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Abstract

To demonstrate the possibility of constructing asymptotic diffuse
high beta magnetohydrostatic equilibria as solutions of a boundary
value problem in arbitrary toroidal domains, an asymptotic equi-
librium theory is developed for large aspect ratio and small de-
viations from axial symmetry with many toroidal periods (old
Scyllac scaling). Given two arbitrary profiles (e.g. the pressure
ratio [3 and the rotation number /pk as functions of the volume),
and given (within the scaling) an arbitrary boundary at which the
magnetic field is required to be tangential, there is a formal
power series solution of the magnetohydrostatic equations. To lead-
ing order, this solution is obtained from a coupled set of quasi-
-linear elliptic equations in two dimensions. Iteration schemes
are described for solving this set numerically. The details depend
crucially on hOW’;B and /b\ are scaled. The lowest order pressure
surfaces depend on the corrugation of the boundary for high (3 i
but not for low ﬁ> (in the latter case, the lowest order problem
reduces to the well-known equilibrium equation in two dimensions) .
For high {5 and large /¢_ the pressure is always constant at the
boundary to leading order, while for high F& and finite /);

the lowest order pressure surfaces in general intersect the bound-
ary, thus causing a high current boundary layer unless /A_ vanishes
in all orders. As a consequence, the corrugation of the wall must
be judiciously chosen in high beta stellarators. The present in-
vestigation opens up a new theoretical approach to a variety of
high beta magnetic confinement problems in three dimensions,

such as plasma heating, stability, adiabatic compression, and

diffusion.




I. Introduction

Despite their extreme importance to the problem of
controlled thermonuclear fusion, the magnetohydrostatic

equations
Bxcuw(,@‘*VP =0, OUV,@:O (1)

are not fully explored mathematically. In particular, it
is not known whether they have nontrivial solutions (i.e.
solutions with non-constant plasma pressure fD)satisfying
suitable conditions at the boundary of an arbitrary
toroidal domain. The difficulty is due to the presence of
real characteristics (viz. the field lines of the mag-
netic field % counted twice) in addition to imaginary
ones, and it has led to the conjecturel that no well-
-posed problem can be formulated unless attention is
restricted to some special symmetry such as axial symmetry

or reflection symmetry to a plane.

With axial symmetry, the real characteristics can be
integrated out to leave two arbitrary profiles in the re-
maining elliptic problem. With reflection symmetry the
magnetic field lines are automatically closed, and an
iteration which alternates between an elliptic problem
with one arbitrary profile (a second profile is already

assigned by the symmetry) and a quasi-hyperbolic problem




along the closed real characteristics convergesz. Extra-
polating from these solvable cases one would anticipate
that a general well-posed magnetohydrostatic boundary
value problem (if there is any at all) must at least in-
clude two prescribable profiles, and that the correct
boundary condition is '2}-E§ = 0O rather than

F> = const (this is a genuine distinction if all field

lines are closed).

In view of the practical interest in plasma equilibria
without symmetries (e.g. stellarators, effect of discrete
coils upon axially symmetric tokamaks, bumpy torus), and
lacking a mathematical theory of these, it is natural to
ignore the difficulty by trying to compute approximate
equilibria regardless of the existence of exact ones. One
can either try to solve some discrete version of the full
three-dimensional problem numerically3’ b 5, or one can
simplify the problem by looking for formal asymptotic
solutions in the vicinity of a solvable case. Even though

these two approaches are complementary, it is hoped that

there is sufficient overlap for testing purposes.

The question of convergence is usually not considered
in either approach. In the numerical approach this would
require an examination of the limit of infinite mesh size,
while only finite meshes can be used in practice. In the

asymptotic approach this would require an examination of



arbitrarily high orders of the expansion, while only the
leading order is considered in practice. However, the
asymptotic approach has the advantage of yielding, regard-
less of convergence, results of practical use: If the
expansion parameter is small, a truncated asymptotic
solution series satisfies the magnetohydrostatic equations
approximately. Therefore, the time derivatives in the full
magnetohydrodynamic equations are small, and the motion

away from an asymptotic equilibrium is slow.

