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Abstract

Magnetic field lines near a given closed field line which is
taken as a magnetic axis are calculated analytically. Existence
properties are obtained for equilibria whose rotational trans-—
form on a magnetic axis is an integer multiple of %-. The results
are applied to a Tokamak with a perturbation of the main field,
the 1 = 2 stellarator, the stability properties of equilibria
with vanishing rotational transform, and the scaling of the

equilibrium R-value in configurations without net longitudinal

current and with small rotational transform.




1. Introduction

We consider a closed field line occurring in a toroidal magneto-
hydrostatic equilibrium which is a magnetic axis of the configuration,
i.e. which is surrounded by a nested set of toroidal magnetic
surfaces. This situation may not only occur at the centre of a
toroidal equilibrium but also through islation [ 1] near a rational
surface of an equilibrium. In the neighbourhood of such a field
line the field line structure may be calculated analytically with
the help of the expansion of an equilibrium around a magnetic axis
]:2,3:]. If the rotational transform is rational on the magnetic
axis, 1 = m/n, there exist integral side conditions on the equili-
brium quantities. These conditions are obtained from the evaluation
of the integral

dl
1=§%
(1 is the arc length along a field line, B is the strength of the
field; the integral extends over a closed field line) in the neigh-
bourhood of the magnetic axis by means of the field line equation.
Up to the order of the expansion around the magnetic axis which is
considered here, the shear of the equilibrium does not enter and
two types of integral side conditions on thg equilibrium
quantities are found. The first type, which is obtained if the
rotational transform on axis is integer, follows from the condition
that q be stationary on the magnetic axis. The occurrence of these

conditions has been discussed before [ 2,4 |. The second type is

- ; 5 i = . . 1
obtained if the rotational transform on axis is an integer multiple of R




These conditions are obtained from the requirement that q be
constant on magnetic surfaces to 0(V), where V is the volume

inside the magnetic surfaces surrounding the magnetic axis.
2, Field line equation and formal expression for gq

In order to obtain our results, we have to make full use of
the equilibrium calculation of a three-dimensional toroidal
MHD configuration near a magnetic axis, as was described in,
for example, [ 3. Since this formalism requires a great
deal of notation, we give details in the Appendix and present

here only as much as is necessary to describe the results.

Introducing the coordinate system p, ¢, 1 linked to the
magnetic axis with curvature k and torsion T
de? = dp? + p2a¢? - 2vpldpd1 + Ca - kpcosd)? + szz:]dlz
Vg = p(1 - kpcoss),
and describing the contravariant component gt of B by
1 2 3
B =c (1) + ¢ (4,1) 0 + c,(4,1) p” + 0(p7) ,
the volume V inside a magnetic surface by -

V= V2(¢.1)02 + V3(¢.1)93 + 0(04),

and a field line labelled with the constant y by



1
o = $(V,0,1) = §_(1,1) *+ ¢, (h,1) V2 + O(V),

we obtain the following expansion for q:
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fdl B [ a1 ) 2
B B
where
q, = [ dl/c0
-1272
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and the superscript® indicates that the function of ¢ considered
has to be taken at ¢O, e.g. 32 =c, (¢0,1). To lowest order the
field line is given by the well-known expression [2]

¢O=—a+arctan[e tan ¥ ] . (3)




Here, e is the half-axis ratio of the elliptical (in second order
in the distance from the magnetic axis) plasma cross-section, a
(for e > 1) is the angle between the binormal of the magnetic axis

and the major half-axis, and

¥y o=y + Ko(l) .
The function Ko is given by

1

e +

(‘i— + 2t + 22") ,
o]

K' =
0", 1
e
where the prime indicates the derivative with respect to 1 and j
is related to the

is the current density on the magnetic axis. K0

rotational transform on axis 1 by

2m = KO(L) - KO(O) - o(L) + a(0) - 2mm, (4)
where a(L) — a(0) = nm and n is the number of half-turns of the
elliptical cross—section and m the number of full turns of the
normal over the length L of the magnetic axis. Using

