1F L F1 | DG(rp+B?) DrpF
J RB; J
_ 1 /(aT I -2 (tn+r2)B*
7 (35 * %59) 17 X
- (rp+ B*) GD -GrpG-Bh L GB'
B‘L
F'R - —GFPF
’ -2 B* (nT+i3»)  |[-B*F BX FB*
173 o= B3 B"
~FrpD ~-FrpG -FMpF
The first thing that is observed is the symmetric form of ij, where

we note that the gradient operators D, F, G change sign upon taking

the Hermitian conjugate. These operators are:

- L2
b= T !
-y -
F=-13 , 043 _, R-B,
T X J
Go.id _ wBf _, Bx (KxB),

T X L B¢

The curvature terms )and? are defined in the Appendix.

(11a)

(11b)

(11c)

o



For completeness, the B{jig are

(12)

l By B* >
—_— N . S 3 a — B ¢
1= JRegr R Ba* ?

While the analysis here is generalized to axisymmetric plasmas in
the q’, p 4 i CP coordinate system, we later specialize to the
circular tokamak case, where w—-r and X—-e, so that we then use
an r, 6 5 ¢ coordinate system. The terms to the right of the
arrows are the forms we expect then. We also use the notation in

the circular tokamak case of

Fm = Em-g, (13)
$ .

A
where hmz.'..._‘.e : LU
" R
e =

anefp
Correspondingly, Fm+l = km“ . B , where m in hm is replaced

by m+! and so forth. Also, F = 0 at the m+! mode rational

m+ |

surface defined by LY The circular coordinate notation is

+ 1

introduced early so that steps in the derivation process can be

clarified by additionally discussing the circular tokamak case.

It is important to note that the D operators, which involve qJ derivatives,

occur only in the first row and columm of F,

iy This property is used

in generating the differential equation solution.
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Another important property of the ij matrix to be observed
is the occurence of the toroidal curvature related terms }ﬁg in
the F,, Fya and Fy matrix elements only. The general

expressions for the poloidal curvature Kp and toroidal curvature

Kt terms are

BxKp _ %___’.‘(TBxYE T, (14a)

&
3
I

(14b)

Bs R’ T
?

Specializing to the circular tokamak case for clarity,the
component of the radius of curvature, Rc’ normal to the magnetic

surface can be written as

Eg'z ES N
= E® )

For this case it is directly seen that

Kp = ,  and Ky = cos & .,

b
r
Now, referring back to Eq (5), it is see that when m and m' differ

2 5o
by one, a cos @ term results wherever a N occurs. Thus, it 1is

essential to consider mode coupling terms associated with the



Fll' F12, FZ} elements for the circular case.

In the more general case, however, the noncircular equilibriums will
depend not only on cos X terms but also on cos 27X , cos 3 X and
so forth. Then, mode coupling terms associated with all elements of
ij need to be considered. It is necessary to emphasize here that the
second order generalized Euler equation involving “l of the form
obtained in Eq (19) will still result. Now, however, in the noncircular
case, instead of the dominant coupling of fundamental mode m to

the two nearest associated modes m-1, m+] that results in the
circular case, direct coupling to all modes would be possible. It
should be noted that the X dependence also occurs in R and the

B'S and so forth, which will contribute toroidal terms and that all

of these terms were included initially. Further, no restrictions

have been made either to high or low B at this point.

By using a different theoretical route and a simple mathematical
treatment, which does not obscure the phyiscs, we are able to
obtain some new results that reduce to known results in appropiate

limits.




C. Set of Equatiomns

Now going back to Eq.(8), for the purpose of clarity, we shall
momentarily only consider the three modes m, m = | and m + 1. We
would then have 9 differential equations and 9 unknown X's
Considering the second equation corresponding to Im and the

fifth equation corresponding to 2m we have:

<F.m’m >X|m-| <+ <F,m‘ |m> Xim =+ <F-m,m4l> Xima\ ‘M1<(0X;m Mﬂ">/‘|m-|
+ <Fm,1.m-l>xz,., + <F|m,zh>)<zm -+ <ﬁm,2m+>xzml = 'w1</ox“’“;""> Xim

t <F}m,3n-l> )(3...4 -+ <Fm,3m>)<3m <+ <FmI3ma>Y3n.r| ‘W1</0"<m,mu>)‘.m|

(16)

<Fzm, I >Xm + <F‘ﬂzm, l“">XIIM + <F."“: ""*‘> Kimal *wzﬂf"uzm,zrm—o Xam-=|
% <F}m,zu-|>)(2m.\ 3 <Fm,2*\> Xom + <F:1_m,2l‘h+'> Xzma = 'WL</0K1M,ZH>X2M

+ <Fzm,3m-l>>(3m_‘ + <F'2m,3n> X3m —+ <F2M,3“\4>X3m+| -w‘</oxm’2m|>ym+|

The notation here follows that introduced in Eq.(8), e.g., for
<ij'km'> = (Flm’lm-1> then j=1, k=1, m' = m-1, where we do

not use additional commas in order to keep the notation compact.
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The top equation in (16) is seen to be the Euler equation for the
fundamental harmonic ’X|"r This follows because only terms up to
second order in curvature are considered, so that of the <F"m‘|m'>
terms only the <Fl\"h,lﬂ> terms enter in. Also, if we added
terms to this equation, such as <F.‘}!'th-2>' they would not
contribute since m and m'differ by two. Thus, considering a
circular tokamak the resulting Euler equation for )‘"nwill be
complete. Those for Yim-\ and X,m, will not be complete,

since terms such as <F:jm-llkm-2\/’ and < ij+|Ikm+2.7

will enter in.