Due to the presence of several parameters, there is a
variety of different scalings leading to qualitatively
different asymptotic problems. One can distinguish between
geometrical parameters (i.e. parameters characterizing
the boundary) and profile parameters (i.,e. parameters
characterizing the prescribable functions). The most sig-

nificant profile parameters are the characteristic values

of the pressure ratio @ (defined as (5 2({3‘ pm1n>/

(F:; —-P\M'm 1—%_ BZ) ) and of the rotation nu.mber/u\

(defined as the ratio of the numbers of poloidal and
toroidal traversals of a field line as one follows it
forever). Given a definite scaling of the geometrical para-
meters, there 1is stilla variety of different asymptotic
problems depending on how (3 and/u‘ are scaled. The
following argument indicates that high ﬁ. and small /U\

leads to difficulties which otherwise are not present.




According to the equilibrium equations (1), the
limit /AJ;?C) (closed field lines) is singular unless
(5 = O (constant pressure) because the boundary condition
q@lﬁ =0 , in general, implies that P is constant at the
boundary, while for /u:o it does not unless {3 L
In axial asymmetry, for instance, F) is a function of the
distance from the symmetry axis if /u.th) , and thus
cannot be constant at any closed surface unless FB =0
As a consequence, there is a high current boundary layer
if/bk is smal%>unless FB is small, too. Within an ex-
pansion, a boundary layer appears whenever/}A‘ is scaled
so that it does not enter the leading order but appears
in higher orders, and the magnitude of/bk which is re-

quired to avoid this difficulty increases with [3 ;

The low FS asymptotic equilibrium problem has been

treated in the past with great generalityshg, but the

substantially more difficult high FS problem has been

attacked only with more or less special assumptions such

10—14, closed magnetic field linesl5,

. ) 16
Oor concentrically circular unperturbed pressure surfaces™ °.

as a sharp boundary

It is the purpose of the present paper to develop a more
complete theory of asymptotic high (3 equilibria with
continuous profiles. Thus, we consider (within the old
Scyllac scaling) an arbitrary perturbation of an arbitrary
axially symmetric domain, and look for formal solutions of
the boundary value problem with two arbitrarily prescribed

profiles.



As in previous investigations, the problem may be
viewed as a perturbation about a unidirectional mag-
netic field. However, our investigation differs from
previous ones in that we consider the perturbed boundary
value problem rather than try to perturb a given equi-
librium. This is a genuine distinction because the un-
perturbed boundary value problem is degenerate: There
are many solutions in zeroth order, and which of these
must be chosen depends on the perturbation of the bound-
ary. Technically, the zeroth order solution is determined
by a solvability condition appearing in second order.
Consequently, the perturbed problem is two-dimensional
even if the unperturbed problem has one-dimensional
solutions, assuming a circular unperturbed boundary does
not simplify the problem, and assuming concentrically
circular unperturbed cross-sections even cripples it
because this singles out a cumbersome subclass of data
for which a perturbed solution exists. Correspondingly,
it is natural to consider arbitrary axially symmetric un-
perturbed boundaries rather than restrict attention to

circular ones.

Even though our investigation indicates that the
expansion exists to all orders, we carry it out only as
far as is necessary to determine the equilibrium to lead-
ing order. Thus, our chief result is a set of nonlinear

equations in two dimensions which allows calculation of




the lowest order equilibrium from two profiles, from

the axially symmetric unperturbed boundary, and from

its three-dimensional corrugation. We find significant

distinctions depending on how FB and 2

are scaled. At

low FS the equilibrium becomes independent of the

corrugation to leading order, while at high @» the

effect of the corrugation competes with
profiles (arbitrarily small distortions
cause finite shifts of the plasma). For

high (2 the unperturbed boundary turns

that of the
of the boundary

large /A. and

out to be a

pressure surface to leading order for any choice of the

corrugation, while for finite /AL (which is equivalent

to a vanishing lowest order net toroidal current within

each pressure surface) and high /3 this is so only for

special corrugations. The practical significance of

these facts is that appropriately chosen small distor-

tions of an axially symmetric boundary can be used in-

stead of a net toroidal current in order to confine the

plasma. The possibility of high beta stellarators is

based on this fact.




2. Surface quantities

The content of this section although not needed for
carrying out our asymptotic expansion, is essential for
a discussion of the results. The surfaces of constant
pressure play an important role in the theory of magneto-
hydrostatic equilibria. It is often assumed that these
surfaces have a simple topology (i.e., that they form
one nested set of toroids), and the concept of surface
quantities was originally introduced17 for this case.
However, since any reasonably general formulation of
the equilibrium problem must allow for complex topologies
18, a somewhat more general formulation of various de-
finitions and relations is necessary. Therefore, we make
no assumption about the global structure of the pressure
surfaces. In order to include closed-line equilibria, we
do not even assume that the boundary is a pressure sur-

face. However, we do assume that the domain is a toroid,

and that the magnetic field is tangential at the boundary.