V,=7mcq (e cos” u+ l-sinz u)

2 oo e d
where u = ¢ + «, one obtains from the Fourier decomposition of
eq. (1) with respect to ¥ the conditions for stationary q:
. e R 1
2 2 2 2 . :
—2(ﬂq0) f kK cg (e coso cosK0 + e sina 31nK0) dl =0, (5)
-1 301 -1
7 2 2 . 2 .
2(ﬂqo) f K e (e sino cosKO e cosa 51nK0)d1 = 0, (6)

which, in their general form

although not correctly written out,



were obtained in ]:4 j .

In the next order the field line is given by

1
_ 2 2 . 2 -1 2
¢1 = [cos ¥ + e sin ‘i’] ('ﬁcoqoe)

« {- ex(cosasiny —e sina cosY¥)

(7
* 51% [(12e§c - 3¢%s)sin? - (125S - 3eb)cos¥ + e’8sin3¥ + eAcos3¥ ]},
where §c and §s are the shifts with respect to the magnetic axis and

§ and A the triangularities of the third-order flux surfaces, which

are described by V3:

V3 = V31C cos u + V3ls sin u + V330 cos3 u + V335 sin3 u
v crlt e q [Be+D)§ -6]]
3le o0 e c ?
2_-1 1 3 .= 7
V3IS =L Coqo [ (e & ;5055 - A-J !
2_-1 1 .
V33C =7 L cd, [ (e ED Sc + 6 ] ,
v -t leq [d-1p5 -8]
33s oo e e3 s

By means of these relations and

_l' __l_ 1 2 2
E 2t > Ko(e 4 e) + o ] b0 + 3c0 k” cos ¢

cy =
-c 12 - l(b +c"™ - pV./c
o 4 0,01 o PY5iCy »
where
b =g [‘]'K'(E+l)‘°"] ""I‘CK'(E‘-I—) c082u+lc e’ sin2u
o o-2o e 2 oo e 2 oe 2




a tedious calculation starting from eq. (2) yields
q, = [ dl (q20 + dg, cos2¥ + 49 sin2¥)
with

1
9, "-—"—"'W{IZK

g 8Tqg ¢ e
qo o

2 2 2~,2 2 2
c e L_(e +1)cos a-e :

2 2 2 2 2 2 2
+ (e2 - 1) [4K(‘)2c02e2— 4(T+a')2c0 e - BC‘; e” - e c, ]+ l;cc')e'coe(e +1)
-] .2 2 = - 5 -
+ 16L me ek [ (-ZSC + ed) cosa + (2 Ss - eld) 51na.J ¥ (8)

s ]. 2 2 . = 1 za ] 1
q25 = _———_3 Pl { 6e COK s1nd cosa ZTCOE e 20, coee
2Hq0c0 e

| P 2 - (R7d] 2_ - | o 7= .
+ Koe co(e +1) 2ec0Ko(e 1) - 8L me K (Ss cosa + e SC sina )} (9

Thus

[}
(=

f dl (q2c cos? KO * Q5 sin2 KO) (10)

]
o

f dl (q,, cos2 K - g, sin2 Ko) (n

are obtained as conditions that q be a function of volume alone to
o(Vv).

The quantity 49 is given by



Ay, = — 7 3 acke Be® [(e2 - 1)cosza—ez:]

o
8mq ¢ e
qo o

+

(e2+1)[:&Ké2c02e2 + 4(T+u')2c02e2 + 3c;2e2 + e'2c02]

|

L 2_ _ 2 ds 1
bco e coe(e 1) l6c0 e KO(T+a ) (12)

16L-1ﬂ002e2K C 4(§ccosa *+ §ssina) - e (Asina + Scosa)]} + —23 .
&
o

+

so that one obtains on the magnetic axis

/ q20d1
g

Qoo -

o

which is identical with the expression for = &/ dgiven in [ 3].
Considering eqs. (5,6) and eqs. (10,11) together with eq. (4), we
see that eqs. (5,6) and eqs. (10,11) yield nontrivial conditions
only for integer values of 1 and values of 1 which are integer

multiples of % , respectively.