The last six differential equations, represented by the subset

2m—1 through 3m+l, are used to eliminate the six perturbed
displacements X;m-, through )(3“pr| in the usual mathematical
way. For example, the perturbed displacement sz., can be expressed

as the ratio of two determinants

Xom-t = -————szm'i = Dy 2
Dxm DmDm-ole-l

) (17)

where the q,m determinant is an algebraic expression of the

) ;
XS and that can be written as a product of the three m modes
separately. In particular, Dxm is the determinant of the matrix

given next.
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Dxm = Determinant of Eq. (18)
<Fam-1,2m)
' Fama, w1y
-l-u)‘Qo;h_‘”_b
<Frna2m) | (F .
aQ 2Zw,3M
14D<$»Sqﬂ;>
<5..l,zn|> %
WX o me?
2
<F3m-l,2m—l> <F3m-l,3""‘> ‘

2,
LY o

<Fsm,2n>

<F.ﬂml , 2Ilﬂ>

{Fam3m
w%adjm}l)

<6m+l, 3m+|>

-l-w%o?.“;“)

Correspondingly, the sz

m |

determinant follows from the determinant

of the matrix formed by replacing the first column of Eq. (18) by the

appropriate X, ;ms X m.

’K‘

differential equations.

m+ |

factors from the last six

The sparseness of the matrix of Eq. (18) is what makes the problem

solution relatively easy. However, this sparseness is artifical

in that only the lowest order mode coupling terms were considered,
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since it was anticipated that the result would be

specialized to circular geometry, Mathematically, it is
possible to include all higher order mode coupling elements
and eliminate variables so that only the m series

components of the ><l perturbation remains. The cancellation
of terms that occurs, particularly common expressions in the
ratios of determinants, would be expected to continue and the
complete expressions obtained should be similar to those in

the next Section but of expanded form.
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III GENERALIZED EULER EQUATION
A. Coupled Euler Equations

From the previous section, it follows directly that if an

infinite expansion in m had been used, the resulting second order
Euler equation for the fundamental mode m would be unchanged, while
those for the m+l and m-1 modes would be changed. Now, the Euler
equations for the different m' modes would be the same as that of
the m mode, with m replaced by m'. When writting the generalized
Euler equation, we want to display the q) derivatives. In order to
do this, our X surfaced averaged quantities are redefined.

For example,

<F;m—l,ln-l> + w? </"°‘~m4,u-l> =3 O 3 + b“ )

P W m-, el

Q

where the a's associated with the lP derivatives and the b's are the

left-over terms.

Thus, we can write the generalized Euler equation as



) { C::\l C}r:a_ Clng;l b:?' Q12 biz Az

Dm DM

+ m m m

Qiz b
N A o B - YT
Dm Dm

— Q2 baz by, R baz bzz Cl':'l + CI|3 b;z bzl s b,,_ l>.?3 d2)

m m m

oY

OXim

L Dwm

m M M

i Dm oY

_N

oY

bun bu b“:";s h‘al_*_ p! ( Giz b3 ba + al3 sz bzu) i —
Dm

(19)

-0z bn b
[( W\u- mnmﬁt+?v=3bu£=:-l)x‘n'l]‘) ( M M mma M W

D 3P

-

bn — biz, bas bar = biz bzs ba
mper MM Ml Rnd MW “ MY s —

L Dn..| Dm

=

-—blz b33 az;1 + b b23 As|

Dm

ipdart o]

bn —biz b bz — bi2 basz bal

Ml T el L AL WM WM g

Dm+l

IMmg|

Pm

—lon_ b33 dz1 + biz ba3 aal

Mm-l m-l M-l Mm-l ma mel bx....-. — | mmel me) map M mal med gxl o
Dm-t ;\P Dm+| )lp
biz b3z bal biz baz ba
mm-l wm-l m-L,n M ma| msl,Mm *im
Dlh-l pnu-[
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The symmetrical nature of the generalized Euler equation, Eq,(19),
is immediately apparent. For each m there is an equation of this form.
For example, the m+] equation is obtained by replacing m by m+l

throughout. The boundary conditions for each equation are

Xim (W) =0, Xim (t[)a) =0 . (20)

Here the subscript o refers to the magnetic axis and the subscript a
to the conducting wall; in the circular tokamak a is the minor radius.
When the m subscript are not doubled on the o's and b's it is under-—
stood that they are the same, e.g. b32 = b32'

m m,m
The right-hand side of Eq. (19) contains the mode coupling terms. The
last term is interesting in that we see the m mode in effect being

coupled to itself.

Writting Eq. (19) in more compact form we have

Lamat Q:mtl 21)

3 A X _
3@ '{m's% - hmks—'ﬁl - ;/m.[){ﬂ,—-o y

Dz m-l d=m-l
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where

a’-‘m:au—-QLQb-I-d Ay + Q2 b3 s, - 4
o TR e Qu Qe Rasda - dp b

T T e )
DOm Dm Om Dm

d;3 ba-z_ bz; - Q)2 1933 by slz bis ‘23! - b bgf f}zl

h 1=_m,m Mmmlt mmmmmx omb L)LY wh 4] )
" /
Dm DL

J=m+l

?m.l — "'bn -+ bl?_ b3.3b.2l — ) Q)3 bs?_ bzl -Qi2 b33b |

m, L ™y 3,0 R 5@ M wm e Wi mmwd |

J:M-i D.; Dm
J=2%1

The description of Eq, (21) as a generalized Euler equation now

becomes clear, since this equation repeats itself for each m value.