A quantity  satisfying the relation VP 5 N - =0
is called a surface quantity. If, in addition, F is a
single-valued function of FD , we call it a global surface
guantity. In a simple topology every surface quantity
is global, while in a complex topology a surface quantity
can have different values on different parts of a dis-

connected surface, and therefore be a multi-valued function
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of F) « For our purposes it suffices to consider global
surface quantities. It is often convenient to express

these as functions of the volume J .

To be specific, we define the volume of the surface
p-=‘¥>° as the volume of that part of the domain in
which F}'}z{)o . Thus, the volume is a decreasing
function of p ; it is zero for P2 Pmax , and
it equals the volume of the whole domain for F’E:FDMa(vx'
As a function in space, the volume is given in the
obvious way, i.e. U(X) = U’(P(B&\) . We now

define a surface average (on the surface U = Uy ) by

K = ﬂ NU{ ) )

where the integral is over the entire surface regardless

of whether it is connected; equivalently,

<o AUOSHET'“ ' -

U= Uq
Clearly, the surface average of any quantity is a global

surface quantity, and any global surface quantity F is charac-

terized by F =<F ).

We shall occasionally need the average of the
Laplacian of a global surface quantity. An elementary

calculation involving Gauss's theorem yields
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<AF>:;%T(KLF (4)

A )
where
2
K(U\:<(VUI > (5)
élearly,<<<f&Ffj> vanishes if F: is a constant. The

converse is also true unless F? has singularities or un-
less we deal with the extremely special case that both
the maximum and the minimum of the pressure are attained
at surfaces rather than at field lines. To show this, we
note that <AF> =0 implies AF/AU’ = C/K
with some constant C . The assertion then follows from
the fact that k( is zero at the maximum (minimum)of F)

unless this is attained at a whole surface.

In a simple topology, the poloidal and toroidal mag-
netic fluxes (denoted by ;‘ and ﬂ+/)and currents (de-

noted by I_ and :} ) can be calculated according to7
dx/ho =BV, (6)
0('\{//#(0:<[§-V9t>) (7)

(iI/AU:<CU\Y‘L[§'ng>) (€)
dj//lu:<ctu-[ E-V@x>) (9)




where (}F, and (§t are angle-like coordinates increas-
ing by one in the poloidal and toroidal directions.

respectively. The rotation number is then given by

pos iy

In a complex topology, or if the boundary is not a
pressure surface, we have to define the coordinates E§P
and Gt' in a more general way in order to give a meaning
to Egs. (6-10). One possibility is to introduce first
the toroidal coordinate Of such that E%-Y?@% >0
throughout (if the field lines do not travel around the
torus, we put Qvet =0 ), and then t0 construct
the poloidal coordinate @P such that V\J(veva @r)
= | . Each pressure surface is now automatically
mapped onto a unit square in the (@P/ Qt) plane.
We note that there may be discontinuities of Y J |,
and hence also of €9P , but that this does not in-

validate our statements.

Equations (6-9) now have an invariant meaning in
arbitrary topologies. At a disconnected surface they

yield the sums, over its various parts, of the fluxes and

/
currents in each part. Accordingly, the global surface
quantity{ﬁ& defined by Eq. (10) cannot, in general, be

interpreted as a rotation number any more.A rotation



number can be assigned only to field lines or, in
other words, to one part of a disconnected pressure
surface (it is defined relative to a magnetic axis),
and hence is not a global surface quantity. Neverthe-

] ]
less, we still refer to /A_ as the rotation number.
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3. Formulation of the asymptotic boundary value problem

Starting from the usual cylindrical coordinates (’T", \.‘0’2)7

we introduce orthogonal toroidal coordinates (g,"’a, c )

by

Estell; sp=2, T= R, (11)

where R is a given length. Thus, % and ’Y( are
Cartesian coordinates in the poloidal planes § = const,
and g measures the length along the toroidal circle

with radius R . The metric tensor is given by

(12)
(45 =G di dlo = (LY +(dpY+ (11 F/RY(AT)]

where the summation convention is used with all indices

running over (g,’V& ,Z; )

s

A
If the magnetic field is represented as [R = ,..e_,&/

where €:= B?_j/d& = %,{hvpl is a covariant

basis vector, Egs. (1) become
(13)

