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Abstract

A drift dispersion relation, as applied to a resistive incompressible
plasma in a screw pinch, is derived. This dispersion relation incorporates
both drift-tearing and drift-interchange modes and is valid throughout the
collisional regime by including kinetic theory factors. The dispersion
relation reduces to the drift-tearing dispersion relation in the zero pressure
gradient limit, and to the classical resistive dispersion relation in the zero
drift limit. The electron temperature gradient instability is still present.
Now, however, the introduction of the interchange-drift instability

increases the growth rate further above the tearing-drift case.




I. INTRODUCTION

In past work ]-3, where the dispersion relation for drift instabilities
has been derived, the resistive interchange mode has been overlooked.
Here, the ions are modeled by the ion momentum balance equation as in
two fluid theory, and the electrons are modeled by the kinetic theory
version of Ohm’s law as obtained by Hazeltine, Dobrott and Wang.

These two equations are used to derive a dispersion relation which includes
both the resistive drift-interchange and drift-tearing modes. As contrasted
to the Hazeltine et al. 2 treatment, where the principal effort was the
derivation of the electron momentum balance equation, the principal effort
here is the derivation of the ion momentum balance equation and its effect
on the dispersion relation. All the analysis here is for an incompressible
resistive plasma in a screw pinch, however, extensions of the theory to

tokamaks are discussed.

Our main result is a dispersion relation which is valid throughout

the collisional regime, and which has the following properties:

(i)  Previously derived dispersion relations are obtained in appropriate
limits. The Hazeltine et al. = tearing-drift dispersion relation is
obtained in the zero pressure gradient limit. The Johnson, Greene
and Coppi ~ resistive dispersion relation is obtained in the zero

drift limit,



(ii)  Although no new instabilities are produced, the electron temperature
gradient instability of Hazeltine et al. still exists and the essential

Johnson et al. interchange growth rate limits are also obtained.

A second result is the derivation of an exact momentum balance
equation (one-fluid theory) in a form convenient for theoretical analysis.
This equation, derived without invoking Ohm’s law, involves only the
perturbed radial components of the velocity and magnetic field. The
portion of this equation, which does not exist in ideal magnetohydro-
dynamics, gives the interchange scaling in a reasonably direct fashion.

In the appropiate limits, this equation reduces to the Hain LUst =~ equation

6 :
and to Newcomb’s = equation.

The analysis proceeds as follows. In Sec. Il, we derive, for the
screw pinch, an exact momentum balance equation in the incompressible
limit. Section Il contains a heuristic derivation of the resistive inter-
change instability. In Sec. IV, we include diamagnetic frequencies in
both the ion momentum balance equation and the electron momentum
balance equation (Ohm’s law). Section V contains the derivation of the
drift dispersion relation. Previously derived dispersion relations are
recovered by considering appropriate limits. In Sec. VI, we give a

summary of our principal results.




II. MOMENTUM BALANCE EQUATION

In order to conveniently incorporate the resistive interchange mode
into existing theory, it is useful to first derive a momentum balance
equation in which no approximations are made. We start by considering

the magnetohydrodynamic equations in the incompressible form:
e — - -
F = odfo_vUp + Ix8 ™
at c
together with
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Here ¥V is the plasma velocity, J the current, p is the scalar pressure
-
and P the density, B is the magnetic field, where Bg and B_ are
=
respectively, the poloidal and axial magnetic fields of a screw pinch.

The pressure equation used follows from the adiabatic assumption.

We later treat Eq. (1) as the ion momentum balance equation and
include the ion diamagnetic effects, which means including -ﬂ-; , the
ion stress tensor. However, it is first useful to obtain an exact
derivation of the classical momentum balance equation in a convenient
form, since this gives the important pressure gradient terms. This is
achieved by taking the radial component of the double curl of the

linearized version of Eq. (1),




(Vr(O:F)), = {1 (UxF)y =ik (VX FJa),

and straightforward algebra. We choose the perturbed solutions of the

form, _, —
A (r,4) = Are) exp [-iwt + i(mb + he)],
and also use R = % . Although the double curl expression given above

lp
does not include the vector component (V‘ F),— , this component is

needed to reduce the double curl expression to a convenient form.

