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Abstract

The Vlasov formalism is used to calculate the first and second
order perturbations of a ring of relativistic electrons after
crossing the betatron resonance Yy = 1. The presence of coherent
self-fields may result in separate crossing of the coherent and
incoherent integral resonances associated with the discrete and
continuous eigenvalues. The quantity X giving the ratio of the
spread in the single particle frequencies to the coherent frequen-
cy shift characterizes the excitation of the continuous spectrum,
the eigenmodes of which are similar to the singular von Kampen
modes in the theory of plasma oscillations. Compared with an
existing approach the present derivation is valid for arbitrary
values of Xi and is selfconsistent in that it correctly includes
the dynamics of the variable giving rise to the finite spread in
pr

coherent integral resonance is compared with that due to crossing

. The increase in beam size resulting from crossing of the in-

of the half-integral resonance, for which an improved formula is

derived with the Vlasov formalism.




1. Introduction

The resonance behaviour of a Ring of Relativistic Electrons in a
regime where the radial single particle betatron frequency Vr
approaches unity and where coherent forces are considerable has
been studied qualitatively 1) and in a quantitative model 2) with
respect to its importance for electron ring accelerators (ERA)

and possibly for electron storage rings.

It has been recognized that the formula for the increase in ampli-
tude of a single particle crossing an integral resonance driven

by a first harmonic magnetic field perturbation ng

1y & = (526) RGY ‘gB

2

(R orbit Radius, (2 revolution frequency, QQ )4 )

cannot hold if coherent fields arise during the resonance crossing.
In ERA devices vr = 1 is expected to occur after ring compression
and an ion loading in excess of a few per cents. A quantitative
approach 2) has shown that formula (1) applies for crossing of the
coherent resonance which is separated from the incoherent resonance
and is avoided in ERA by the inclusion of electric images on a
"squirrel cage" or electric image cylinder. Crossing of the inco-
herent yr = 1 (with Vr including the shift due to stationary
self-fields), howsver, gave a growth in beam dimension which was
by a factor of i less than in (1), this factor giving the ratio
of the spread in the square of the single particle frequency Pr
to the shift in the square of this frequency induced by the ions,
i.e. the therent frequency shift. This result was obtained in the
limits ﬁ,_ L 1 and —"i >> 1 for a system of harmonic oscilla-
tors describing the radlal motion with frequencies spreading about
an average value and subject to a coherent force proportional to

the c.o.m. displacement of the system from its unperturbed position.

The present study reconsiders this problem with two scopes:
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1. derive results which hold for arbitrary 'X = -——;EZE‘““"ELZQ
carrying in mind that for ERA-applications X may be of order
1 owing to the large energy spread required for stabilizing

3)

collective instabilities :

2)

2. the existing approach has analyzed the resonance response
of a large number of particles oscillating harmonically in
radial direction with spreading frequencies which were not
consistent with the dynamics of the oscillators. In a real
ring frequency spread may either come from (a) anharmonic os-
cillations or (b) a spread in the energy or canonical angular
momentmnlb of the particles. Hence, if (a) is faced, con-
sistency requires the study of nonlinear oscillators, whereas
in case (b) which is dominant in ERA, the dynamics of the

6 -F motion should be included in the analysis. For this
reason there is some question as to the validity of the purely

2)

radial harmonic oscillator model The present analysis
claims consistency by employing a spread (b) along with the

6-—% motion and is based on the Vlasov formalism.

We proceed in defining an appropriate equilibrium distribution
function. Next we derive the inhomogeneous differential-integral
equations governing the relevant momenta of the first and second
order perturbations of this equilibrium. A singular eigenmode
expansion is undertaken and the resulting integrals are evaluated
using asymptotic methods. As a result of the crossing of resonance
for the continuous spectrum of dipole oscillations the beam po-
sition remainsunchanged due to phase mixing; the increase of the
beam width is found roughly equal to the single-particle result
for X 2 % and for X £ 3 it is reduced by the factor X . The
earlier formulae 2) for the limits X(( 1 and X>> 1 are thus con-

firmed by the present consistent theory.




2. Vlasov Model

The motion in phase space of a large number of electrons forming
a relativistic electron ring is described by the Vlasov equation

in cylindrical coordinates 4.32)

Wy (‘7{- g{ Ug Uz ’

5'% + ;\j—; + %ﬂ + u# ,g.£ + [.r (E + 28 Bi BO) Qur
£ J e U r B 0

+l:_u:u * Q(EG—%"B{* 7}‘“ :B,.)}%E + _(EE— e l§r+ Ur | B) ,§£E =

» 2
. : 5 2
with He = v‘ r, ug = 0‘9 R S J‘ z, f = 1+ur2+u62+ U,

and electric and magnetic fields satisfying the Maxwell equations

with appropriate boundary conditions and sources givenlby the

charge and current densities

m(r0,2,t) = e [f dudus dig
(3) g (re.2t) = ef_%{_}: Ay oy oty

The unperturbed equilibrium is described by a stationary solution

of (2) in terms of the total energy H° and the canonical angular

momentum Py as constants of the motion. If we expand the energy
about its value for a purely orbital motion r = R(Pe ), we Ob-
tain 2)

o f )
‘:P w~,~%+er/-1(‘f2)
H? +H¢ E%%o[uﬁup»mQ(yx +J, 2)]