Prx +Bp2[(%plg BG)/,;“(%;Q Be)k]‘-"o) (\/@ Bfi)/i:())

where %: p‘.@t(%,\ﬂz\ » and a subscript ,r denotes
the derivative with respect to A . To exploit the
Cartesian nature cf the poloidal coordinates we split

?

vectors into their poloidal and toroidal parts, thus

writing ,.B., = ,B;L‘I' Bzgz ) and V= V'L-{— §§ B/B-S



Our equations then are

Vip+3 B ) ~(R V) B*
+B¥ - BtV 1+ ¥/RY* B3] =0

(14)

(P*%)EJP)@— ,BHL-VL(H E/Rﬁé B% = 6, s

v{(l-rE./R)B,LJr/l*} g/R)Bg/g .—:@) (16)
ird
where /B:L/-S :BEE §§ ?B/,\,dgnz (i.e. the po-

loidal basis vectors are treated as constants).

We wish to impose the boundary condition ’Z}-E% =0
at the boundary of a domain which we define as follows:
Let [D be a simply connected domain in the (E, d )
plane which includes the origin. The domain /g, /V(’ \ € D',
O <= ?; < 29 FE_ is then an axially symmetric toroid.
We perturb this toroid by applying a corrugation, i.e.
by shifting its boundary in the normal direction by a
distance CL which depends on the position at the un-
perturbed boundary. We assume that this corrugation
is periodic in : with period [ (the ratio 290 R /L,

of course, must be a positive integer).
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Our domain is characterized by four lengths: the major
radius Fz , @ characteristic radius O of the poloidal
domain.,t) , the period L_ , and a characteristic mag-
nitude of the corrugation ci.. The associated three non-
-dimensional parameters are scaled by introducing a small

parameter &£ , and assuming that

L/a =00, d/L=0(e>, R/a=0(i/e3). an

The first of these assumptions means that the aspect ratio
of one period is finite, and it allows us to look for
solutions with equal scale lengths in all three spatial
directions by assuming that all three components of the
operator L_‘? are C)ft) . The second assumption implies
that the angle between the normals on the unperturbed

and the perturbed boundary is small, and it allows the
magnetic field to deviate very 1little from a purely
toroidal one, IE"LI/B-S = 0(93 . The third
assumption means that the total aspect ratio is large,
and it is made to allow the effect of toroidal curvature
to be compensated by that of the corrugation. The scaling

(17) has been termed "old Scyllac scaling".

The parameter & enters the problem through the

factor g/R = 0(_22> and through the boundary con-
dition. We look for formal solutions which are power

series in & , thus writing, for instance,

P e Z g"ﬂ. P(NO (EI WZ" § > + The boundary condition




must be expanded, too, because the corrugation, according
to our scaling, can be written as ( = & d(,)/g,%, <>
with ci(,3//L,t‘ Q)(l\ . As a result we find that the
normal component of Eé at the unperturbed boundary is
given order by order in terms of d(ﬁ\ and its deriv-
atives. In zeroth order this normal component vanishes.
In higher orders it becomes increasingly cumbersome, but
is consistent with ¢ (v Eg = Q0 , i.e. it satisfies
the compatibility condition gg 425 A @ B =0

to all orders.

As already mentioned, the problem is intrinsically
underdetermined from the boundary, and two profiles must
be prescribed in each order to specify a unique formal

solution. We shall introduce these profiles when appropriate.

4. Zeroth order

In zeroth order our equations are solved by

_ L2
Bioy=b€x, Proy=comsl—3 > e
with an arbitrary function E)(‘%,’W? D) . This is
=
the most general solution with E%(o\ = 0 . Solutions
ol
with 5(03 :(—‘ o would imply /A = O/l/g‘_?.\\, , and

discarding them corresponds tc specifyving a trivial

AN profile in zeroth order.