After some algebra we obtain a momentum balance equation

involving only the perturbed radial components Vp, and B,
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where F = W\BOo + k Bi‘o
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G = F (miakir-) + 2K (kBy,-nBes) + 2K dp
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Ohm’s law has not been invoked up to this point. We know that

in the zero drift limit it will be of the form (see Eq. (17))

—

. Vi
Vry g 3 Br _ o ( iBr, + other perturbed mogneﬂc)
—w F -iwF field components

wherel‘l is the resistivity. Then, in the ideal MHD limit (V]—-P O))

the _)_fg term on the left side of Eq. (2) reduces to zero, and the
ar

equation reduces to the Hain-Lust equation 2 for a diffuse linear pinch

in the incompressible limit.

For finite resistivity, we shall show in the case %PL finite, that
r

I/
we obtain the resistive interchange mode which scales as \703 and

in the limit, 9Pe = O , we obtain the tearing mode which scales

3/5 3!‘
as \10 Thus, as either resistivity or W goes to zero ’?" and
-1

W go to zero, and the left side of the equation goes to 0 at the origin,
Ww=0 . Hence, at W=0 , the left side of the equation is zero and
the equation becomes identically equal to the marginal stability equation

of Newcomb 6.

Noting that F = 0 at the mode rational surface, we see that the

_a_Ee (.!._B_"l) term on the left side of Eq. (2) identically cancels the
or F



3Eo term on the right side only at the mode rational surface. This
or
means that for finite W, the indicated momentum balance equation,

written in terms of Br. or Vey , is not singular at the mode rational

surface.

The form of Eq. (2) is very similar to that of Coppi et al. 7
(their Eq. (1)), except that in their treatment they made the usual
tokamak approximation, 8%( B!gnd correspondingly Re<M . |n fact
it was only after reading their paper, that we appreciated that the
more exact form here could be derived. The form here gives the
resistive interchange scaling (considered next) and reduces to both the
Hain LUst equation and Newcomb’s equation in the appropriate limits,
while the approximate form derived by Coppi et al. ¢ satisfies none of

these requirements.



1. HEURISTIC DERIVATION OF THE RESISTIVE INTERCHANGE

INSTABILITY

Heuristic derivation of the interchange mode provides the motivation
for neglecting terms in the modified ion momentum balance equation,
when deriving the dispersion relation, and provides confirmation that the
exact momentum balance equation gives the correct resistive interchange
scaling. In this derivation of the classical resistive interchange result,
we do not include diamagnetic frequencies or the kinetic theory factors

as derived by Hazeltine et al. . Thus, we write Ohm’s law, using

Eq. (17), as 2
=W Bn = __a_-.t Br. + FVI‘:
Ts (3)

We define the resistive skin time, z}, and the Alfven time, Ta., as

I
T = +_[.F£ ; Ta = a (4#@9)/‘,
c Ne Be

In some small vicinity M of the mode rational surface, s , where we

use

Ir-rs] < » ¢ a,

with a the width of the plasma, the terms in Ohm’s law, not involving

w , will be comparable. Thus,
" ¢
B, % -i Ts Boki X Vr, ()
o>

where we use Ru(™ & R:, (rs) (r-vrg) = k," )‘ .

ki Ry = m, éﬂ‘ 4+ N Bzo E



Rewritting the momentum balance equation, Eq. (2), considering

only terms that are important near the mode rational surface, we have

g (Vn i Br,
";Wfb v:: - L Bbok or S=jw * kn Bo) s ;h" BDB:, -1 .Zktgb

r*(mBao +hkr Ba) rk,Bo or

(m2+kr?)
The left side will be important only in the resistive layer, so that we
can assume that the terms on the right side will be comparable at 7.