The continuous spectrum are associated with the first term of

Eq. (21), or more precisely associated with fm. In examining

Eq. (17) we observe that it is mathematically improper to divide

by zero in eliminating variables in the process of going to a higher

order differential equation. Thus, in general for any m, setting
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Dm equal to zero will yield only apparent continua. The form of Dxm’
and correspondingly the associated D products and apparent continua,
depends on which variables are eliminated. The true continua can be
calculated from fm by eliminating the apparent continua associated
with D . This is shown explicitly in the circular toroidal case

in Eqs. (25), (26) and (28).

B. Energy Functional

The Euler equation, Eq.(21), is the mo Euler equation corresponding

the functional

Va

=00 D= el h=ma
T=|dV X Jom (w®) Xm Xhmﬂw‘)xm){l Z?’mﬂw‘) Xw K2
M=-c0

"P’ (22)

In obtaining this functional we have used the relations

hlm = hm,l 'l so that hmm—;o ]
(23)

and }\ o 3Piiﬂ - gP'”JL .
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These properties follow from the fact that the < F > {i are
Hermitian, Eq.(6), and then examining properties of the

various force operators, Eq.(10), where it should be noted that
the differential operators change sign upon taking the Hermetian
conjugate so that in particular Qg = - ﬂ.; and Qg = = a','-;,.
Since the a's and b's are real the above relations for h and g
follow. The fact that hmm = 0 means that the second bracket on
the left hand side of Eq.(19) identically goes to zero. This can
also be seen directly noting the above properties for the a's and

- ‘ -
that bih- bh] = bki .

Summarizing, the minimization of J gives an infinite number of
Euler equations, where the oo Euler equation is given by Eq. (21) ‘
and the m+! Euler equation is the same except that m is replaced

by m+l. There are two types of toroidal terms. Those that result

from mode coupling when m # m' in the (F)'s, and those
geometrical curvature terms that result when m = m'.

These latter terms are referred to as noncoupling curvature

terms throughout the paper. In the infinite aspect ratio limit,

both the mode coupling terms and noncoupling curvature terms go

to zero, and only reduced forms of fm( uUZ) and gmm( UJZ) remain.

The equation for J reduces to ;I(r) for a diffuse linear pinch
given by Goedbloed and Sakanakas, except that here there is an infinite
sum of m. Since the Euler equations are now all uncoupled, this 1

is an understandable difference.
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IV CIRCULAR TOKAMAK
A, w2 # 0.

Using the generalized Euler equation, Eq. (19), we now specialize
to circular geometry, and diagrammatically show the two coordinate
systems: the original orthogonal coordinate systemw,x s 4) in

Fig. la and the circular coordinate system r, 2] . ¢ in Fig. 1b.

The metric is given in the Appendix. In lowest order LP goes over
to r, X goes over to e, and ¢ of course is unchanged. One
difference here, from the usual circular toroid coordinate system,
is that j instead of § is used to express the displacement of the
centers of the magnetic flux surfaces (see Fig. 1b). An expression

4
for § , derived in the Appendix as Eq. (Al0), is

)

§'=- .—BGJB”(I—Z )Jr =_4§ (24)

where all primes now denote derivatives with respect to r. This

']
expression for § was obtained by Shafranov6 in 1964, That Eq. (24)
is reasonable follows directly, since 34 + § = constant for a given

equilibrium,

To reemphasize a statement made previously; in the noncircular
case, R in Fig. 1b would be a sum over cos m'® , and then there
would be direct coupling of the m mode to all other m' modes.
Although the form of Eq. (19) would be unchanged, there would
then be an extended array of coupling terms on the right hand

side of the equation.
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Js ¢ Y const.

K ‘0‘7\5* .

Fig. la. Orthogonal coordinate system.

=Re(]+ I cos 8
g R Rel R )
Z=r sim#6

R.

Fig. 1b. Circular coordinate system.
Choose atr,x) to make X = constant surfaces

orthogonal to r = constant surfaces.
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However, restricting ourselves to the circular toroidal case, we

obtain using Eq. (11).

d -(F?+B")(w"1—w.‘m)(w‘—w?m)_ci_(rg..)] 4+ (pw2-Fm) rSm
dr | T (wruhe) (W AT -

1' 2 2
-+ '?:_E_O j!_(_?_s).-ZBQ:] Sm + 4 Bo (n.m\qg') [w,m(r‘pe")—w‘B‘]rfm
r
rR PER (w-wds) (Wi whm)

Bo { 42(me1)® [Wome (Cpr82)-wB°] | g*(m 1Y [ (12 8 )—w’B’J} -
3 X 2 2
ﬂr ! r* (Wz‘w;"‘“ )(Wi-'- u/q-m\ r* (WQ—W3p—| )(w :”WQM-D

4 J _?:Eﬁ(“"r'“ (fmxﬁ)(f‘ -rBz)(Wz?w-wz) S—
=& I N -

ri. a
& (Ul‘-w:m) (Wz-‘w4'm) (25)

d {[Bd:mmm y%)(r'ﬁﬂi)(wzm-w:) ] (o +r§m+,)}

£ T2 (Wr-Waw) (W—win)

- { Be"  2BeBepm [wim(rp+8?) - w?B ] (n+mgs) (rwa+ rj"‘")
Re? Rprd (w-wim) (w—wiwm)

_,.i 2 Be By (w-1) [w,’i..-. (Mp+ B*) —w? Bj [n +(m-1) ] | r Sm—|
R r* (w-wiea) (W= wam-1)

+ { ZBe Bq;(nwﬂ [wziﬂfﬂf"FB')"W‘Bﬂ [.n '*('“'*')Q"_] rSm+)