/
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To avoid complications, we now assume that the
function t) is positive, thus excluding field reversal.
As a consequence, t) is a global surface quantity to
lowest order. The zeroth order volume can be calculated
from the function t> unless this is a constant. Since
the surfaces are axially symmetric in this order, this
volume is proportional to the area in a poloidal cut, i.e.
G(E,m)= 2w R&(3,7) , where (5, m )= 6(b (g, »Y),
and G;(EDOB is the area of that part of the domain
in which b < P4 . This implies that o(b/io =8 ;
which is consistent with O(P/AU' <06 ) [‘_}. > G)
and dp/AU +b 6“3/0{0 = b . To compute fluxes
using Egs. (6-9), we construct the required coordinates
@P and et according to Qt = \g/lﬂ' P and
\O(G, ep>/f3 (E/ﬁr() =i . A simple calculation

then yields

OL’L{//KU = b/:?TrR ({ + O(Q\\) (19)

O(I/dLJ'*‘—-NTRo(b/AU'(I-’r Oley). (20)

The fluxes ;‘ and :} vanish in this order.

The function t) will be constrained by a solvability
condition appearing in second order, and this will leave
just enough freedom to prescribe the profile t)(k)‘>

o b (53 . Thus, our main objective will be to



determine the geometry of the lowest order pressure sur-

faces, or in other words, the function (J (3%,/1 )

or (%, 7).

Since [3 = (b,\imx-bz)/bz\iax + O(QS ) /3= Ole)
or ﬁ = O(i\, depending on whether b(u\ is

a constant or not. We are primarily interested in high FS
equilibria. But, since we also want to examine the
transition to low FB , we make no assumption about the

profile t)(LJ) at this stage.

5. First order

The first order of our equations is

qu(,\.—b/@ﬁw =

Qev/< — b BE\/% - ,BEL'VVb =y .
v,[ét\ + Brgn/‘g = 0,

where Fh(m has been eliminated in favor of the quantity

Qey = Pen b st : (22)

The boundary condition is

f;@-,@jn = bduyx (23)

in this order (we recall that d.is the corrugation of

the boundary).
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To reduce the system (21) to one single equation,
we now split each quantity into its 'g'—average (denoted
by an overbar) and its varying part (denoted by a tilde).
Thus, AX = AL + AX , and zz_=7 ® . We also introduce
an integration operator, applicable only to quantities

with vanishing average, such that the average of the

integral vanishes, and denote this by a hat. Thus, for

— A

A
AA =0 i /(/L/-S =M)and mw = 0,

The average of the system (21) is

e
t7 ‘?(J) = Cb/

(24)

- 4
£§(JB‘Y7t> - 0/
Jd =.L
Vv '5(» = Q-
Hence Eﬂ}, is an arbitrary constant, and
e
By = QXVCD) (25)

where Cb(g, ﬂf(\ is an arbitrary function satisfying

Vbx VO <o, (26)

and g; is the unit vector in the toroidal direction.
There is no restriction on (b 1:£ E; is a constant;
if b is not a constant, (b is a surface gquantity to

lowest order. The averaged boundary condition,
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’,}:{- E—-(Lm -l i ; requires that qj be constant at the
boundary. If (b is not a constant, this implies that i)
is constant at the boundary, too, so that the boundary

is a pressure surface. If (F) is a constant, no such
conclusion can be drawn. The averaged part of the toroidal

magnetic field remains undetermined in this order.

Applying the integration operator to the varying part

of the first two equations of‘;@e system (21) and intro-
7~
ducing the abbreviation Q= (q(n allows us to

express the varying part of the first order magnetic field

in terms of (Q :

B4 -Lva,, B = L (@ g~ Vb VR e

The varying part of the third equation is then equivalent

to

b(él@Jr@/g;)—sz-V@ =0, (28)

and the boundary condition (23) is equivalent to

_L lad
-V @ = b%d ¢y . (29) .

The problem (28-29), being a Neumann problem, has a
solution which is unique within an added constant. This
constant can be determined by applying the constraint

—

Q=0 (which is compatible with the boundary
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condition), but this is unnecessary because the constant
does not contribute to the magnetic field or the pressure.
It should be stressed that the Neumann problem, having
coefficients which do not depend on C , Separates when
Fourier-decomposed. Therefore, it is in fact a problem in

two dimensions.

