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Abstract

A stability principle is derived and applied to simple
tokamak configurations in order to study the feedback
stabilization of unstable vertically elongated tokamak
plasmas. For practical applicability it is assumed that
the fast instabilities are slowed down by passive con-
ductors so that only slow motions have to be considered.
Numerical results are presented for a surface current
model of plasma with one conjugate pair of axisymmetric
feedback loops. Stabilization is possible, except in a
limited region of loop positions. The optimum loop posi-
tion in the region with possible stabilization is de-

termined.
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Introduction

Theory predicts that tokamaks without material limit-
ers and with vertically elongated cross-sections such as
is desirable for higher B-values exhibit dangerous axi-
symmetric instabilites [1 = 21]. Experiments performed on
tokamak-type [;2 =: 25 2i] and belt-pinch-type plasmas

[26, 28, 29 | have confirmed this prediction.

Theoretically, these instabilites may be stabilized
by a superconducting wall surrounding the plasma close
enough[:S, Tv 114 21]. Again, experimental results - ob-
tained with conductors of finite conductivity - are at
least in gqualitative agreement [24, 28-30] , provided the
time is short enough to consider the conductors as per-
fectly conducting. In large fusion devices, however, plas-
ma lifetimes would have to be much larger and, as to the su-
perconducting walls, it is not obvious that they could

be placed as close as necessary.

With conductors of finite conductivity full stabili-
zation of unstable modes is impossible [31]. However, a
reduction of growth rates may take place [12, 21]. Thus,
in large fusion devices a practicable way to suppress the
instabilities considered is to reduce the growth rates by
means of passive conductors and to control the remaining

unstable motions by feedback.



To some extent feedback control of unstable vertical
motions has already been tested in several experimental
devices. An increase in the lifetime of plasmas with vertical-

ly elongated cross-sections was observed [22, 25].

In this paper we investigate feedback stabilization
of axisymmetric modes, assuming that it is possible before-
hand to reduce the growth rates, this being necessitated by
the retarded response and the inertia of practical feed-
back systems. Feedback currents are assumed to flow in
axisymmetric loops which, as an idealization, we consider

as "infinitely" thin wires (see Fig. 1).

On these assumptions we encounter the following
questions:

Can stability be achieved at all, or are

previously stable modes driven unstable

under the effect of the feedback currents?

If stabilization is possible, how many loops are
required; how sensitive is the stabilization
to the position of loops; how strong are the

currents required, etc.?

In Section 1 a stability principle is derived. In
Section 2 it is evaluated for axisymmetric devices (sub-
section a), the case of only one pair of feedback loops

being specially considered in subsection b. Section 3

contains an analytic preparation of the numerical problem.

Numerical results are presented in Section 4.



1. General stability principle

We start with the linearized MHD equations for the

plasma displacement g (R, t), which in standard notation

[32] are

9§= F(E), (1.

F(§) = V(§-Vp +ypdw¥) +[anl @ xB] »{J;g]) (L.

where

@ - [578] .

Multiplication of eq. (1.1) by g and integration over

the plasma volume yields after partial integrations and

use of the proper boundary conditions
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and where the domains of integration are the plasma volume
(pl) , the plasma surface (S) and the region outside the

plasma (ext). We have Em = 7L-§ , where the normal

vector n on S is directed out of the plasma. 0B, is

the perturbational magnetic field outside the plasma.

With

§B, = wl A . SE = — A (1.9)

- Y
and the boundary condition

fn By = - [mxA] om S, (1.10)

v

where B, is the equilibrium vacuum field, the expression

(1.8) for Sh/ext may be integrated by parts:

2 8W

ext g
ext

= {d5%, 8,58 + (de A-O) . £1515)
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Substitution in eq. (1.4) yields

jﬁ(l(-+8h@z *’S“G +i% gd&g;LQV-XQV ) =-§-§dt (€£qﬂ"§iﬂﬂj
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where the subscript ¢ means integration over all external

conductors, p means integration over passive conductors

such as field shaping coils, copper shells, etc., and




8} = curl curl A, div A = O has been used. The sum on the
right-hand side is the contribution of the ("infinitely"

thin) feedback loops, where

(1.13)

O, = (ds-A = [dF-68B
v 1
is the change of flux through the y -th loop induced by

SEV , and J, 1is the accompanying change of current.