3. Applications

a) Tokamak with toroidal field divertor
As an illustration we consider one of the simplest situations in
which eqs. (5,6) show that an equilibrium does not exist. An
1 1

axially symmetric equilibrium is characterized by t=q' =e' =«x' =0,

Let us now assume 1 = | ( so that Ko = 1/R, where R is the major




b)

c)

radius) and a perturbation of the main magnetic field so that
c,' £ 0 (e.g. by a toroidal field divertor). An equilibrium
of this type does not exist, as is seen from eqs. (5,6) if <,
contains the perturbation with the longest periodicity length
compatible with the periodicity condition ( ~ cosl/R). The
equilibrium adjusts itself in such a way that at least one of
the quantities x and e varies.

The 1 = 2 stellarator

The simplest case of an 1 = 2 stellarator is described by

' '

T=e =g mc'= 0, and a' = n/(2 R), where n is the number

of field periods and R the major radius. One then has
I3 2
K =at+tliz=a (1 + El) ,

so that eqs. (5,6) give nontrivial conditions only for 1= O,
1=-n and eqs. (10,11) only for 1+ = 0, 1 == n, 1=- % because

SC, § v cosa, Ss’ A~ sina (see, for example, E 5:]). Since

(e-1)>

(e2+1)

[ om -
2
for j = 0, there are no conditions in the case of vanishing
longitudinal current.
Stability of 1 = O equilibria near the 6 - pinch
The stability of equilibria with vanishing rotational transform,
a plane magnetic axis (1 = 0), reflexional symmetry, and

c ' =a' =3 =0 was investigated in [:6].There, it was found

that the side condition obtained from eq. (10)

f q,.dl = 0



imposed a severe restriction on stable equilibria of this type.
Here, we consider general equilibria with vanishing rotational
transform which are near an equilibrium with unidirectional
field and show that they are unstable for p <0. We describe

the neighbourhood of an (elliptical) 6-pinch by

MY
e=¢e + e,
(o]
c. = I * . 4
n
TR BT
o}
o = +a : T +a'=0,
(o] (o] (o]
.
j=3 s K,' =K',
v
K =K ,
- V] -
S=5 ,5 =8,5=2%, =%,
c c S S

where the quantities with tilde are of first order. By means
of the equilibrium formulae given in the Appendix the following

identity may be proved:

[qzo(e02+ 1) dl = f[:qZO(e02+ 1) + qZC(eoz— 1) ] dl

2
( _ e +1
- -—1—3-J{4e W s 2e 2 [(e M ® - 45— FrNe)
8“qoeo g +1
(e =
s @rinte ? ] s 38 et 2 e B
e
o]
+ Aﬁf(kl — k22) dl + {:(e02+1) fd—li ,

c
o




where ﬁ] and ?EZ are given by

R
]
=

cosa
(o]

N
K

]
=

. Y]
sina J kvdl =0, v =1,2,

Combination of this equation with the necessary stability
criterion (see, for example, [:2,6:]) yields the result (for

details, see Appendix)

g
0L 2
( f =4z )
fq. dl g 2
: 2 . 2 ~ v
'P(EOZH){--~—0----+pq0 L[.ﬁ@._fdc_ X 11 (13)
9 |vv| g,
S == 5 dr
|vy|
. n e +1
o J{Ae B2 5 26 * [ (e %1y (01— 2 @ ¥ Ty 7
o o =-‘o 4 o
8rq o e +1
2 2
2 (e "=1)
+ (t+a'") g B ] b3 g ezti-Pr;'2 o } dl
o] 4 o) o
e +1
o
2
= B [ eocos4w8(ft22d1 - IEIZdl)

e cosz2ﬂe + i sin2 216
o e

- (e02+1) sindme sk, Kya1]

which, for p <0, can be made negative by appropriately choosing 6.
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4, Conclusion

In this paper we have considered the analytic field line integration
in the neighbourhood of a magnetic axis and the existence properties
which we obtained for rational values of the rotational transform on

this magnetic axis. Several remarks appear appropriate.