Collecting results, we now state that, given the sur-
face quantities E) and (p ;, the first order fields and
pressure can be calculated from the solution (Q_ of the

Neumann problem according to

,@‘(L,): ngCb "F‘lgvi@/;

(I

Béy = T+ Qs = 5 Vb-VA), Y

Py=-bT 1 —}g VB V& + comgl

where _T- is an arbitrary function of ‘E and 4? :

In the following we assume that Cp is a global surface
quantity, thus ignoring possible ramifications in complex
topologies. The poloidal magnetic flux and the toroidal

current are then given in terms of the profile Cb (kT)

A%/AU:EzﬁRdCE/Au/HO(Cﬂ, (31)

0(3/0(0 DﬁgrR AU(K icb)(l‘k O(U) (32)
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These relations show that /(,\ = @((/QB if

Cp is not a constant, but it is otherwise smaller, and that
:]'=-o implies constant (b . Therefore, we shall refer

to equilibria with /ﬁk‘:()('\ (or smaller) as
"stellarators". This is consistent with the usual definition
of a stellarator as an equilibrium with :Efz 4 (the
rotational transform is provided by external currents

rather than by the plasma current).

It will turn out that the constraint appearing in
second order allows us to prescribe not only the profile

t){ky\ ; but also the profile (b/kr\ . Therefore,
four different scalings of profiles are possible within

the present theory (viz. (3 =00 or ﬁ) = 0(13)
and /c& = O(l\ or /b\ =00 /S\ ) depending on
whether t) is a constant or not, and on whether (t) is a

constant or not.

6. Second order

The second order of our equations is
14 L s
V C{u)-‘bﬁm/g = A 3
i L 3
q(z)/-g - b B(?.)/'S —,@(2>'VB = A )

(33)

ra 3
\7‘ ,_B_(13 At B(z)/‘g = O)
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bR
where QI23 = {5(231“ (2> , and the inhomogeneous

A= =L VHBGIT+ (BH VOB
~20bVIB3/A + Bé(Bays ~V'BA), Y
AS == 3 B + B VRS,

where o :-CL//S:!FR_ is the leading order of the in-
verse aspect ratio. Since we merely wish to determine
under what conditions the system (33) has solutions rather
than actually solving it, the second order boundary con-
dition is not explicitly needed. The homogeneous system
corresponding to our system (33) is identical with the
system (21) which we have already discussed. Thus, its
varying part has only the trivial solution, and it suffices

to consider the averaged part of the inhomogeneous system:

(35)

i —

B Vb = — A’s (36)
=it

V-Bi»y =0. (37)

The unknowns q'(?? and B(2> are decoupled in these
Fas

equations. Equation (35) has a solution a, only if
(2D

= )ZK:E . (38)

—

A,A(
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This condition is also sufficient because the domain [)
is simply connected; otherwise there would be additional
periodicity conditions. When expressed in terms of the
guantities t> ,(qD , and CQ_, the condition (38) takes

the form

K7k)_x Y? F =:CD/

(39)

I
F= %AC@ T 2“‘“(;? S | V405" Giss -

The first, second, and third terms in Eqg. (39) are due
to the rotational transform, toroidal curvature, and corru-
gation, respectively. If the corrugation vanishes, the last
term is zero, and we are left with a large aspect ratio
version of the equilibrium equation in axial symmetry. In
the limit of infinite aspect ratio (X-—30) the second term
is zero, too, and Eq.(39) reduces to the equilibrium con-

dition in plane symmetry.

To discuss the remaining Egs. (36-37), we integrate

Eq. (37) to obtain
—1
By = exVGE (40)

with an arbitrary function 6(%, ﬂz} . Equation (36)
is now an equation for G} . If we use Egs. (30) and (34)
to express the inhomogeneity /Q;S in terms of first order

guantities, this equation takes the form

Vb xVG + VG xVT=o0. (41)
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IE t> is not a constant, there are solutions (5 for
arbitrary functions—T‘ . However, it can be shown that

the averaged part of the appropriate second order boundary
condition then requires that-T_ be constant at the boundary
unless (r) is a constant (this is analogous to the first
order result that tb is constant at the boundary). Never-
theless, as far as the lowest order pressure surfaces are
concerned, Eg. (39) is the only constraint if f% = C)(').
The problem then consists in determining these surfaces

SO that the solution C;‘ of the Neumann problem (28-29)
satisfies the constraint (39). As already mentioned, we shall
show that this is possible with any two arbitrarily pres-
cribed profiles b(t_‘}') and (\D(U’\ & il b is a constant

( Fg = C)(s,) ), the constraint (39) reduces to

Vo "VA@:O’ (42)

leaving only one profile to be prescribed (e.g. éﬁx(b

as a function of (b ) . However, Eq. (41)ﬁ§§%}£ﬂ
= 43)
VO VT o, (

thus being a genuine constraint upon the function —r_unless
@ is a constant. In the latter case((g = O(S),/M T—O(O)
one has to proceed to higher orders in order to determine

pressure surfaces.




