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Abstract

An extension of a simplified model of Brillouin scattering instability to
arbitrarily inhomogeneous media is presented. It is shown that light

pressure, if treated self-consistently, always drives the plasma unstable.



Most of the studies of stability of plasmas in the presence of electro-
magnetic waves are concerned with wave decay or parametric effects,
such as Brillouin scattering, in homogeneous or slightly inhomogeneous
plasmas ! . In contrast this short contribution is devoted to the
stability investigation of arbitrarily inhomogeneous plasmas held by
light pressure, the importance of which was pointed out years ago
The Brillouin type instability is due to the effect that a density
perturbation of twice the local light wavelength modifies the electro-
magnetic wave in such a way that its radiation pressure tends to
increase the original perturbation < . Since the frequency shift of

the scattered electromagnetic wave is small (Wocousﬁc < W thf)’
it is a good approximation to use the same index of refraction for the
incident and scattered waves, at least far from the critical density.
The essential features of possible instabilities are thus preserved if a

simplified response of the plasma to the light as described in the

following equations is assumed:
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where n' = 4. P® . The symbols have the usual meaning
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(W is the x component of velocity, £ is the critical density, E is
<



the electric field, K, is the vacuum wave number, s is the sound
velocity). The equations are valid if the fluid is 1-dimensional
and isothermal, behaves hydrodynamically, and dissipation can be

neglected.

We are interested in a time evolution of W which is much longer
than the period of the light wave, and so it is justified to replace
the averages on the rapid time scale in equation (1) by the =«
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dependent amplitudes E(x) . Furthermore, va? is real and allows

us to consider only real E(x) so that we replace < g E®»> by Ei.

If we assume a static equilibrium for the zero order, equations (1)

to (3) reduce to
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The linearized equations around P g, are then
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E,‘ can be expressed in terms of Green’s function & (1}1')
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By taking the time derivative of equation (6) and using equation (9),

the system (6) - (8) reduces to
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where F is the integro-differential operator on w of the R.H.S. of
equation (10). The reader can easily check that the differential
part of Fis symmetric for vanishing W at the boundaries. The inte-
gral operator is also symmetric because Green’s function inverts the
symmetric operator on the L.H.S. of equation (8) and then has to
be symmetric with respect to interchange of X and x' . This
property of equation (11) allows a necessary and sufficient condition
of stability to be derived in the form of an energy principle as

known from reference
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If SW)O for all w vanishing at x za and x:-b , the system is
stable. If for any test function W , vanishing ata and b, SW<o

holds, the system is unstable.

This means that without the self-consistent reaction of the plasma to
the light, i.e. E,= o , the equilibrium is stable. Let us investigate
this self-consistent response by analyzing the properties of Green’s
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function (& (x,x‘) of equation (8). The operator L = '}'z + K:(j- __;_‘a)
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where the bar indicates an average in x . When this condition is

barely satisfied, Green’s function becomes very large and can change
sign. This is easy to understand from the fact that if L has the
eigenvalue X , |:1 has the eigenvalue 4 . So 6(1,1') can be
negative and large if Kﬂ(bwa) s F}éﬁ)—\’z . This
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means that the double integral in expression (12) can be made negative

and large enough to yield Sw<o for a properly chosen test function

In conclusion, we can say that the plasma is unstable if the ponderomotive
force is perturbed self-consistently, no matter how large the modulation

of the light and the plasma inhomogeneity are.
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