1/° r3 (w?- Wszhm) (W2~ Wa e )

i Ba (m=1) (Ew-;xg)(r'p-l-[i:](wzi—f-wz) ] d (rém)
L RAF? (w2 whn-t) (W2 — Wama) | dr

+ B¢(m:|\ (Rms1xB) (Pp+B') (Wzimsy —w?) ] d (rSma)
L Ree? (wicwihe) (w? =wWina) | dr
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Here W = Fm ; wom = _Lp Fu’ ) (26)
P PpeB* P
" 2
Wap = | ("‘:4- ":)(PP-th) | % (1 - 47p Fm* :
4m 2/0 r R m2, n? 2
Y (Mp+B
(Farge) ree)
and
= -B k. = A 2 —-= Py
Fa= Ry, m=mbing B=Bsb +Bg ¢ ,
d= 2+ R rj'éﬁ : 27)
" r
0

In the circular case X,y reduces to r§, » where g is the
perturbed radial displacement. Here, =-§%¥ is the safety factor
e

and the other terms have been defined previously.

It is now easy to explicitly obtain the continuous spectrum. The

351 and w-’-nzn are apparent continua,

most direct way of showing that W
- : A :

and thus by elimination that !-U"?1 and me are true continua, all

given by Eq.(26), is by examining the Dxm determinant of Eq.(18)

in the circular toroidal case. We obtain

Dam = 0 °r ¢ B | (W wyhn) (wiin) (W wipa)) (0> wih,,)
B¢‘ (28)

(w:. 3m-|) (UJ - 4n-l) .
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From the argument advanced previously, we know that setting

Dxm equal to zero results in apparent continua, and in particular

2 2 2 2 7
w w w w w
m’ 4m* 3

2 .
o1 amel’  3me1 and wm_l are all apparent continua.

In the more general infinite expansion over m, where m can take on
. 2 . .
any integer value, w3m and wai are apparent continua, while
2 2 ; . .
wlm and Wzm are true continua. There is also a cluster poilnt
at qu = @®, Thus, we have two infinite sets of continua resulting
3 - 2 - . 2
from an expansion 1n m: wlm, an Alfven continuaj; and W om ?

a slow continua; and the cluster point at infinity.

In the large aspect ratio limit (n » e, q - 0, nq fixed) all mode
coupling terms and other toroidal correction terms disappear and

Eq. (25) becomes

dr dr (29)
‘F\M = FﬁP"'Bz (wn—-wlzl‘.h) (wq-"wz,:n) )
F (Wwie) (W-wim)
qn= En=pw” + 28Bs 3 (Bs)
F roor \ T
_ Bg" 4n? [ Wi (rp+B*) -w?B]
Pr-3 R?..

(wz"w.}m) (w* w:'m)

+-5‘!- 2Be (l"p-rBz)(E'm"E ) (wim -w®) »
dr P (W= wim) (W= wem) R
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This is the ideal MHD equation of motion for a diffuse linear
pinch and was first derived by Hain and Lﬁst3. Thus, in the large
aspect ratio limit, the infinite set of coupled differential
equations for each m represented by Eq.(25) uncouple, and reduce
to an infinite set of uncoupled Hain-Liist equations for each m

represented by Eq. (29).

In this Section it is shown that the energy functional, J.of
Eq.(27), reduces to the potential energy functionals of Zakharov]
and that of Ware and Haasz, if the limits employed by these authors
are used. These appropriate limits are a circular tokamak with

2

W = 0 (marginal stability case) and considering the m—1, m, and

m+] modes only. Employing these limits we obtain

4
2

a 2. .
:].O - ﬁ LE’E_ EJ_ (l'fm) 4_[_5:?]_ —é(rj'h“) +_I'_Fl;l_:_!_ _é_ (r-fn—l)
0 R tmaer) LAY [Cmeteiie?] [dr [(m—|)1+h‘r’] dr

+R289 ?' T'fm‘l'?a"lgm“ + ?0 r-fh-'f +Z?ar5m.fh-i 429,17 ._f\mfm-n]

) el W, m=| el

R [Z I'\or'fm (l‘f,.-|)/ + 2 "\o r fm (F.Snn)/l )
Xr ™, M+

(30)

where integration by parts has been employed. The subscript - ©

denotes that l;? = 0.
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At this point, approximations are used with respect to low B

tokamak ordering, kr <€ 1, etc., and the approximations employed

are principally valid in the vicinity of the m—mode rational surface.
The approximations are also valid for m , 2, where m is the funda-

mental mode. Thus, we obtain

A
3_2 /2
R = | dr{CFntn + |rFu(ni) + 4Bogr (26+1-21)) S
m‘L m? Rz m*
0
/12 /2.
+r | r FanSme + r | rFEntEna (31)
Mal M-
¥4 2 2 4 2z 2
+ | 4 rds r Fme Sma + I+ o r Bt Swma
Frast (m+1) Fney (m<1)
- - /
n 48 cBs Sm | Famu S + 48Bo §mr Fimet Smal
R | wm | R
" 2!
4 derBesw[ cFm Sua) _ 46Bb Em - Fan-1 Em-1
R L oM R
Comparing with Zakharov, RJp here identically equals his ——S—“—z "
(2T R)

where § W is given by his Eq.(4), with the normalization factors

being somewhat different in the two cases. The B here is local beta

1

poloidal, or B = — IP_ .The only difference in the potential

2B;

energy functional here and that of Ware and Haas (given here in

Eq. (34)) is that they did not include the gradient of the longitudinal

]
current, j¢ .
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The argument advanced by both previous works for the neglect
of higher associated modes is that the m + 2 modes only
contribute square terms to the potential energy functional
and thus its sign is unchanged. An additional argument is
that in circular tokamaks having large aspect ratios, the
dominant contribution to the m mode coupling should come
from the m~1 and m+] modes, and the m+2 and m-2 contributions

would be lower order in inverse aspect ratio expansion.