= th. p
Letting D.s = 5 Pe

(k’n Bp) r or
gives .
pE (6)

Here, Ds is the parameter relating to interchange stability of a diffuse
8
pinch. Analyzing Eq. (2) in the ideal MHD limit, it can be shown

I
that the necessary condition for ideal stability is Dsg < i

To estimate the boundary layer width we allow

Ve = - Ve .
7\2-

The physical significance of the negative signs in Egs. (6) and (7), and

(7)

the switched signs in the tearing mode case, needs to be explained.

In the tearing mode case we have

'] ”
Br, = & Br and V= Yo,
> ne

(5)
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where A, is defined by Eq. (11). When an instability occurs with
Ds positive, the driving source of energy is localized in the singular
layer. However, when an instability occurs with Dg negative or
zero, the driving source of energy is not localized, but outside the

singular layer.
Rewritting Eq. (5) at F = 0, we obtain

Ciw’ Ve, & 2R° 3Ps Vri.
Foar

By appropriately combining Eqs. (4), (5), (6), (7), (8) we obtain
the resistive interchange growth rate, stability criterion, and dissipative
boundary layer width given below. The corresponding values given for
the tearing mode can be obtained by setting the pressure gradient terms
equal to zero in Eq. (2) and using a similar heuristic analysis. Since
this is straightforward, noting the comment following Eq. (7), and is
done in detail in Hazeltine et al. 2, where their notation is similar

to that here, only the results are repeated:

Interchange Mode (Resistive)

_EWS-——JE" F2 ) 2
0

stability if Ds< O ) (9b)
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3
._7\_ = Ta JDS ~ Ta < |
a3 Ts (k) Ts

(- .'w)3 = D; {a® h/u) 1,
Ts Ta >

Tearing Mode

-iw k4T A
Ts >
/
stability if A < O
S /
X _TahAa o Td
a..'s Z‘s" (d." h;) Ts E

i) = (A7 (K,

——————

T Tat

A’ - B:,("‘.s-l-&)—Brf,(t‘s—é)

with

) Bf‘l (f':g)

where >‘<-é < a.,

)

Before proceeding it is useful to list some numerical values.

It should perhaps be noted that the growth rates and dissipative

boundary layer widths given do not depend on the plasma thickness.

For the following set of parameters:

(9¢)

(10a)

(10b)

(10c)

(10d)
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B ~40RG, n=10"cn > y Zept = 1,

TiaTe~10"°K ~1Kev, a=40cm R
o-

we obtain

8
To= .05 M sec, Ts= 8 sec, S ="6")O) (12a)

(_,'w) tearing ~ .2RHa ;

(-iw) interchange - 3kH 2,

73[' = D tearing (Eq 9¢) ~ .05 M,

7\1 = 7‘ interchange (Eq)Od ~ .06 enm,

ri = ion gyroradivs ~ .08cm,

Wy; E ion diamagnetic freq. = € _“lvru' ~ -2kHz
! ‘ )
e€Bony

Wye= elect. diamagnetic freq= =€
e Bpone

Vpe ~ 2RHe,

L
=

War= - & m VTe,
eB, I

Z/e = coulomb collision frequency ~200 kHz,

NeTe=5x10°>1, Nt;= )0°>1,

e = electron gyrofrequency, Te = electron collision time.

1 ion i ion

(12b)

(12¢)

(12d)

(12e)

(12f)

(12h)

(127)
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It should be noted that the resistive interchange growth rate is of
the order of the diamagnetic frequency and that the tearing mode growth
A .
rate is about . ] Wg. The conventional definitions © of the various

diamagnetic frequencies are used here,

Drake and Lee divided the resistive drift instabilities into three

regimes according to the collisionality of the plasma, as follows:

collisional ri< n» Wy < e |
semi-collisional r{ y N Wy < Ve 5 (13)
collisionless i > > Wa > ve .