The stabilizing effect of the passive conductors on the

fast plasma motions is due to induced mirror currents. We

do not discuss the details of this process but assume it

to be effective and to reduce the speed of motion below

the skin speed. For slow motions on a time scale helow

the skin time, the passive conductors become less effect-
ive since with the dominance of damping the induction of
mirror currents is reduced. Alltogether it is for plasma
motions on this slow time scale that we investigate active

feedback stabilization.

The fluxes ¢P and currents J,, are connected by
(0] ) J 6
= + (1.14)
/.x. 3 L/u,v ¥y M )

where LFV are the inductances of the feedback coils,
Fal

and Qu are the fluxes due to the plasma motion. With

eq. (1.14) the second term on the right-hand side of

eq. (1.12) becomes



’
~

Z (yuq)v ":}v vV ) (1.15)

S(2,0,-73,06,) = 1
v 2

The currents jv may, in principle, be adjusted by the
ey

feedback system as arbitrary functions of the ¢#

Consistently with linear stability theory, however, we

shall assume the linear relations

9, (1) = 2 ey, B () i .
(1) %cﬂﬂ) C € (1.16)

) faid
which imply that in practice the currents 3, follow the
plasma motion without appreciable phase shift, on the slow
time scale considered. The degree of freedom necessary for
a feedback system is represented by the constants Cpy
which so far may be chosen arbitrarily. From the stability
principle to be derived below we shall obtain in a later
section inequalities for the currents jv which together

with the relations (1.17) yield restrictions for the va-

With our assumptions on the feedback mechanism and
the slowing down of plasma motions below the skin speed
we can approximately assume a quasistatic change of the

magnetic field, i.e.

A(R, t) = A(R\f(t) i (1.17)




and thus, according to egs. (L15) - (L17) the r.h.s. of
1)

eq. (1.12) vanishes

i ( K + SWP!' + SWS +

dt gdS §. By 5§v)=0.(1.18)

2~

As in the usual stability theory without feedback, this
yields the necessary and sufficient stability principle

SWP,I + W, ¥ Edssmﬁv'gﬁv > 0. (1.19)

2
2
SEU, = curl A has the induced current density &}P in
the passive conductors and the applied current dé;sity

%: E}v in the feedback loops as sources and must
satigfy the boundary condition (1.10). To get rid of the
inconvenient dependence on S}P , we shall now derive

a much simpler sufficient stability principle.

For this purpose we split

58, - I8, « 88, + 88, 1.20

)

where SB% = curl éi are solutions of the boundary wvalue

problems

1 :
) With the ansatz (1.17) all J,, would vanish for a motion

A
with Qp =0, M =1, 2,.... However, this case allows

arbitrary currents jv with still vanishing r.h.s. of

eq. (1.12) and can thus be included in the following
considerations.



curl curl A = O, [mnx A, =—§m§v) (1.21a)
curl curl A, =‘§'§i” , [nx A, T = 0, (1.21b)
curl curl A, = S}P] [nx A,] = 0, (1.21c)

the differential equations holding in the region outside the
plasma and the boundary conditions holding on the plasma
boundary S. Obviously, the stability principle (1.19)

separates according to

W, + Wy + SW} 7 0, (1.22)
where
W, = 8w, + 8w + %‘gdg t,. B 0B, , (1.23)
SW.J . _.;T gds §, B 31_51 ’ (1.24)
oW, = iai“ ¥ B-TB, . (1.25)
gh% is the energy variation in the absence of any exter-

nal conductors as employed in Refs.[:lo, 13, 17 ], SWJ is
a contribution due to the feedback currents and SWP

is due to the mirror currents in the passive conductors.
It can now be shown that SW@ is non-negative. With

(1...26)

one obtains by partial integrations, using egs. (l.2la, c),

L (dr ant*A" -2 (dv ad?A, = Sw, +2(de A% 8, . a.2m
2 T2 = P2 A
ext ext P —
According to a well-known theorem[:32], with given fixed

boundary wvalues of[g X é]the magnetic energy 1/2Sit' curlZ A
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attains its minimum for a vacuum field. Thus, since Al
and é* satisfy the same boundary condition on S, the

left-hand side of eq. (1.27) cannot be negative and

§W -1 (ds (1.28)
P zg i
P
The current density {tp ==-G (A + A+ A2) =
- G (A, + é* ) has two origins: induction from feedback

