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Abstract

An "energy principle" derived in /3/ is applied to the
stability of shaped large-aspect-ratio tokamaks. Most of
the previous results on MHD, resistive and universal-type
instabilities can be recovered in a simple way that de-
monstrates the power of this formalism. This allows 3 D
tearing modes for general cross-sections to be investi-
gated. An exact proof of the dissipative universal in-
stability is given at least within the assumption of
adiabatic motion. The relation of this to current work

on collisionless drift waves is discussed.
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I. Introduction

For any stability equation of the form
NY « (P+rM)Y +@Y =0 (1)

where N and M are symmetric and positive definite, B. is
symmetric and P is antisymmetric, the necessary and
sufficient condition for stability can be written 1 "

without looking for eigenmodes, in the form
(v,ey) >o (2)

The linearized equations of motion for conservative
systems can be put, by using a Lagrangian representation,
in the form (1) with M = O 2 . Introduction of dissi-
pation in the Lagrangian system leads to a symmetric

positive definite M, but also to an additional term

GRDY which in general has no symmetry 2

A proper representation Y for which the linearized
dissipative equations of motion can be put into form (1)
was found for a one-fluid incompressible plasma ke 4 ;

a gravitating two-fluid plasma at rest - and a two-fluid

plasma with long wavelength along the flow 3

As an application of the "Energy Principle"
derived in /3/, we show that it contains, in a shaped
tokamak with large aspect ratio, MHD and resistive modes

and "universal-type instabilities" caused by density and

temperature gradients,




II, Basic Eruations

The two-fluid theory can be represented by the

following equations:

A, = - - - . (3)
(S Sralat SRR DR S B L LW LT

%’E&- + 9my Y = ) (4)
(5)

ﬁg:flbz(mbj )
Eb‘v.g B %Nh%k ) (6)
VX = uoé_mkgkgh-r éag_i ) (7)
UXE = —'_'@_23

ot
qoé = O

The index la denotes one of the fluids, ions or
electrons, n is the density, m is the mass, V is the
velocity field, q, is the charge, E and B are the electric
and magnetic fields and P is the scalar part of the pressure

and T 1is the pressure tensor g . The equation of state

(5) will assume different forms, depending on the nature

of the fluid and the perturbations considered.




The perturbed quantities can be written in terms of
Lagrangian displacements Ek. , which may be expressed
as functions of the Euler coordinates of the equilibrium

o % , and of the perturbed potential vector A. The gauge

is the one for which the electrostatic potential vanishes.

Assuming either that the perturbations decay at
infinity for an infinite plasma or that they vanish on a
surface surrounding the plasma, and considering two-
-dimensional equilibria, the ions at rest and the velocity
of electrons ¥, = ve(x,y)g , Tasso 2 put the perturbed
equations for an adiabatic equation of state in the form

(1), provided the term

6, &= ~gnnuke

can be neglected (3 -independent or long wavelength per-
turbations). This allows us to find instabilities simply
by looking for test functions which do not satisfy the

condition (2) 1



III. Explicit Criteria and Application

The "Energy Principle" (2) will be applied, in the
sense of perturbation theory, to long wavelength pertur-
bations along the electron flow. This applies to tokamak
plasmas for which the perturbation wavelength in the
toroidal direction is much larger than in the poloidal

one .

Using the definitions of & and Y . the condition

(2) can be written in the form
2 %
(vav)=(dr(xa) « ﬂarﬁ 8, (5,98)+7E (5 +
2 L
(vgz.v%m)(gk.l%l)] - Sdf(vbnm.VPD(Ee.E‘;’l“.‘) +

27 Ao (S V§ - { Ve §08,) -
SclfCBnge)'('ée-O}“}_-Vge) >0 (1)

where

P:E+P€ m:me:m

and j is the electric current given by the equilibrium

conditions.