Drift effects increase the dissipative layer widths; thus, using Eq. (22),
or more specifically Eqs. (31) and (34), with the numbers here, the Ns
calculated are larger than the ion gyroradius. Therefore, the collisional
regime is appropriate here. However, future experimental devices will
operate in the semicollisional regime as indicated by the analysis of
Drake and Lee 3. Nevertheless, their statement, that the dynamics of
the layer are relatively insensitive to the geometry under consideration,
so that slab results can be extended to a cylindrical geometry, is shown
to be invalid in the collisional regime treatment here. The inclusion

of pressure gradient should also change the dynamics of the semi-
collisional regime, particularly, since the interchange mode scales the

same as the semi-collisional growth rate calculated by Drake and Lee.
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In deriving the drift ion momentum balance equation, we use
Braginskii’s two-fluid equations 9. These equations apply where Ze > W
and when the characteristic gradient lengths are larger than the mean
free paths, that is, in the collisional regime. The inequalities in
Eq. (12k) indicate that it is quite appropriate to use Braginskii’s

strong magnetic field case.
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IV. FINITE GYRORADIUS EFFECTS INCLUDED

As device plasma temperatures increase, classical resistivity becomes
smaller, so that the resistive growth rate becomes comparable with or less
than the electron diamagnetic frequency. |In fact for present plasmas,
¥y << We 4 and Yr A~ Wey, so that diamagnetic drift effects

become important.

The ion momentum balance equation is derived from two-fluid theory.
The set of Egs. (1) are now generalized to a set appropriate for ions,
however, we need to include the pressure tensor to obtain the finite
gyroradius terms which give the ion diamagnetic frequency. In particular,

the ion momentum balance equation is

fr ﬁ% = (TxB)xB _ Vpi - V- [Te + Teer) , (14

4T

14

where
Wex
Tro(p FT [-Woxﬁ i ( WSK.BZ';Z .4 ﬁ) .

P
Here Wo(p are the Braginskii ° ion stress tensors, and we use his expansion
in the strong field case with X=/L; T;% 1 , so that terms up to Meer |
the finite gyroradius term which corresponds to the L/X term, need to be

included.

Considering only lowest order term and singular terms, since we are
concerned with perturbations localized near the mode rational surface,

yields the modified ion momentum balance equation:
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‘ - E 280 k ") vf'l ;B
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+ higher order terms (15)
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where, again

G = F (m+ k1)« 260" (kBa,-mBe) + 2K 37,
mr*+R*r* F ar

and & is a factor less than unity ]0. When Wgi= 0 and with the
inclusion of lower order terms, Eq. (15) reduces to Eq. (2). However,
Eq. (15) is not singular when both W and F—+ 0, remembering that
the Bn/F terms identically cancel at the mode rational surface.
Thus, the marginal stability equation of Newcomb 2 s longer applies.
In general, the inclusion of diamagnetic drift effects alters the growth
rates and stability criteria of both ideal and resistive MHD, and
results in new drift mode stability criteria and growth rates. Although,
the incompressible case is still being considered, we now expect over-
stable or complex growth rates, since there are new terms analogous
to zero-order velocities. The existence of overstable modes with non-

“peros - . 11
zero equilibrium velocities was recognized by Furth et al. Recently



12 ) :
Dobrott et al. = have pointed out that the conventional neglect of
radial diffusion velocity \fpeg in resistive calculations is incorrect
and find that the stability criterion for tearing modes is no longer

A’ & O, and that overstable tearing modes have to be considered.