We have no doubt that the expansion in powers of &
can be carried to arbitrary orders although this has not
yet been demonstrated. We conjecture that, given two
profiles in each order, the n-th order of our equations
determines up to the (n-1)-th order all quantities ex-
cept for the averaged toroidal field. The latter plays
an extraordinary role in that it is also determined up to
the (n-1)-th order if [3 = QAleD , but only up to
the (n-2)-th order if ﬁS =00 ; in both cases this

is the (n-2)-th nontrivial order.

7. Low beta

We have seen that the lowest order theory depends on
whether (Z = O(f\ or (£ =0 ) o

In particular, the lowest order pressure surfaces are the
level surfaces of b if (g =000 , but those of [
I {3 = O(QB . At first glance, these two sets of
surfaces seem unrelated because there is no constraint
on_l_ if @ = O(f\ ;, while b is constant if

FS = (}(é?) . However, the pressure surfaces are also
the level surfaces of CD in both cases, and since the
constraint on (I) is universally valid, there is a smooth
transition from one case to the other. In other words,

first assuming that Gg :'(B(I) ) and then expanding the
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result in powers of (_‘:‘, yields, to leading order, the same
pressure surfaces as assuming (& = O(E‘,\ . Hence it

suffices to consider the scaling (3> = O(Q\ .

The various lowest order quantities are then constructed
as follows: First choose a function Cb (Eﬁ'“(3 which is
constant at the boundary and whose level surfaces coincide
with those of 4ﬁ;(b . Again ignoring possible generali-
zations in complex topologies, we may determine such a

function by solving

AQ = @(@\ (44)

with a given function P»(which, incidentally, equals the
toroidal current density). Given (p , the first order
pressure F>0) may be arbitrarily assigned to each surface
of constant (p (1f P==O , Cp is constant, and one
must proceed to higher orders to determine the pressure
surfaces). Finally, the first order magnetic field is
given by
Boo= exVQ ++V Qs -
45

BE» = -T'g(- Py + @/g; ) + cons‘t)

where (Q_ is found from the Neumann problem (28-29).

It seems noteworthy that the lowest order pressure
surfaces are independent of the corrugation in this

low FZ scaling; the latter enters only the first order
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magnetic field (viz. through the boundary condition

on Gl ). The low (g scaling is also distinguished by the
fact that the toroidal curvature (viz. the parameter o )
does not enter the lowest order calculation at all. This
reflects the fact that for Fg = 0(eY we could have
assumed R/a = O(I/QB rather than ’?/Ox = O(I/QE)/
while for (3 = C)(l) this would have implied that t>

is a function of ‘g only, thus necessitating a high current
boundary layer. With the scaling R/Ot = O(l/ﬂ) we
would have obtained a large aspect version of the well-
known equilibrium equation in axial symmetry instead of

Eq. (44), which is the corresponding equation in plane

symmetry.

8. High beta

We now turn to the general case of nonconstant profiles
b(U‘\ and @(Uv , or in other words, (3 = O(I)

and /(A = O( t/e) . Again ignoring possible rami-
fications, we assume that any surface quantities are global.
The constraint (39) is then written as F = < F:>}

where the average (as defined by Eg. (2)) is over the
surfaces of constant f) . Using Egq. (4), we write this

constraint as
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A=+ (kK40 ﬁ—%(H-—(H?))

Ao

(46)

| e
H :—g-g ’vi®/3|2‘+ @/2‘3‘5 . 20(0%-5

With the boundary condition (t) = const Eq. (46) consti-
tutes a Dirichlet problem in two dimensions, provided the
right~hand side is given. This problem is coupled with

the Neumann problem (28-29).