=1

" ¥

currents, and induction from the plasma motiocn, A

A,
According to our assumption that the typical times of un-
stable plasma motions are slowed down below the skin time
of the passive conductors, these will be practically absent
for the slow field variations due to feedback currents, and

we may neglect the A, contribution against the éf contri-

1
bution, which is responsible for the slow down, thus ob-

taining
Sw. » 1 g dt G’A*-A* , (1.29)
2 3 adll &

Together with our assumption (1.14) of quasistatic field
change it follows that SWJP 2z 0 for unstable motions.
Omission of &W, from our criterion (1.19) finally yields

the sufficient stability principle

5 W +3W3 > 0. (1.30)

o

For very slow instabilities with Shﬁf—+0 it also becomes

necessary.
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In the stability criterion (1.30) the evaluation of
SW, , eq. (1.23), which by definition is the same as
without feedback, proceeds as in previous work on axi-
symmetric stability [13, 17] and is not repeated here.
The evaluation of the feedback contribution 8Wy , how-

ever, is carried out in the next section.
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2. Application to axisymmetric devices

a) Many feedback loops

In axisymmetric devices for axisymmetric perturbations the
vacuum field §B is purely poloidal and we consider only
feedback loops which leave Eg. poloidal, i.e. axisymmetric
toroidal loops. Later on we shall use the fact that the
arrangement of feedback loops may always be considered

to be symmetric with respect to the equatorial plane. If
in reality it were not, loops in conjugate positions with
zero current could be added formally. We shall refer to
the conjugate upper and lower positions by using upper and

lower bars; see, for example, eqg. (2.13).
Using cylindrical coordinates R, 2 , z and a unit

vector e, in the & -direction, with d1% = ar® + R® a# ?

and
y = [meep] 3p, (2.1
we get from eq. (1.23)

SwW,y = 1T§AERB§M3,, (2.2)

where the integration extends over a poloidal cut of S,

and B stands for [mxeg]-B, .

y(1l) is determined from an integral equation on S [13, 33]
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i)__(gaua K gt) + L 7([nxey] ant [dr':ﬁi,,(g')), (2.3)

ln’”
where the boundary condition in (1.19b) has been used.
K(1,1') is defined as in Ref. [13]. For "infinitely"

thin feedback loops one obtains from eq. (2.3)

y(1) = <§au< Lyl - L7 3, KRW,z(0)R,,2,), 2.0
VAT

i ¥
where
Fhig 2
‘<(.Rizi R'Z ) = - R &dﬁ‘([z&yg&]-[v_;_x Q}’J)
4RJ ) ] 1 ;
2 s . AR E AL R + -z")
e (1-k*) e kl[ﬂR fgtard J (2.5)

[(-kME - 20-k0K ]

E(k) and K(k) are elliptic integrals of the first and

second kinds, and

= (R-RZ +(z-2")%  v) = (ReRD +(z-2)"; k*-

An ambiguity in the solution of eq. (2.4) (see Refs.
[13] and [?3, 3{]) is removed by adding a side condition
(corresponding to flux conservation) which is a straight
forward generalization of the side condition derived in

[13] to the case j # O outside the plasma:
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§ALV(R(L (1)) g (1) + §AEK(R(L),z(1); Ry, 0 )RBE,

= 2 1, VIR, z,), (2.7)
Y
where
L1 1
V(R,z) = - R[dP_T _ (ey-ep)
° “i"fyal
(2.8)
- B TIElk, ) = la-k2IKlk. )] .
Toke
R! is the position vector of a circular loop located at
arbitrary R' = Ra' z' = O inside the plasma,
= = (R+~Ra)1+ z” g ki = 4ii¢ (2.9)

For plasma cross-sections which are symmetric with
respect to the z = O plane it is useful to split.gm and Y
into their symmetric and antisymmetric components, respect-

ively,

E =¥, +EFT g-—g*’ B . (2.10)
m
The symmetry properties of K and V are

K(R,z; R,,z,) = K(R-z; R, ,-2,)

(2.11)

_V(hav) = V(Ry,-zv)




and with the above-mentioned symmetry of the feedback

loops eq. (2.4) then splits into a pair of equations for
ys and ya, respectively. In condensed notation we have

5 s,e
3,0 K, (22

Ar ¥

s,a 1 ! o s,afpy _ 1 <
y =;§AEK(B,Q)3 0 -1=s

where either the first or the second superscript is valid,

and where

310 = 2005 +1,) 5 Ky =KIR, 2, ) tK(LR, 72,),
) Y
oy =12(u;—3_,_,)5 KS=KUR,, 2,)-KILR, ~2,). 5 15

becomes a side condition for ys only.