Minimizing Jg , we obtain the three Euler equations

alr _‘i.( V., — | ma) + rmo) dia | Wm-l
dr dr Fmg dr r

(32)

———-_J_[%ﬁt-Besp] ~ 28BgEmln)
dr R R

d [ r3Fm dsm| T Fr:("‘_i—_') Sm— 4"'862 (2/5’4[-*%:) §m

dr| m* dr m* R2

= 28rBs dUp 2 BrbBe a’U)mn
R ar = R ar o

- 2880 (m) Ypy 5 2@8Be (ms) Uy
R R
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a‘E.l_ l':__‘il_(q’mu) — (m+)® + r (me) Ais | Pm+i

dr Fope ard
(34)

:—_El_ Z/QI‘Befm + 2ﬂBOfm(m+l)
Ar R R

where we employ the functions

~ Fm+| S m+l
m+|

Il

Wi

wvn-l - I Fm-\ Em-1

w1\

These Euler equations agree with those of Zakharovl, or, again

when j; = 0, with those of Ware and Haasz.

It is revealing to examine the qu+l and q)m-l Euler equations

with their right hand sides set equal to zero. These equations

then become those appropriate for the study of the m+l and m-1 kink modes
in cylindrical geometry. The m mode form of this kink instability
equation was derived by Rutherford, Furth and Rosenbluth7 and more
recently used by Glasser et a18 in studying resistive kink modes

in tokamaks. This latter study suggested that the toroidal stabilization



k)

indicated in another study9 would result in even greater stabilization
of resistive kink modes in tokamaks. However, since this second study
did not include the effects of poloidal mode coupling, as for example
represented by the incomplete right hand terms in Eq.(32) and (34),

the suggested greater stabilization may be optimistic.

An important point, that is more apparent when the marginal stability
Euler equations are obtained directly from the generalized Euler
equation, Eq.(25), is the cancellation of the lowest order toroidal
terms when lLF = 0. The lowest order mode coupling terms originally
appeared as the Xm term on the right hand side of Eq.(19) and then
reappear as the m+1 and m-1 terms on the left hand side of Eq.(25).

2

These mode coupling terms cancel in lowest order the - EE%— term in
rR

Eq.(25) which resulted originally from the geometrical curvature

terms in by, of Eq.(19). This cancellation ensures that at the magnetic
m

axis that r Slﬂ goes as ' in general. The noncancellation of

toroidal terms in lowest order when Luz# 0 has implications for the

disruptive instability as discussed in the conclusions.
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V BETA LIMITATIONS ON STABILITY
A Stability Criteria

Since the approach used here is parallel to but significantly
different from that of Zakharov], it is necessary to discuss the
model here in some depth. First we briefly discuss the analysis of

Ware and Haas2

’

Setting ‘jb equal to zero, writting the associated mode terms
in squared form, and using B%“‘= i‘Sn\Fam in general which applies
in ideal MHD, where B, is the perturbed radial magnetic field,

Eq.(31) for Jo becomes

(35)
a

T, — |rdr ) r2 Fm (€m)" +| Fm(m3 Bed (- _| 2
R Js o" "7.-(5)-*[ "‘(m,;r)+4—§ﬁé(2£+l;1—i)]§m

2

. 2, ’
n i (l‘ Br,".), _ Z,SBO.Em s ” i (I"Brm-l) _ 2,689 Em
m4 | R L m= R

2

- 2
+ | Br‘n-ﬂ - 2_&_{_?{ m| 4 ] Bi'!l"l + Z_L_.?;‘gm #
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This potential energy functional was obtained by Ware and Haas.
They reasoned that the only nonsquared terms constituted a

sufficient criterion for stability. That is,

_ e § o B (36)
B(-28+1 q,_))o

is sufficient for ideal MHD stability of a circular tokamak with
large aspect ratio. Zakharovlo analytically eliminated the associated
harmonics in Eq. (35) and showed that the resultant J; is positive
for 11 » | and thus that the sufficient criterion of Eq.(36) is

unjustifiably stringent.

Ware and Haas also obtained a necessary criterion for stability

1 (re’)? 2rp’ (1—9q2 o . (37)
+(q)+_é§ ) >

.. A . 11 . . .
This is a specialized form of Merciers criterion for circular
tokamaks. Ware and Haas obtained this criterion from Eq.(35) by

noting that in the case of high shear the terms B, and Brm

=]

are small near the m mode rational surface and then minimizing

m+1

such that the other squared terms involving associated modes are
zero. Correspondingly, they observed that the same result is
obtained for the case of low shear and high m when the terms

containing (r Bfm+l)' and (r Brm_])' are small and minimizing
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such that the last two squared brackets in Eq. (35) are zero.
The q'2 term in Eq.(37) results from taking the minimum value

72
of the f"\ term in Eq. (31).