The set of equations represented by Eqs. (1) are of course not
complete even when generalized to two-fluid theory. We, however,
do not use two-fluid theory in obtaining the electron momentum
balance equation, but take that result directly from the work of
Hazeltine et al. 2 They used the guiding-center kinetic equation

with Fokker-Planck collision term to obtain

/ 4
mloJ“ = ™ E“ + “l(_B_EL S kul\:}rt )(Pog, 4 “;roe) ) “6)

€ Nee €
Where “l - Opqa ( l — v5+:w/-uﬂ-)
)
| - 2.97 1w _ 1.04w"
Ve V>
0(2_ — 0'80 -
] - ,54';__0_(_)_
e

If we had used two-fluid theory from Braginskii 9, and the adiabatic
assumption as a closure condition for the two fluids, we would have
obtained the above equation with &,=[.0 and ®,= 0.7l

Thus, in the extreme collisional limit W <<< /¢ |, there is a

correspondence between kinetic theory and two-fluid theory, since




18

then Hazeltine’s et al.X's would reduce to X,20.98 and X,=0.80 .
The advantages in using the kinetic theory model are that it allows for

a range of XL values, which is important since in present tokamaks Wg

e
is not much smaller than e, and because the use of kinetic theory
complex factors result in the prediction of instabilities, such as the

temperature electron gradient instability, which cannot be predicted

by two-fluid theory.

The electron momentum balance equation, or generalized Ohm’s
law, follows from Hazeltine et al. as

"
1 at Be
X, Te (wW-wgeT)

B.—.z IFS,— -+

with Wigetr = Wae + K2 Wa T,
and where only the lowest order terms important near the singular layer

are retained.
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V. DISPERSION RELATION

Now rewritting the momentum balance equation, Eq. (15) considering

only terms that are important near the mode rational surface, we have

4‘"}%(‘“‘/* | Wy |') Vr':’ +27 Bbok ;E.- (m‘q.k‘r"\ ( Ve + i Br'»)
r“(mBe.-hrBoJ it s bl F

(18)

o i FBri =i Br 2K 3p, |
FE ar

Within the singular layer, using Ve = 9SrF = —i(.ugr , and
ot

LP = =i Be, yields

%
+Tl‘ﬁw(w-w;i)_§.'-' ~ DsF'wé€r — FLI)" .
(W — 6 wyi)

Correspondingly, Eq. (17) yields

20)
2 jp? . (
<V + lb(,(w—woef)(q)‘FSr3=o-
Ts
Since the == %Eﬂ terms cancel out at F = 0, we assume that
r
Y=Yl = WYs as constant, within the boundary layer. Combining
Egs. (18) and (19), we obtain
“ (r-rs) Y
r—r e
Sl‘ - _ s Sr o (r f's) s ) 21)

]
x? n ki Bo ™ ¥
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where N4 _ Z : Py 2 .
N = Tow(w=-wai) ; X _=_-:-'Z’¢(w-wu7(w-o'uki3
= - )
(k) " Ts i % (w =~ waer) (k{) Dsa*
g o
The definitions of M and X are predicated on the fact that when

B
~F

the diamagnetic frequencies go to zero, 7\ reduces to ?"r and X
reduces to 7‘: as in Eqgs. (10c) (12d) (9¢) and (12e). Although both
AL [

N and X are, in general, complex, the dissipative boundary layer

widths, respectively, are

tearing mode >T = l)\\)
(22)
interchange mode 7‘1 = le .
Introducing dimensionless variables x and y we may write Eq. (21)
as 2 g A
2 oid
éx 4- .2:. we )’ +X = O ] (23)
Ix X
where
R
)/5_'- %hnBo) S"’ X= (r-rg) .,
Vs PN
Equation (23) has the solution
'Xﬂ.
! -h =Xt —
y -_-.x/dt [(-t*] ™ e? [Htr‘i ’
RaS (24a)
Z e
]
or equivalently, letting t = cos @,
T i - X*cos®
> Lo oo
=X [d6 sin?e e %
Y %! / (24b)
24 x
+X*

(ten)
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as can be verified by substitution and integration by parts. This

equation differs from the standard equation developed by Rutherford
13 r
and Furth only due to the presence of the _?:..1 term. The
4 X

dispersion relation is now obtained by requiring the dissipative
layer solution A(w) and the solution in the external region, evaluated

using Eq. (11), to be the same
/

ANiudy = I\ (25)