Equation (2.7)

If we introduce the quantities v®'? 35 solutions of

the equations

Hj“ = L dl'K[E,E‘)%f'a(B') - 4 (2.14)
amr AT

then the solutions of eq. (2.12) are given by

gs.a([) s 5 ]\f‘"‘gi‘“[ﬂ), (2.15)
v
Using the symmetry properties of ys,a and gi’a and in-

it is readily seen that

serting eq. (2.15) in eq. (2.2),

SWB splits according to




SWy = Wy o+ WS (2.16)
where
VAR I @dhrRB(L]Lj“ h (2.17)
v

According to Refs. [}3, 17] Sh@ splits similarly into
contributions for symmetric and antisymmetric perturbations,
Sh% = Sh%‘ + W) . Using this and inserting eq. (2.16)

into eg. (1.30) finally yields the stability criteria
SwS = Wt o« Swi® > 0. (2.18)

Since the quantities Jv , eg. (2.13), can always be con-
trolled so that Jh/?a > 0 , it is obvious that the

feedback contribution has a stabilizing effect.

b) One pair of feedback loops

We consider some further consequences for the simplest

case with one pair of loops only, positioned symmetrically
with respect to the equatorial plane. Furthermore, we
consider only the stabilization of antisymmetric instabili-
ties since for elongated cross-sections these are the more
important ones; see Ref.[Zl?]. A treatment of symmetric
instabilities would be largely analogous. Care has to be

taken, however, to ensure that stable symmetric modes are
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not unintentionally driven to instability by the feedback

current. This is avoided by applying antisymmetric currents

J. = - 1

(2.19)
1

I
11}
el

so that J? = J and J? = 0 and hence SLJ; = 0. Otherwise

§; could always adjust itself so that EW§ < (0 , unless

and J1 are controlled separately.

=1

With eq. (2.19) 5w; is obtained as
a a a
oW, = J@ARWRB%1§M. (2.20)

If for any §:L which is unstable in the problem without

feedback we have

@dQRnggi =0, (2.21)
then obviously no feedback stabilization is possible, what-
ever the current J may bke. On the other hand, if the ex-
pression is non-zero for all possible §: , stabilization

is possible. Which of the two cases is present depends
through Y? on the position of the feedback loops. This
suggests the possible existence of ineffective loop po-
sitions into which the loops should not be placed because

they would be inoperative there.
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The problem now is to determine for a given plasma
configuration and position of the feedback loops the mini-
mum |J‘, if it exists, for which the stability criterion
is satisfied for all antisymmetric §ﬂ . This problem can
only be solved numerically. For this purpose, as in
Refs. [13, 17] ; E: , %a , etc. are discretized, i.e.
g:(l)——+ g:L , i =1, ..N, etc. Using the numerical results
for the problem without feedback, it is possible to obtain

further reaching analytical simplification for the problem

with feedback.
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3. Analytic preparation of the numerical problem

Once an explicit numerical representation of the quadratic

o
‘V\)]

form SW:'Q: ,E
Swe = 5 R
0 Z" 4\4//“_5) gm/"’ gmg ?

for the energy variation without feedback is given &W *

(3.

may be expressed in a particularly simple form. If we de-

note the eigenvalues of the matrix W,

(2 L

by W. , 1i=1,

N (where N is the order of wf“’ ), and the corresponding

eigenvectors by g&” ;, we may expand an arbitrary g:
Y

with suppression of y as follows:
- (i)
a 5 L
& “ 2 Xy &
L=1
This reduces d8W* to
Sw* = Z + JB

where

(3.

«4)

1)

2)




If B = O for any set { X;0 1= 1, ..N 3 with z < O,

corresponding to eq. (2.21), no stabilization is possible.

Conversely, if for all sets {xi, i=1, ..N} with
Z < O we have B # 0O, stabilization is possible and the

conditions for stability are
JB > 0 (3.5)

and

19l » 7, Sup (:_Z_) . (3.6)

N
Z:XE= ds Z% 8 B
i=1
The side condition Z < O means that we are interested only
in plasmas which are unstable without feedback. In linear
stability theory a common factor of the Xi O (P
is undetermined in principle. This "amplitude" factor is
arbitrarily fixed by the side condition J x;* = 4
T
i 2
or equivalently 2v<(§:)2>==gdu(§a) = 4 . Note that
- m
Z/B is linear in this amplitude factor, and that JO is
thus related to a unit perturbation. If smaller or larger
amplitudes are considered JO must be multiplied by the

corresponding amplitude factor.