The question then arises as to what happens to stability when
"
Jq, is also included with arbitrary shear and small m, and this

is discussed next.
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B. Stability Analysis

The Euler equations for LP and LP can be written in the
m+ ] m=1

form
" /
Pe + Yo _ (1 +'"'J¢’1 % = Ga(m), (38)
r Fa r*
where o‘ takes on the values m+! and m—1. If we express

( J;L__. Z (akr") ) (39)

that is as a polynomial series in [~ , then the solution of
the left hand side of Eq.(38), or homogeneous equation, can be

written in terms of the function

Lirs)=r1° 1+{—“‘i— o a’ _ % r
' [(sr?_}’--ﬂ‘] [(s+)%-22] [(s+2)%-2%] [(s+)2-22]

(40)

+{ -ai+a30} [fs*z)z-*(“ﬂ"'llz.] _ ay } P e ]
[(seeV- 22] [Gset)2 L] [(s420% 2] [(s+e)-A*]

. S n
which follows from Z(r'. ‘-") = -E—" ch r !

and the recursion relation

[:(51-.3)1'— Q‘] C; + &% Cyog &+ @2 Ciun -+ 40
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The indicial equation gives, 52 = ﬁz. One independent solution

Z_£ follows directly from Z(r,s) with s = 4. However, for s = - &,
it is clear from Z(r,s) that all denominators beyond a certain
point vanish. Recognizing this, the independent solutions can be

written as

2yt = {Zwo)sa
M (2+) CHd

{ %; [(su) Z(r,s)]) [M(a) .

5=-4

Il

2
g

The gamma functions, ["“s , are introduced so that the Wronksian of

Zi and 212, W(s), is independent of R.

The polynomial series used in Eq. (39) is a convenient way to re-
present the current profiles, and the resultant Zg functions have
the property that, for any a, # 0 and all other a =0 (k # n), they
reduce to Bessel functions (Ji’ Yg, I!, Kl’ etc.). The case that all
the ak's are zero corresponds to a flat current profile or in the

vicinity of the magnetic axis.

Although Taylor expansions of a general type of equation that

’ 1 .
embraces Bessel equation are not new 2, functions such as the Zj
functions are not normally presented because they depend on the

articular values of the @, 's chosen. With computers, however, such
P P

k

functions do not represent a problem. Not all ak's will appear,

since they depend on the current profile chosen, and further
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a polynomial series with more than three k's would not be meaningful,

recognizing the approximate nature of the model to this point.

Once we know the two independent solutions of the homogeneous

equation, Z,Ql and Ziz, we can write the general solution as

Y =C Z,( n+ C, Z2 (A + Gy()ds Zy ‘S)Z“") -Z,(9Z (")
Z )72 © SASYHD

where the denominator of the particular soltuion is henceforth

i 8
written in terms of the Wronskian, \W(sh Although the Z.Q and Z_‘_

functions do not satisfy the Bessel function recursion relations

R

in general, it can be shown that for akl" sy , it is a good

approximation to use

4/ 27
'Q . (43)

However, for peaked current profiles the a_kls ~3 , So that the
approximation is only fair at the conducting wall, but this is partially

compensated for by the fact that there w‘. is small.
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Proceeding, using approximation (43) and integrating by parts, we

obtain

) ; 1 A
LPVM'I (r) - >v\m| (-—————-—z kb el + O’MM Zb'ul (I"") )
Z sy (rm) Zo4 (r)

2 r
+ Zm.” (F\/ 44"5 Bé gm (m-i-') Z:ﬂ (S) J‘S
b R s W

LP,:,-. (r) = 7;;_, (Zmz_l (r) 4 JW{-I Z:‘_,(r-\ >
Z:_-l(rm) Z.:.. (rm)

1 r -
+ Zm (r)/ 48 Bo Em (M=) Zm-i (5) ds
0 R S W(S)

for 0 {r (rm, and

1
LU:H(") pe 7\5\41 (ZMN (r) -+ d-yﬁ_.l Z%Ml(l") )
Zv:n (rm) Z:n (rom)

2 & 1
= z (l’\] 416 Ba,fm (WH-Q Zmﬂ (5\ O’S
Rs W

r

e 2
Wm-l (r) = roc—l ( Zn\—l (".) -4 o’,f_' Z:-n (r) )
Z 2, (rm) Z wa(r

a
- Z.&..(r)j‘heBagm (m-1) Ziq (s ds ’

R s Wes)

-

for r £ r { a.

(44)
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The inversion of the independent solutions Zi and le for m+l and
m-1 in Eq. (44) arises from the fact that G!(r) of Eq. (38)
differs in sign depending on the form of & (last terms of Egs.
(32) and (31)). Setting all the ak's equal to zero, which corres-
ponds to j; = 0, or also in the vicinity of the magnetic axis,
the LP! expressions (44) become independent of K and reduce to
those of the previous paperl. The advantages of the approach here
are that arbitrary current profiles can be treated, and that j;

is explicity included in the homogeneous solution and thus in

the particular solution.

Equating the respective values of k”l and their derivatives at

", we obtain
m

: 2 a ;
N 7"”; — Zmn‘"*ﬂ 4(m+l),5 Ba g,,.Z,.,,(s)cls
m+l — = - ?
d-miu — G RsWisd
Oa (45)
z
AN Z o () 4(m-1) 8 By §m L. (5)ds
m=l = ‘m-l — o : »
el — Ol A Rs Wi(s)

It should be noted that when a step current model is considered
with the step taken at ros it is not valid to equate the
derivatives of Lpﬂ at r_, since there is a discontinuity in
/. ; 8
LHQ in this case., Further, the treatment of Glasser et al.

has shown that a step current at 8 is precisely the worst thing

to do with respect to stability. The model here avoids both these

difficulties.
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Using the m-Euler equation, Eq.(33), and then substituting the
solutions for me and me-l' Eq. (44), employing integration by
parts, we obtain a transformed m-Euler equation and associated

potential energy functional, now both a function of _Em only.