It should be pointed out that with the inclusion of pressure gradient

and diamagnetic frequency, it is no longer appropriate to use the
; . 14 Y :
standard tearing mode analysis to calculate A There is no
'
satisfactory way to calculate I\ at the present time. However,

/
assuming that the solution for A\ can be obtained, the boundary

result can be found from integration of Eq. (20) as

Xs+é&
NS /
— = |l =Xyl dx .
(w —LUue'r)Ts N XKy % e[ y] 26
o

Substituting for y using Eq. (24a), and integrating over x first and

then t, easily gives the dispersion relation we have been seeking

A fa_
Am s (w-wae2?s X T L7 37 %2
2. = e~
-~
a NEX

1(27)
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where for clarity

N = Tdw(w-wesi) ) X* = - Ta (W-wa)(w-cwni)
1O, h:\zr.s (W-wzeT) if 1D5 P

/
For a given mode (m, n) and equilibrium profile, A can be determined

in the external region, and W solved for using Eq. (27).
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V. SUMMARY AND CONCLUSIONS

We have derived, from the ion momentum balance equation obtained
here using two-fluid theory and from the electron momentum balance
equation obtained by Hazeltine et al. using guiding-center kinetic theory,
the dispersion relation, Eq. (27), which holds uniformly for all values of

w/73% in the collisional regime.

A self consistency requirement is that
Re (*?) > 0. (28)

This follows from the observation that the asymptotic solution of the
original differential equation, Eq. (23), is Y= I/%x. Examination of
Eq. (24a) indicates that, for the integral solution of y to have the correct
asymptotic dependence, it is necessary that Eq. (28) be satisfied. We also
see that if this condition is not satisfied, the unstable mode is no longer
spatially localized. Rutherford and Furth ks have shown that it is
mathematically possible to continue the dispersion relation beyond the
branch cut represented by Re (=20 , by inclusion of an electrostatic
term. Since electrostatic terms are included in kinetic theory in a
natural way, analytical continuation of the dispersion curve beyond the

branch curve should not represent a problem,

The dispersion relation can be solved analytically in the two limits

We»Y¥ and W << ¥ , where

LU=W|-+I.Y,
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and Y20 for an instability.  Our previous assumptions also require

Wx<7v., ¥<1e and 7‘>I'.'.

A. The case Wy >> Y,

This ordering is closest to present tokamak experiments. The
significant root has W 2 Wger so that the term (W — wy e-r\
in Eq. (27) is small. Thus, we write W= We + W] , where Wo is

defined to be a solution to
We — Wae - qu_(wo) wer = 0, (29)
Ve
Here we consider two subcases: Ds negative, and Ds = 0,
(i) DS negative.

For this case, we see that the argument of the gamma function,
N
2= -'_Z_\_ , can be large due to the presence of the (w—w;e-r)

+ %2
term and we can expand

MNiz+x) - Z“‘ﬁ [1 " (N—B)(D(+,8-!) 3 O( ) )] ,

M (2 +8) 22

valid for |2] —* e , provided we stay away from the negative real
15

axis

Thus, we obtain

; _—

W= We+W, = Wyet + 3iWgerar - | A a.z(wur-d'w;i)
e it ) (30)

Ve Ds T*Tse Waeer

and instability of the last term with Dg < O and A'>0 . The two

modes here rotate in the same sense as Wge T



25

It is of course incorrect to take the limit D_e,"' O, since the
derivation is based on W, /Wa{<< 1. However, the equation does
suggest the possibility that an evolving quasi-equilibrium, where line
tying of regions of good curvature to bad curvature breaks down, could

result in an enhancement of growth rate.