We consider next different classes of test functions
and so obtain a classification and a generalization of
known plasma instabilities such as ideal MHD, resistive
and "universal-type instabilities", expression (14) being

the guideline of the investigation.




a) Ideal MHD instabilities

- R e S S T S g -

Taking the limit

A~ Epx8e
(15)

§c”§e

the necessary and sufficient condition for stability of
the fluids described by the ideal MHD equations ? can be

obtained from the condition (14):

-2
vay)= Pt{ﬂ‘,m A) + L 9B [ % (v ﬁﬂ +

['0.5)(5_.@)-\-?:’?(0.%)2} >0 | (16)

b) Two-dimensional resistive instabilities

S S S T S S G S S S e S e S . ————

For perturbations satisfying
R ~A(=xy)es (17)

g

E = €3 X TM () (18)

with the same gy for ions and electrons, and supposing that
i = ath’)gg ;

where VY (x,y) is the meridional magnetic flux, the con-

dition (14) can be reduced to



(vy) = - [d7] 2k (g7 op.ou) 2.4 4l xoy. 0]

+ (e val> > 0

This condition was obtained by Tasso

[

L, in the case

of a two-dimensional incompressible fluid and with "Ohm's

Law" in the form

E+Ux8B =

A simple application to
of skin currents, present if
similar to the rippling mode

Another application is
with stagnation points (such

tokamaks) Li &g 14 "

”7_3; (20)

tokamaks is the instability
dkso 104 uhich is
dy

in one-dimensional geometry 10

the stability of configurations

as Doublet or for islands in

c) Generalized helical resistive instabilities

——— ———— ——— — — —— T S - -

For complicated geometries it might be convenient to

adopt general coordinates. The condition (14) can then be

written in the following way:




x¢ ox™

2 R Emwﬂ
(v,a\/)=$ga><‘ax"axgq[gu * QB o %[

G CEREF LA

x4 x¢ 2 xX*

oy 2840 31 %) e g

—(T'rf-;g,‘(e );égg [s Bo‘q' *aﬂe]é (eamwm >0

(21)

where the index X denotes one of the fluids, ions or
on
electrons, and Yk, 1 ehl and 523 are defined

as in /14/.

For shaped cross-sections it is convenient to choose

Hamada coordinates 12

which are orthogonal for straight plasmas. In these co-
ordinates the contravariant components of the magnetic

field and of the current density are

v b 3 r
Bl= © ’ B =X ) E} :‘Y y
{23)



where the dots indicate differentiation with respect to V.
The functions ¥ and X describe the longitudinal and
azimuthal magnetic fluxes, and the function I the

longitudinal current inside the magnetic surface S bound-

ing the volume V.

The metric %ik dx"' J.Xh is explicitly
b
2 4 <2 2
2 .
d6 =(l)o\v -\»[.B«_m_)dg +Ld% ) (24)
LB, g,
where B is the meridional magnetic field, L is the
length of the cylinder, and since J§ =1 it follows that
ki +1 K’,ﬁ,rm eyclic = 1, 2, 3
& =
ot | hrt'”" cyclic =1, 3, 2 (25)
o otherwise.

We shall choose divergence free test functions such that

23
__ 2L < _ _
i~ -G SR (25}

with O=U (Y, moe - m%) being the same for ions

and electrons, and .,zﬂ"rm/m = QW'X“/% =t

(=]
where (g is the rotational transform 12 and the sub-
scripts denote evaluation on the surface E%, . Then

condition (21) becomes
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mavasa@(m)_ég[ - _:«_nq,)—o,n.g] N

f[dvdods g, €45 ™" ot om0

Oxt X (27)
3
if E% is a constant and large enough to meet the
tokamak scaling. The term -‘7'( +_’_“A;‘ QJ vanishes
on the magnetic surface Se . Choosing APk ~© and
concentrating [%99)& at the negative side of the

integrand, we see that the expression (27) can always

be made negative. This is the rippling mode.

To study the stability of the tearing mode, the form
(27) can be used as a starting point to derive the Euler
equation, which may be useful for further numerical
applications, in the same way as was done in /10/ for the

plane case.