A[PFat de ]| = [+ FZ(mm _‘_4@3;%-(‘__@) S
dv| m* dr m* R2 m*

4»589}‘mu(m+l\ ZH:H(I") _ 4,859)%-;[”'-—” Z:ACP\
R Zl:mfl'm\ R 7 et ()

(46)
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The potential energy functional is

where

. !
- Bar‘(o’\:&l - (min) Zl'ﬂ-ll (r)
! Z,:w(r‘n\ Zmi(rm‘ /88 Be Z-'m“)
(=}

s W)

r 2
Cu.; P Bof" ((ne-l sogs ‘ml-l) Z m-l (r

Zm-i (r'“) z....(l"m)/ 8 Bg (S)AS
s WCs)

The potential energy functional appears to be structurally the same
as in the previous work, however, it differs, as can be seen by
taking the small argument limit of the ZZI_functions, which are

identical to the small argument limit of Bessel functions.

The criterion of Mercier can be directly obtained using either
Eq. (46) or Eq.(47). The use of Suydam's trial function for j}n

the inside of 5 and its odd reflection on the outside of Iy
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results in 2E being zero and directly yields Eq.(37). This
result, previously obtained by Zakharov] in a more restricted
development, assumes that the )1_ dependence, other than jﬂn’
varies slowly (esp. does not change sign) near the mode rational
surface. This assumption is generally not valid, except at the
magnetic axis; to be generally valid, there must be extreme

radial localization of the modes.

In order to be more definitive, the boundary conditions for
q%‘_(r) need to be considered. For simplicity, we consider

cases where the boundary conditionms,

pruq (0)
Wm-1 (0)

O ] wm,..l (3) — 0 I (48)
o, wln-l (a) = 0 !

apply. That is, only the m=2 mode rational surface is assumed

to lie inside the plasma. The boundary conditions then give

. \ 2 g
o’,,\:.\z _Zna(r) L (rn) ‘ g © _ Z_mll(a) Zm...,(rm)

m< | —

ZY:\H (rim) ZMZH( r) Zh':ﬂ (rm) Zmz? (3)

(43)

- 2
ﬁn.l.l = — Zm-(r) Zn:—lfr'n\ ‘ Ens = =— Zmzlﬂa) Lt ()
Zr:-l (Tm) Z:m., (r) Zn:; (rim) Zn:-t (a)
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In the small argument limit, the sign of the 01 terms determines

the sign of the C,Q factors, since the remaining terms contribute

positive factors. In this limit, the (& terms are independent of

k, positive and stabilizing. Thus, since the sufficient criterion
/

(36) was obtained for precisely this case, j¢ = 0, it follows that

it is too stringent.

In the general case, however, since the Z‘l’scan change sign depending
on the magnitude of the argument, which depends on j¢ and I, it does
not follow a priori that the d:'_eand d:g_' terms are stabilizing, and
one must calculate specific current profiles. To illustrate this
point, we consider the m=2 mode and a peaked mode1]3, with the current
distribution given by j¢= j‘#’o/(H r'.z)z. With the m=2 surface only

in the plasma and an aspect ratio, R/&, of 4, the volume integrated
limiting value of Bp for stability is determined ‘to be L8R T

As the m-I=1 surface moves inside the plasma, Jrr:—l # 0 and the
limiting value of Bp decreases. For the q = | surface at 0.la and the
previous parameters, the corresponding limiting value of Bp is
determined to be 1.4 R/a. These numbers are indicative only and do
not allow for the current profile inside the gq=1 surface being
flattened, nor the direct gq=1 contribution to the potential energy.
However, as expected, the preliminary numerical analysis here does
indicate that limiting Bp depends sensitively on current profile

and location of mode rational surfaces.
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VI CONCLUSIONS

Linearized ideal MHD equations in variational form are used to
derive a generalized Euler equation and associated energy

functional. The generalized Fuler equation, which is an explicit
function of magnetic surface coordinate q} only, represents an
infinite set of equations coupled together by poloidal mode coupling.
The form of the energy functional derived here is convenient for

analytical studies of ideal MHD stability in tokamaks.

In the infinite aspect ratio limit of a circular tokomak, the mode
coupling terms and noncoupling curvature terms disappear in the
generalized Euler equation and an infinite set of uncoupled
Euler equations for each m results. The uncoupled Euler equation

for m corresponds to the m_, Euler equation for the diffuse linear

th

pinch, or Hain-Liist equation.

For the case of a circular tokamak and marginal stability, u;z = 0,

and considering the m-1, m+] and m modes only, the energy functional

reduces to the form of previously derived potential energy functionals
1’2. Although the potential energy functional is the same, the

stability analysis here differs from the previous treatments. In

. 7
particular, by expanding the term ("J¢|1 in a polynomial
Far

series in I , it is possible to analytically eliminate the m-1

and m+] perturbation components and obtain an Euler equation and
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energy functional which now just depend on m. The advantage of the
approach here over previous approaches is that arbitrary current profile
; ./ ; i : ’

;1¢ can be treated and that JQ is explicitly included in the

homogeneous solution and thus in the particular solution.

It is shown that the necessary criterion of Mercier, specialized to
circular tokamaks, can be directly obtained using the transformed
energy functional. This result, except near the magnetic axis,
assumes extreme radial localization of the modes. In general,
however, the nonlocal nature of the associated modes coupled with
the fundamental mode results in limitations in Bp . For a peaked
current profile-with m=2 and R/ Q@ = 4, it is found that the volume integrated
value of Bp is limited to less than 2R/ @ for stability. The fact
that Bp limitation results are more in agreement with numerical
computations13 than previous analytical work, results from the

use of a more realistic analytical model. The role of jdf becomes
apparent and it is suggested that stability could be improved by
optimized current profiles. In particular, stability should be
improved by flattening the current profile near mode rational

surfaces for m } 2.