It should be pointed out that while DS is nearly always positive
in a straight system, it is multiplied by a factor | - q" , in the
simplest tokamak approximation. Here, 4= f__B_‘;" is the safety factor,

°
so that for 421 , DS is usually negative in tokamaks. Thus, Eq. (30)

is more appropriate for tokamaks than for screw pinches. For this mode

Iy ly. 3/8
N N Ta* Wae% ¥z (31)
~ 7 s/e| °
a 'f-s 4 31' (*]

(ii) D = 0.
s

N S it
In this case £~ = O , and we obtain the tearing-drift dispersion
2

relation of Hazeltine et al.

3 ¢ g B
w(w—w;:)(w—wqe-fxzwwr) 0(;3 = {87 4 (32)
] 3

where Y= a \ P(T) (a2 k,’") 5

2m M (R)| TMsval’s
Now, we, as did Hazeltine et al., obtain

5 V3
W= Weo+ W= w;e1-+.+3:w,e-r Wat + IXT (33)
Ve Wyer(Waer-Wa i)

/
and instability from the last term with Ds =0and A 20.
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Correspondingly, Drake and Lee ® give Eq. (33) with .43 replaced
by 33]—25 , apparently because they did not include electron-electron
collisions. In both Eqs. (30) and (33), the electron temperature gradient
instability, the WgT term, occurs. The WaT term is believed to be
important in explaining enhanced particle and energy transport in
tokamaks ]6. The difference between Egs. (30) and (33) exists in the
last term, where the interchange term of Eq. (30) is larger than the

tearing mode contribution of Eq. (33). In both cases, the energy source

lies outside the singular layer.

For the mode here

Z,

D | L Waer s (34)
~ T 5/.
Q. S yr 3

B. The case Wy << X,
Again, we consider two subcases: Ds positive, and Ds = 0.
(i) Ds positive.

In the zero drift limit and with &, = |, the dispersion relation,

Eq. (27), reduces to

2_5 ( hl,t d.z)
- (-l'wf'/z' 4'ta. Ts Ya

Dy (kya?) }
.

T Gl 47a T

S/ [V’ 3/
A =(-iw)+2.TT 'C'a..zts &
a ( h:l a:.)'/z_ r\

. (35)

3
. 2
[
2
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This is identical to Eq. (92) of Johnson et al. A and is the classical
resistive dispersion relation for the incompressible cylindrical pinch case.
We note the interchange scaling in the arguments of the gamma functions
and the tearing mode scaling outside. The assertion made with respect
to Eq. (2), that there are only real resistive growth rates in the

incompressible zero drift case has been reaffirmed here.

The gamma function r‘(i\ is analytic over the finite part of the =
plane with the exception of points 2=0, -1, -2, etc., where it has
simple poles. In the zero drift case, given by Eq. (35), when Ds is
positive regardless of the value oFA', there is always an instability.

’
When A vanishes, the growth rates are given by

(__iw)'b - D; (Cl.lhlf)z'
(4n+1)*Ts Ta

where n=0,1,2, ete.
and which is similar to Eq. (9d).

With diamagnetic frequency, W becomes complex, and the result
depends sensitively on how small W is, that is, how close = is to
the negative real axis. The ¥ »» wy limit is of practical interest,
because, for ¥ ~ Wger, one would normally not expect drift effects
to reduce ¥ below the zero drift limit. In fact, Cordey " e recently
pointed out that resistive interchange instabilities occur in the Levitron
experiment with experimental parameters reasonably close to those given

here and with §T of the order of WgeT . However, since D5 is
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normally negative in tokamaks including the m = 1, n = 1 mode, in
which case D, is small, the limit here is primarily of interest for screw

pinch type experiments.
(i) Ds = 0.

For this case, we obtain from Eq. (32), where we do not include

kinetic theory corrections,

-lw = ¥r

]

7
for A 2 O, and the classical tearing mode results.

Finally, we note that the drift dispersion relation derived here
can be numerically studied to determine stability regimes and growth

rates of the drift-interchange and drift-tearing modes.
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