The problem of finding the "ineffective"loop
positions with B = O for Z < O, on the one hand, and of
determining the minimum stabilizing current Jo for the

effective positions, on the other, can still be simplified
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under the special conditions which are present for the
surface current model at moderate plasma elongations
(below = 4-5). Under these conditions for all values of
the aspect ratio the existence of only one negative eigen-

value Wl and additionally the wvalidity of the relation

were found. %

It is shown in Appendix A that under these circum-
stances a loop position is effective if, and only if, the

expression - Z/B in eg. (3.6) has an extremum for Z < O,

Z Xf = 1 , or, equivalently, if, and only if, the
equation
N
> Li Z=W; = 0 (A.4)
s 4 (Z"Z-Wi)l
+)

The existence of just one negative eigenvalue for
moderate elongations is not a peculiarity of the surface
current model but is found for diffuse current models as
well (see Refs. [4 , 35]). Condition (3.7) which may
not hold for diffuse profiles is not necessary but only
convenient for the subsequent simplification, and much
weaker but more complicated conditions on the{bi, Wi,

i=1, ...N]could do the same.
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has at least one negative solution Z = Z. If there exist

solution(s) Ey, then J_ is given by

~ . 2 1= Y
3, 0= Swn [% (_"..__.) } 4 (3.6)
Zv L= 1

-Z_,p—tzwl"
Note that in the case Ev-—>0 according to eq. (A.6)
Jo stays finite, which implies that B— 0 as well. Hence,

in the limit of marginally stabilizable cases the feed-

back current JO stays finite.

The calculation of the feedback current JO is now
widely reduced to the problem without feedback whose
solution yields the W, and g(i). Once the integral
equation (2.14) is solved with the methods of Ref. El3] the
bi are obtained from eq. (3.4) and thus all quantities

needed for the calculation of JO are determined.

We conclude this section with a few remarks about
the situation arising when more than one eigenvalue is
negative., Consider a case where two (or more) eigenvalues,

say W, and Wz, are negative, and a test mode {xii with

1
the properties blxl + b2x2 = 0, X, and X, # O, By o 5 = 0.
For this mode, with §W?* = Wle + szg < 0 for all J,

the plasma is always unstable. It may be shown that for
each additional negative eigenvalue at least one additional

pair of feedback loops is required for stabilization.
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4, Numerical results

The methods just described were applied to the feedback
stabilization of the surface current equilibria described
in Ref. [13] with elliptically, triangularly and rectangu-

larly shaped cross-sections represented by (see Fig. 1)

e*(R-1)* +(M+1i)z?* - 2A7, (R-1)z* - A'r, (R-1)"2?

e 2
A*

(4.1)

The results are shown in Figs. 2-8. The safety factor g
does not enter the discussion since the stability with
respect to antisymmetric axisymmetric perturbations is in-

dependent of q.

In Figs. 2 and 3 the dotted area is the plasma, the
axis of symmetry being to the left. The position of the
pair of feedback loops - the dots in Fig. 2a - was varied
in small steps on surfaces concentric with the plasma
surface. The quantity d = (plasma aspect ratio)/(aspect
ratio of concentric surface) is used as a measure of the
loop distance from the plasma. In the hatched areas no
stabilization is possible ("ineffective" regions), while
everywhere in the blank area a stabilizing current can be
found. The position where the minimum feedback current is

lowest (optimum position) is marked by arrows.




v DA =

The left-right asymmetries due to toroidal effects,
Figs. 2a - 2c, are reduced at higher aspect ratio, A = 10,
Figs. 3a - 3¢.

The ratio of J and JO (= current at the optimum

pt
position) versus positional angle u (see Fig. 2a) is shown
in Fig. 4, Since the curves exhibit flat minima, there
exist relatively broad regions of approximately equal
effectiveness of the loops.