For circular cross-sections the expression (27) re-
duces to the "Energy Principle" obtained by Tasso 43 in
the case of helical perturbations and incompressible

one-fluid model.
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Eo oy —_E..m”)ljé_ = CO'"AW 2 (28)

Ro=kmTy

& Rk ) (30)

where KK is the Boltzmann constant.

Considering first a uniform electric current which
excludes the previously treated resistive instabilities

and using equations (28) to (30), we can write
Vh%:vaeﬂm 'P‘-'.-_Pe

and the condition (14) becomes

2
o
vay)= [z (wxa) + 2-33'5[\7?.\7%m g . 408 ) &
2 m"’ . (31)
(¥- 0{;(9. Bp) + Sa'z[—(ge- lwl)v&nm.VP +3g.§_v.5% > 0,
If test functions are chosen such that
amui ~ D
v.g_h ~ © A ) —

(Y @Y ) can always be made negative because um % o
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There are instabilities due to density gradients for

uniform j.

For a uniform electron velocity we can obtain from

the relations (28) to (30)

V&nﬁ; = E%V£n\nﬂ i é#=a9n4&uﬁf ;
and the condition (14) becomes

(y,a\/) = gd‘t[_g, ge._&xwx BH + Sa'rwx fj_-)l +

2
A
=Wt (wan) g, 00 4 T2 |5 0
R YR 7% tom]  1Vnml (33)
Choosing VX A small enough but not zero, it is
always possible to find test functions f’:v_k such that
v,®&Y)< © . For VXA =0 there are 5“2

for which the expression (33) can be made marginal.
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IV. Isothermal Perturbations

Considering isothermal perturbations and a uniform
as well as a uniform current density, it is possible to
write

547:: O

(34)

and to show that

8, Se 2‘%”)”’@"7.‘3’6'}_“56) - (35)

Now, even for 3 -independent ée i QD g(’. does

not vanish. However, when

em _ Yl
L“:{;_:<<'L / (36)

CLBO

where -Sle is the electron Larmor frequency and \%L
is the collision frequency between electrons and ions, we

could write

| 8ox (£ 7E.)| 3 |27 e

(37)

For typical tokamak plasmas

/3 3

T ~ L Keyv , m ~5.10 om , B8 ~Y0 k6

and

nem ., 116°
c8,




14

This approximation should at the same time keep
the dissipative M operator dominant in order that state-
ment (2) remain valid. This means that

£Bo = e e B (38)

mek %R

These remarks allow expression (31) to be used, as
an approximation, for the isothermal case as well, in
which heat conductivity and thermal effects are absent.
This demonstrates the density gradient instability for
rather high but constant temperature (T 1 keV). This
may also suggest that the drift wave instability survives
to large heat conductivities better than the rippling

mode.
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V. Discussion and Conclusion

The reader has probably noticed how easy it was to
derive from the general enerqgy principle (2) or in explicit
form (14) a great deal of previous results, scattered
throughout the literature in particular MHD, resistive,
universal instabilities. This demonstrates the power of
the formalism developed in /1/ and /3/, in which this
general energy principle was derived. For a discussion of
the validity of this derivation the reader is referred to

the discussion and conclusion of /3/.

The progress achieved in this study is not only of a
formal nature, In other words, progress in the physics can
be achieved through the formalism. For example, the expression
(27) can be taken as a basis for studying 3 D tearing modes
in shaped tokamaks and shows how the code for 2 D modes de-
veloped in /11/ can be extended to 3 D modes in a straight-

forward way.

Another result is that it has been proved in the case
of adiabatic motion that universal instabilities exist in
a shaped but straight tokamak. This is not in contradiction
with Ref. /15/, which is concerned with non-dissipative
drift waves. In fact, the stability or marginality of the
drift waves in the collisionless case found in /15/ was
obtained for the drift approximation, i.e. small ion Larmor
radii. As pointed out by Croci 16 , the drift waves must be
unstable if this approximation is improved by the solution

of the full integro-differential equation L3 .
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