We now describe an iteration scheme which indicates
that there is a solution k)(‘gfdl) once the profiles
b(u—) and @((_ﬂ are specified. Clearly, both D
and (b must be monotonic in U ; t) is increasing by
definition, and (t) must be monotonic because we have
divided by d@/db . The iteration proceeds in this
way: Starting with some function Lr(?;}f?‘) which
satisfies jgd?S/IVUl = | at each of its level
surfaces and which is constant at the boundary, we
construct the function k>(§,/%\ according to

b(g,2)=bl(U(F,n)) . With this function

we solve the Neumann problem to obtain a function

@(‘g, ”/(, Z) . Knowing the functions (J , lg , and

GQ ; Wwe can compute the right-hand side of Egqg. (46) as a

function of g and  thus being able to compute a
solution @(g, ﬂz) of the Dirichlet problem. A new
function kr(“§,4% ) is then constructed as the volume

of the surfaces (p = const (in the same way as we hkawe
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constructed the volume of the pressure surfaces in Sec.2).
The lowest order problem is solved if this iteration con-
verges. Since elliptic operators have smoothing properties,
we are confident that it does converge although we have

not proven this.

Clearly, the above iteration is appropriate only if
the profiles b({\) and (b(LT) are given, and differ-
ent schemes have to be used if different pieces of in-
formation are given. In general, any three surface quanti-
ties may be prescribed as functions of each other, and
which surface quantities one chooses depends on the

application.

9. The high beta stellarator case

It /uL= o (1), (P is a constant, and the preceding iter-
ation scheme breaks down. Instead we must couple the Neu-
mann problem (28-29) to the constraint H = <H> . Given
the profile b(\U ), the following iteration is now
appropriate: Starting from some function Lr(€}41\>,

we again construct k)(i,ﬂf\ and then solve the Neu-
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mann problem to obtain a function CQ . From b and (i
we can compute Fi(?,ﬂt\) according to Eg. (39). The

level surfaces of [H determine a new function QI(E}A{>-

In contrast to the case /A& = C}(I/’E\ , there is
now no boundary condition which guarantees that the bound-
ary is a pressure surface to lowest order and there is no
freedom to impose such a condition. If the corrugation
vanishes, for instance, (2_ is zero, and Egq. (39) implies
that the lowest order pressure surfaces are the cylindrical
surfaces of constant 'g . However, if/ﬁ« is not zero in
all orders, there will be boundary conditions on the
pressure in higher orders, requiring a boundary layer un-
less the present lowest order pressure surfaces do not
intersect the unperturbed boundary. Since a boundary layer
is undesirable both theoretically and experimentally, one
would like to specify the corrugation so that the
boundary is a pressure surface in leading order. This
should be possible, but has the disadvantage that the re-
quired corrugation depends on the pressure profile, so that
an arbitrarily small deviation of this profile from the

assumed one again causes a boundary layer.

This difficulty can be overcome by assuming that the
high {3 plasma is surrounded by a low fg region. This is

consistent with the actual setup in high beta stellarator
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experiments. Accordingly, we specify a profile k)(L7>
which increases in some interval QO < O =< Uo,

but remains constant for ((J > Ts . If a corrugation
is then specified so that the high f3> plasma

is well separated from the wall in the solution

this solution should be sufficiently insensitive to changes

of data.

Let us finally comment on the stability of these
equilibria. A fully relevant investigation of this problem
must include a normal mode analysis. Needless to say,
lacking even a general equilibrium theory in the past,
such an analysis has not yet been carried out. However,
there are two approaches to the stability problem which,
although of limited relevance, give some indication of
what is to be expected. Firstly, a great deal of informat-
ion has been obtained14 within the sharp boundary model,
i.e. in the limit of a step function t>(kr) . However,
all unstable modes except for the ones with no radial modes
are lost in this limit, and it is not clear if a theory
of these remaining modes is representative of the general

19-22 have been evaluated23

case. Secondly, stability criteria
at the magnetic axis of general confined equilibria
(i.e. at a magnetic field line at which the pressure has
a local maximum). Since the stability problem is global,

it cannot be fully solved by such a local analysis; in

particular, growth rates cannot be obtained or even
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estimated in this way. Both approaches indicate that the
present high beta stellarator equilibria are unstable,
but that the present high beta equilibria with large

rotation numker contain stable ones.

On the other hand, the expansions about a magnetic
axis also indicate that stable asymptotic high beta
stellarator equilibria can be constructed if one perturbs
a helically symmetric domain (rather than an axially
symmetric one) by introducing toroidal curvature and
appropriate corrugations. The asymptotic determination of
such equilibria24, though more involved than the present

calculation, follows the same lines.
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