The expansion has only been carried to third order in the distance
from the magnetic axis. As a consequence existence conditions occur
only for values of the rotational transform which are integer

multipler of %. It is clear that an arbitrary rational value of 1

on axis will lead to integral side conditions on equilibrium quantities

if the expansion is carried to sufficiently high order. Considering
the expansion as asymptotic, we conclude that one has to satisfy
existence conditions for small values of m, n, where 1 = m/n, if one
wants to avoid drastic changes in equilibrium properties if one

passes these values of 1.

Another remark concerns the relation between the existence properties
found and the current demsity parallel to the magnetic field. Writing

the current density as

§=(+vap)/32+h'ﬁ s

one obtains the following relation (see, for example, E 7]) between
the variation of q on a rational magnetic surface and the increase of

h along the lines of force
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Thus, we may conclude, for example, that a singularity appears in
O(pz) in the parallel current density if eqs. (10), (11) are not

satisfied.

Finally, we may add a piece of speculation concerning the scaling

of the equilibrium B-value in configurations without net longitu-
dinal current obtainable for small values of the rotational transform
depending on whether eqs. (5,6) and eqs. (10,11) are satisfied

or not. For small values of the rotational transform one has

-ﬁ/Bz v

|

P39
c_ Ay

[o}

Substituting 1/L for the left-hand side (which means that the parallel
current density is allowed to have a value equivalent to that which
generates the same amount of rotational transform in a configuration
with longitudinal current, i.e. a Tokamak - like configuration), we
obtain

L 12

Bv —m————
2 3q
coA oy

where A is the aspect ratio. In the case of the simplest 1 = 2

stellarator (see,for example, [ 5:]one has
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so that B v 12/A 5

as is well known [ 2,8:]. If eqs. (5,6) are satisfied, it follows that

aj. n V:\_,_._I:'...._.
q ’
oy 2 & A2
o
so that
B~ 12 .

Finally, if eqs. (10,11) are satisfied, one may expect

B 12A "

The above scalings have, however, to be substantiated by
configurational studies analogous to that performed for the

1 = 2 stellarator [5] .
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Appendix

Here, we go as much into the details of the equilibrium calculation
(see, for example, [ 3])&5 is necessary to obtain the field line
equations (3) and (7) and the stability result in eq. (13). We denote

4 -+
the contravariant components of B by

B° = ap + a, pz + 0(03) ’

B? = b+ b1 p o+ 0(02) >

B1 = ¢ +c¢c,p +c 92 + 0(03)-
o] 1 g

and a field line labelled with the constant y by

1
6= 0, 1) + 6, W,1) V2 + 0(V),

Employing the differential equation of the field line

$
d¢ B
ae 2 (A1)
]
dl B1
we obtain to lowest order
o
3¢ b
o o}
— =— , (A2)
al ¥ co

where the superscript © indicates that bo(¢, 1) has to be taken at
¢ Using the equilibrium relation
o l 1

= 2w l - ! l_ 1 - l_ l_ e _-
bo SR L_2 Ko(e + e) o ] + > coKo(e e) cos2u + 5 S sin2u ,
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one can easily verify that eq. (A2) is solved by

¢, = = o + arcten (e tan ¥) , (A3)

where Yy =9 + Ko . (A4)