In Figs. 5a, 5b, J is plotted versus d, plasma

opt
cross-sections corresponding to Figs. 2a, 2b, 2c being
indicated by symbols. Dimensionless units have been

used: JO is the ratio of the feedback current and

pt

toroidal plasma current, and the average displacement on
the plasma surface has been arbitrarily taken to be
one-tenth of the minor radius a. Defining S by I =
V(f;'> /0.1 a, the currents required have to be multi-
plied by j’ if S # 1 . The currents increase with aspect

ratio and are of the order of one per cent.

The parameter Bp (poloidal beta) has almost no effect
on the optimum loop position and on the currents required,

as is shown in Fig. 6.

Figure 7 shows that JOpt increases with increasing

plasma elongation e.



A good illustration of the feedback process is ob-
tained by examining the minimizing perturbations g: .
In Figs. 8a and 8b arrows represent the plasma displace-
ment on the boundary in a case with feedback currents
switched on. The broken line indicates where the arrows
would end with the feedback currents switched off.

Figure 8a shows a stabilized case, the feedback loops
being up and down. One can see that as a result of the
feedback currents the displacement in the vicinity of the
loops is reduced. In Fig. 8b the loops are in a position
where no stabilization is possible. The displacement in

the vicinity of the loops is again reduced. This reduction,
however, is unable to compensate the virtually free or

even enhanced unstable motion of the bulk of the plasma.

For practical reasons the currents J applied for
feedback stabilization would be larger than the minimum
currents JO calculated above. In Appendix B it is ex-
plained that if J/JO is increased above a certain threshold
the minimizing perturbation "locks in" and becomes inde-

pendent of J (apart from the total amplitude).




5. Conclusions

On the assumption that large MHD growth rates may be
reduced by passive conductors feedback stabilization of
the remaining slow plasma motions was investigated.
Detailed numerical studies were performed for the surface
current plasma model. It was shown that for elliptical,
triangularly and rectangularly shaped cross-sections feed-
back stabilization of the axisymmetric modes is possible
with a single pair of feedback loops positioned symmetric-
ally with respect to the midplane, provided the loops are
not positioned in certain well-defined and not very

spacious "ineffective" regions.

The feedback current required for stabilization is
not a very sensitive function of plasma elongation and of
distance from the plasma surface. This supports our pre-
vious argument that for distributed current profiles the
results will be gqualitatively similar for moderate elon-

gations (below 4-5).

If, however, the elongation is very large (belt pinch
type) , feedback stabilization becomes more difficult:
With the appearance of additional negative eigenvalues
corresponding to unstable symmetric and antisymmetric
motions independent control of the loop currents and

additional feedback loops become necessary.
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The theory of feedback stabilization as presented in
this paper can, in principle, be applied to diffuse current
models as well since the feedback currents cause only an
additional term in the vacuum contribution to §W , while

SW%I and Sh@ remain unchanged.

The possibility of stabilization with localized
currents, the existence of optimum loop positions and the
existence of ineffective regions appears to have con-
sequences also for passive stabilization with extended
conductors surrounding the plasma. Apparently, the currents
induced in these are more or less effective or even complet-
ely ineffective, depending on their position, and wall
sections placed at the most effective positions would attain
about the same objective and provide great technical ad-

vantages over closed walls.




Appendix A

We repeat that a loop position is effective, i.e. stabi-

lization is possible, if, and only if, B # O for Z < O.

Now, if B # 0 for all {xi, i=1, ..Nj with Zz < O,
then, according to the definitions (3.4), - Z/B is an ana-
lytic function of the Xy in the domain of the supersphere
2. xi = 1 marked off by the condition Z < O. Since one
has Z/B = 0 on the boundary Z = O of this domain and since
with Wl-c O one certainly has Sup - Z2/B > 0O,

E:xi = 1; Z €0
and in view of the analyticity it follows that - Z/B

assumes a largest value at Z < O, and that this is an

extremum.

Next we prove the reverse conclusion that B # O for
Z < 0 if - Z/B has an extremum for Z < O. Defining
7¥ = Inf Z and Eo to be the smallest Z-value
lei =1, B=20
for which - Z/B assumes an extremum on Z:xi =1, it is
equivalent to prove that we cannot have both z*¥ < o

and 50 < 0. Note that obviously z* must also be a

stationary value.