In order to obtain the stability results here, limited to circular
tokamaks of moderate-to-large aspect ratio, a series of approximations
had to be made, and it is generally more useful in design applications
to use large computer codesls, which numerically minimize the
potential energy associated with perturbations of axisymmetric

toroidal plasmas. However, the use of numerical codes generally
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obscures the physics and often does not reveal direct ways to
improve stability, so that it is useful to have both numerical
and analytical results. Also, in limiting cases, such as ballooning
modes with large toroidal mode number n, numerical codes cannot

. . 16 .
provide answers and then analytical results are required to

complete the analysis.

Since it is observed here that with finite growth rate there

will be poloidal mode coupling in lowest order, as discussed at

the end of Sec.IV, it follows that the linear growth rate will

be strongly enhanced by mode coupling. This suggests that

although many of the details of the nonlinear studies17 of the
disruptive instability in tokamaks are undoubtedly correct, the

use of cylindrical geometry in which poloidal mode coupling
effectively goes to zero is not valid. In cylindrical geometry

the dominant effect in mode coupling is the closeness of the

mode rational surfaces (assuming that either m or n of the coupled
modes are the same), whereas, in toroidal geometry the strong
poloidal mode coupling evidenced here should dominate over the
nearness of the mode rational surfaces. This means that if toroidal
geometry were used in the numerical computations, one would expect
to see enhanced perturbations, growth rate and transport between
the m=1, n=1 and m=2, n=1 surfaces relative to the cylindrical case.
Thus, it is suggested that mode coupling in a tokamak between the
m=1, n=1 and m=2, n=1 modes is more dominant in the disruptive

instability than that between the m=3, n=2 and m=2, n=Il modes,
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where the latter coupling is a manifestation of the numerical model

used.

The analysis here indicates that poloidal mode coupling will strongly
modify the Alfven spectrum necessary for Alfven wave heating in low
aspect ratio tokamaks. However, although it is suggested that the

continua can be calculated from 4qn of Eq.(21), no results are given.

A simplified form of the model here has already been used to study

the m=1, n=1 internal kink mode by Galvao et al.l7 A potential
extension of the model here is the nonlinear analytical treatment
of the effects of mode coupling in a circular tokamak. There are

other extensions and applications of this model that could be studied.

The relatively simple model developed here demonstrates that

poloidal mode coupling in tokamaks is a significant phenomenon and
that analyses which regard mode coupling as a perturbation must be
carefully questioned. The fact that known results are obtained in the
infinite aspect ratio limit and also in the marginally stable circular
tokamak case is a further confirmation of the use of variational

theory, particularly in that a different approach is used here.
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APPENDIX: CYLINDRICAL METRIC

In considering the special case of a circular tokomak we shall
transform from the LP 5 X 5 ¢ coordinate system in Fig.la to
that of ™, 6 ’ ¢ in Fig. 1b. We shall further choose a

coordinate system based on :j rather than the usual 8 , Where

they are defined in Fig.lb.

It is convenient to start with covariant bases vectors in the

R , z , ¢ coordinate system,

€ = R F 327, 4 3¢
ar Dr—-ez' or ¢
—

- /
- 13 (j’ 4 cos© r,S_r_:.Sm )+ez (.sme+r'.5.r._c° ) |
(A1)

3 _ IR = 9z 34 =
€xy = — € hai - IS
*x = x5 T ax?z+ax°’
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The primes here denote derivatives with respect to [,
we choose the metric tensor g”( = 0 such that thex surfaces are

orthogonal to the ¢ surfaces and obtain

20 _ -j’ sinb

- ) (A2)
3 r

Other pertinent relations derived in the circular tokamak, large

aspect ratio case are

{

= mBs . nBe ~ Be (mBe _ nB
F e iz G B—:(" R)l

R=Re+J+rcesb, 1= RBs = (Re*3) By, »

Be = R =~ B, r)(l- cos® + r* cose)

R (43)

O%P = Beo(Ro+:f) ) _);__ —_ C,
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The poloidal and toroidal curvature terms given in the axisymmetric

toroidal case as

Ke = R 4 (78y)
T 4y

now become

KP:—:—__— ]

The transverse and longitudinal curvature terms given as

e

T = B }<f1 = _E%:fﬂ
Py 3

now become

T_ Be
Rr

Ke

d(Te),

ay

I

-

o
<=

cos O

a
7

R

A

A=

E3¢"(f

emam————

Z

Be
r ab
FY3

_ Bs
g

cos 8

R

The equilibrium equation in the axisvmmetric toroidal case

dp 4 L
Ay T 2y

i(\TBX)-r-_I_

F{Z

AL
dy

:-:.()J

(A4)

———

dr
Yy

. (A5)

(46)

)
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now becomes, in linearized form for the large aspect ratio circular

tokamak
d |~ 2r cos®) __| d 1%+ (1 =2 A\ cos B) "
e -~ &V Cos a e cos Ji_ Bée
]E ( R )Z(Req)‘ dr dr(_i")
(A7)
e cos O d Be, _ 2.Bs v '
—Boocos0dA | Do, _ 2Bee Acos 6 +Bg, 056 3 — ¢
dr = r r
where qu = 14'1: “ This results in the zero order relation
Ro
2 2
de 4 _ 1 d1%) 4+ 1 3B | Be _ (48)
dr Z(gﬂqf— dr 2 dr - :
and the first order relation
o 2 (rBa) -1] ¢’ r( 2 ’r‘) (A9)
- =L (1-2pc) .
) [ Be ] R Be
Integrating Eq. (A9) gives
r 2
! ']
j'—"—_l—'q. Bol‘(]_ZB:‘),lr ) (A10)
rBe ), R Be

which is Eq.(24) of the text.
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