Equation (A3) entails the following relations:
1 1

0 2o 1 .20 2 2
cosu[:e cos u + = sin u] = e cosY ,

o 1
sin Q Ee c032 a +-1— si'n2 3] 2 - e2 sin¥ ,
= (A5)
o
1 i (2 -1
V2='rrcoqo [Zcos‘}'+es1n\1’] 5
0 0 o
ST T B R T R
Es ; al " e, s al i 3
2 2
We further note the following relations which are valid for any
function £(¢_ 1):
Oy
o
al a‘ +bo 3 ? "ol a'
31 [v 31 | ¢, e, ¥ 1y " ]y o W 1y
v
o 2 (46)
2 3 I % B l V2 2
— — EH e —— — — ’
3¢0 1 a9l v o ol " <, 3450 1
)

where the second identy follows from eq. (AS5).
1
To order O(VZ) eq. (Al) yields

1
2

) o -
¢ b A o o}
s ) (P . 2 -
31 'y ¢, oy ¥ <, (bl L8 Kcosrbo) .




where the equilibrium relation

c, = 2KC0 cos¢

has been used. Introducing

3 (A7)

and employing eq. (A5), or we obtain

3" .y
1
ol 1y

(0] e}

3
2 (b] - 2b0 K cos¢o) . (A8)

2

We now use the following equilibrium relations (see, for

example, [: 3 :| )

' =
Zal + bo,¢ + ¢, o , (A9)
-_ 1 - 1 =
3a2 + b],¢ 3alK cos¢ + bOK sing K cosd b0'¢ + (COK) cosé 0, (AlOQ)
2&1 V2 + bDV2’¢ + covz,l =0, (A11)
3 v, + = Al2
2) Va* by o+ eVy g *+ 220y + by V) 4 e V) =0 (A12)

The following relation is obtained from eqs. (A5,6,9) for any

function £(¢ ) and any m:
0,1

o o
2 = (A13)
51 . V2 f <, V2 (co f,1 + b0 f,¢o + malf) ‘

We now use eqs. (A10,12) to eliminate a,. Using eq. (Al3), we may
2

write the resulting equation in the following form:
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3 3
8 2 -§ 8 - 2.3
—%O L v, (bl - 2bo K cos¢0)] =cV, 3T : L v, (E Va=Vyx cosqbo) :]f

Considering this equation together with eqs. (A6,8), we obtain

=
2

o) 30 o
=c V (7 V3 - V2 K cos¢0)

o 2

and, together with eq. (A6),

=
2

-1 0 8 £
. (-nqo) V2 (E V3 - V2|< coscpo).

1

Employing the identities

3 3

cosq |:e c0528 + % sinzgj % %e 2 [(3+e2) cosY + (l—ez) cos3‘{’:| 4
-3 -1

sind [ e cos?d + ?Ia- sinzg] 2 - -l— e ? C (3e2+1)sin‘l’ + (I-ez) sin3¥ | ,
- D w2

cos38|: e cosza + % sinzs:] 2 = % e 2 [:3(l—e2)cos‘l’ + (I+3e2)c053‘¥] n
-3 -1

sin38|:e cos?d + 1]; sinzgj 2 . %e 2 [3(1—e2)sin‘l’ + (3+e2) sin3v ] ,

which follow from eq. (A5) and the notation used in [3] which describes

V3

V3 = V31c cos u + VBIS sin u + V33c cos3 u + V335 sin3 u,
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2.1 l, =
V33c = 1L o, [ (e -;) Sc + 8§ ] y

2 -1 o1 =
Vage =™ L cga, LG ;3) 55 0]

we obtain

3 1
I
oyl

(nq e) <, . {- e k (cosacos¥Y + e sinasin¥)

-+

é% C (Aegc-ezﬁ) cosY + (hgs—eﬂ) sint + e2§ cos3¥ - eAsin3y | }

The final result, eq. (7), is then obtained with eq. (A7).