Taking care of the side conditions Z:xi = 1 and
B = 0 by Lagrangian parameters A and f‘ , respectively,

we find that Z is made stationary by
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-ZLWL""?\.)X‘ +/ul:>£ = 0, (A.1)

Multiplication of eg. (A.1) by X4 and summation over all

i yields A = - Z. Solving eq. (A.1l) for x, and using
N
pa xi =1, z¥ is obtained as the smallest solution of
i=1
N Ll
Z k = O’- (A-2)
¢ =1 Z"w;,

Considering now -Z/B and again taking care of the side
condition X xi = 1 by a Lagrangian parameter A , we

find stationary values for

2B (W, +AB)x, -Zb, =0. (A.3)

L

Similarly to above, we obtain A B = -Z/2, and, solving
eq. (A.3) for X and using §Z(wi—2)xf = 0 , we find

L
the Z values which correspond to stationary values of

-%Z/B as solutions of the equation

ZNB?“_Z_—_.",‘/_L
L=1 L (Z"Z\Ji)z

(A.4)

Since z¥ and Eo are solutions of egs. (A.2) and (A.4)

respectively, a condition for the bi, i » 2 is obtained
if z* and EO are plugged into and bf is eliminated

from these equations, reading
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N
— 2
2 oy (=P )b, =0 (A.5)
: )
L= 2
where
= = 2
. = 4 } P e Z*_Vl: Z,-U,; .(Z,—.ZM )
i - i g =— — .
Z*-W,; Z*'-w, Z,-W, \Z,-2w;
Let us consider the consequences of the assumption that
both z¥ < O and Eo < 0. For i1 » 2 according to inequality
(3.7) we have Wi > - Wl > O and hence oy < 0. Considering

the derivatives of B, with respect to z¥* and Zo it is easily
seen that B8, becomes minimal for Zta-ﬁo — O with 8, — 1
so that ai(l_Bi) > O for i » 2. Thus, eq. (A.5) cannot

be satisfied, i.e. the assumption cannot be valid.

Finally, a convenient expression for the stationary
values of - Z/B is obtained by plugging the X from
eq. (A.3) into the relation Z:Xi = 1, thus yielding for

the extremum (extrema)

_ > I L. r 1%
(‘?) - 2 e , (A.6)
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Appendix B

We consider a current J of given amplitude 1J| with

sign adjusted to favour stability, i.e.

we* = Z + [J1'IBI (B.1)

and determine the set [xi, i=1, ..N j which minimizes

sw . For simplicity, consider an idealized case of

two modes only. Eliminating X, with xf + xg = 1 from

eg. (B.l) we get two branches, the more unstable of

which is (assuming bl' b, > O without loss of generality)

2

BW® = W, - (Wp-W %2 + 13bx, -b /1-x} | (B.2)
In Fig. 9 §W%(x,) is plotted for J, > J, > J; » O in
a case with SW“(fq) > 0 , where B(Ql) = 0. For small J

§W?® assumes a negative minimum. The current JO for which
this minimum becomes zero defines the minimum feedback
current required. If the current is further increased,
there appears a threshold current above which W2 has no

minimum but an infimum at x1= Xy the infimizing per-

A
I
. A ’ A 2 . .
turbation X, = xl, X, = 1 - x1 thus becoming in-

dependent of J.

For more than two Xy the situation is analogous.
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Fig. 9: Energy Swﬁ versus mode amplitude X, for several values

of feedback current J.




_34_

References

[1] OSOVETS, S.M., in Fizika plazmy i problema upravly-
aemykh termoyadernykh reaktzij (Plasma Physics and
the Problems of Controlled Thermonuclear Reactions)

2, Izd. Akad. Nauk SSSR, Moscow (1958), 238.
[2] YOSHIKAWA, S., Phys. Fluids 7 (1964) 278.

[3] MUKHOVATOV, V.S., SHAFRANOV, V.D., Nucl. Fusion

11 (1971) 605.

[4] RUTHERFORD, P.H., Princeton Plasma Phys. Labor.

MATT 976 (1973).

[5] LAVAL,G., PELLAT,R., SOULE, J.S.,

Phys. Fluids 17 (1974) 835.

L6] OKABAYASHI, M., SHEFFIELD,G., Nucl. Fusion 14
(1974) 263.

[7] LACKNER,K., MacMAHON,A.B., Nucl. Fusion 14
(1974) 575.

[8] WESSON,J.A., SYKES,A., in Plasma Physics and

Controlled Nuclear Fusion Research (Proc. 5th

Int. Conf. Tokyo, 1974) 1, IAEA, Vienna (1975)449.