We now turn to the derivation of eq. (13). The equilibrium equations

relating §C, §S, §, and A are

i % & = s beas oL 8. e st o

e e)L 2(co *e ) Sc ¥ Sc t e KoSs:l+ 2 (Co e 48 = EKo 8 Rl ’

(3 4—1)[—1___.cc"+2£') § +§ — K‘ S ] - zl—— .l_(f.:l E)A+ﬂ]+EK6 = R
T 2 co 2 e s € c o N cy e

=
i

L€ {2sina '[-—K") + @' (3e = %) + 4re |

1 8m
1]
Cc 1 1]
2 2 2 2. 16 =

toosa [2 (e =D + 5 (e+D - Ge+ D]+ 3 by s
o o

.2 Le AT

R2 = { 2cosa [Ko +a' (2e e) A'rle]
! 1
. 1 1 d -

rsina [ 2 @-20 + B es D+ e DI F byt

o

(o)

2
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L

oW

by = % prq_ ¢ g~ (b; cosa - b sina),

jw
1
|

3 .
b"S 5 P14, ¢© e (br cosa + b151na),

and b = b+ ib. satisfies
r i

1 1

b' + i(K; -a")b = - exp(ia)co k (e & cosa - 1 e2 sina ).

rojw

Linearizing the above equations according to Sec. 3c) and introducing

ne

cosa = k; s

Y = Y
k =K +k,[kd1=0,u=l,2,
v v \Y)

RS

sinuo =%k! ,

we obtain
1

1
o 7. .2
b= exp(lao) (eo k] ie k

2)

2 E = L L. _L, " 2 - 2
(eo +3) 'gc eorg lm[kl (eo + 2) dp'nqoeokl:] §

2 v 3'\-"_ ZL n 2 - .
(3eo +1) gs e, A = e m [:kz (2eo +1) 4 pﬂqoeokz:

The last two equations show that E] = Ez- 0.
In order to evaluate the necessary criterion (see, for example,
EZ:], [ 6]) on has to evaluate metrical quantities of the Hamada

coordinate system whose metrical coefficients are given by the

following expressions:
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]

z22) s0 WY,
3

3

4]
]

=1
(AwqocoV) (N2 + 4co

-1 3,2 2
i 0 (v
gee (qoco) ZHTV (Nl + ACD Z] ) + ( )!
|
2 2 2
SCC = 9 S + 0(V™),
1
6. = Fued " i, =k 28 2.3 =00
vo o0 3 o 172 ’
L -1
i 2 2 o
B = 9o (rV) ey Ly + 0(VT),
i
= 4(mq V)2 c . Z + 0(V)
ge; o o 1 ’
3
v 2
g = Anqocov N] + 0(VT) ,
o
-1 2
e g T N, +0v 9, |
-2 3 2 1 _2 2
g™ = (qe) © L1+ 4c ™ (eB” +5 By ] +o00vY),
vo
=T qocoNB <
. 1
NE o 2 2 _ 1 .
E = 4q0 (nv ) co(eB]cosW - B, sin¥) ,
1
_ 2 . 1
gec = -{ﬂqov) co(e B sin¥ + = B2 cos¥) ,
where

Z1 = 3151nW + B2 cos¥ ,
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22 = B231nW - BlcosW ’

=]
L]

b_cosa + b,sina ,
1 r i

B2 = bicosa = brSLnu 5

Nl = e coszw + é-sinzw .

N, = e sinZW + l-COSZW 5
2 e
N, = (e - 10 sin¥ cosVY
3 e '
¥ =Ko+w=Ko+2n(e—1 )

Here,we need the quantities

850 €or &

lvv|2 7 Jovl? T oy ?

The leading order terms of Z
1

1 and N] are

Y] 5"\.’ -%—"\J
Z. =e k, cos2tf-e k., sin27m6 ,
1 o 2 o 1
N, =e c0322n8 + = sin22we "
1 o e
o
so that
g
J L dg = 0(v0)
|vv|

and the final result, eq. (13), is readily obtained.
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