9
i)

Bl

[26]
[27]

[1¢]

- 35 -

ROSEN, M.D., Phys. Fluids 18 (1975) 482.

REBHAN,E., Nucl. Fusion 15 (1975) 277.

HAAS, F.A., Nucl.Fusion 15 (1975) 407.

WESSON,J.A., in Controlled Fusion and Plasma Physics

(7th Europ.Conf.Lausanne, 1975) 2, Lausanne (1975)

102,

REBHAN,E., SALAT,A., Nucl. Fusion 16 (1976) 805.

LACKNER,K., Computational Physics (Proc. 2nd Conf.

Garching, 1976), paper C4.

JOHNSON,J., CHANCE,M.S., GREENE,J.M., GRIMM,R.C.,
JARDIN,S.C., KERNER,W., MANICKAM,J., WEIMER,K.E.,
in Plasma Physics and Controlled Nuclear Fusion

Research (Proc. 6th Int.Conf.Berchtesgaden, 1976)

2, IAEA, Vienna (1977) 395.

BECKER,G., LACKNER,K., ibid. 407.

REBHAN,E., SALAT,A., Nucl.Fusion 17 (1977) 251.

CHU,M.S., MILLER,R.L., OKHAWA,T., Nucl. Fusion

17 (1977) 465.




[19]

[29]

[21]

[22]

[23]

[24]

[25]

- 36 -

CHU,M.S., MILLER,R.L., General Atomic GA -

A 14 323 (1977).

HAAS,F.A., PAPALOIZOU,J.C.B., Nucl. Fusion

17 (1977) 721.

BERGER,D., BERNARD,L.C., GRUBER,R., TROYON,F.
in Controlled Fusion and Plasma Physics (8th Europ.

Conf. Prague, 1977) 1, Prague (1977) 52.

APGAR,E., COPPI,B., GODHALEKAR,A., HELAVA,H.,
KOMM,D., MARTIN,F., MONTGOMERY,B., PAPPAS,D.,
PARKER,R., OVERSKEI,D., in Plasma Physics and
Controlled Nuclear Fusion Research (Proc.
6th Int.Conf.Berchtesgaden, 1976) 1, IAEA,

Vienna (1977) 247.

TOYAMA,H., INOUE,S., ITOH,K., IWAHASHI,A., KANEKO,H.
MAKISHIMA,K., OCHIAI,I., SHINOHARA,S., SUZUKI,Y.,

YOSHIKAWA,S., ibid. 323.

CIMA,G., ROBINSON,D.C., THOMAS,C.Ll., WOOTTON,A.J.,

ibid. 335.

BHATNAGAR,V.P., BOSIA,G., MESSIAEN,A.M.,

PAITHANKAR,A.S., ibid. 359.



[2¢]

[27]

28]

2]
[39]

[31]
[32]

[33]
[34]

[35]

_37_

HOFFMANN,F., BIGHEL,L., PEIRY,J.M., SIMIK,A.,

ibid. 305.
WOOTTON,A.J., ROBINSON,D.C., in Controlled Fusion
and Plasma Physics (86h Europ.Conf. Prague 1977)

1, Prague (1977) 42.

GRAFFMANN,E., HOENEN,F., KALECK,A., KONEN,L.,

KORTEN .M., SCHLUTER,d., dibid, 77.

GRUBER,O., WILHELM,R., Nucl.Fusion 16 (1976) 243.
BORTHNIKOV,A.V., BREVNOV,N.N., GERASIMOV,S.N.,
ZHUKOVSKIJ,V.G., MAKSIMOV,Yu.S., PERGAMENT,V.I.,
ROMANOVSKIJ,M.K., in Plasma Physics and Controlled
Nuclear Fusion Research (Proc. 5th Int. Conf.
Tokyo, 1974) Nucl. Fusion Suppl. (1975) 13.

PFIRSCH,D., TASSO,H., Nucl.Fusion 11 (1971) 259.

BERNSTEIN,I.B., FRIEMAN,E.A., KRUSKAL,M.B.,

KULSRUD,R.M., Proc.Roy.Soc. A 244 (1958) 17.

KRESS,R., Arch. Rat. Mech. Anal. 39 (1970) 206.

REBHAN,E., SALAT,A., ZAMM 57 (1977) T 254

KERNER,W., and LAUSANNE-GROUP , private communication.