X =T - R(’Pe) )
Q(?e> = Vo , V, ('P9> u'os ) ) 1+ Wog
(4) 2 E, +R(E'+v, ") E R
) =
Yr(e)- A4 + Evv v, B o~ —__T_I—’MZ}, )
1? _ R(EOI-VOB:.>
% (%)= g z+ Vo By

Next we assume a very slow time dependence of »rz(Pe ,t) such
that the equlllbrlum (4) is only changing adlabatically and we
may replace Hl, in } by the adiabatic invariant HL,/& . This
variation in pr may be induced by slow accumulation of ion space

charge.




With a small magnetic field perturbation SBZ we solve (2) using

an expansion

(5) §=§o+£]((4)+€§

We assume that the coherent force only depends on the total di-

)

pole moment of the beam and is not affected by higher order de-

formations. From the first order equation for f(1) we proceed to

moment equations through integration over the transverse phase 26

space. For the dipole moment induced by an f-th harmonic 5]3 Y€

X(wt,0) = _fxf de
w = ’Pe-<?9> , a6 = oly o> dlu, iy

=

(6)
we find a differential-integral equation (appendix I)

o SN 200QU QU = AT Xeu +58 68T
with

@ TF(w= szods

j& includes the electron-electron, image-electron and ion-
electron coherent force. Since the electron coherent displace-
ment varies slowly compared with the ion bounce frequency, ions
are trapped in the electron ring and their coherent force contri-
bution is proportional to the electron coherent displacement
(appendix I). Higher order momenta of f are far away from re-

sonance and may be disregarded here.

The second order equation is again transformed into moment equa-
tions and one sees that the resonance Vr = f only affects upon

the quadrupole moment

99 D(wte) = fX ‘lcg)dﬁ

which is governed by the third order partial differential equation
(I.8) with nonlinear inhomogeneity. Its solution requires use of

real quantitites for the field error and for )(
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which leads to the result (appendix I)
-2

D X
(11) = Ll
Fe

Hence, the problem of finding solutions for the first and second

order perturbations has been reduced to solving equ. (7).

3. Normal Mode Analysis

The integral in (7) representing the coherent force introduces
coupling between groups of particles with different values of

Eb . We proceed to solve (7) by expanding X in terms of the eigen-
modes of the following auxiliary homogenigus equation

(12) -g-t g + lk,ug = -ik, G gg(w',t)dw'

where we assumed that §l(12— Vi) varies linearly with the cano-

-0

nical angular momentum u

i @l
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(13)

The ansatz
-kt
(14) § = yw €

leads to an integral equation, which is well-known from the theory

of linear plasma oscillations 6)

(1sy  (w-y) gy@c) = - Gw) fmgy W) du’

The integral operator is unbounded and not self-adjoint but its

eigenfunctions (distributions) are well understood and have com-




pleteness and orthogonality properties. There exists 6) a con-

tinuous spectrum of real eigenvalues Y corresponding to 3 -fun-
ction excitations at u = » , which are equivalent to the van

Kampen modes in linear plasma oscillation theory
(16) Sy(g,) = —'? GQ() + l(y) J(M,—y>
wu=»y

Here ?> signifies the principal value when this expression is

integrated. )&V} is determined by the normalization condition
o0

(17) J g»@t) dw = 1

and results as

G&A)
(18)  Ap) = 4 + ? -, dw

In addition to the continuum of )» there exists a finite set of
-values Yi with 3\Oﬁ)= 0. These discrete eigenvalues are then
determined by the dispersion relation

GCw
(19) A + = —_—dw =0
- o U=
where Vi is real if G( Vi) = 0, otherwise Yi complex. The
corresponding eigenmodes are
Gw

u) = - —
(20) i%() =

One can easily show that in the present problem with G(ﬁ)~FO(t&)

2 O the only discrete eigenvalues are real and therefore corres-
pond to stationary (undamped) coherent waves. In addition, it is
necessary for such a » to exist that the coherent selfforce

*'/&_ ) is strong enough For the remainder of this paper we

specify
2 1G] uj & 4
21 F@ = 0 | > dh

and take Aw as the width at half maximum, hence

(22) AW &%ot




This choice is more realistic than a Maxwellian or Lorentzian

distribution with infinitely long tails. It is convenient to

ey s
(23) ‘X = zﬂf szA<2>

which gives the ratio of the spread in the quantitiy

2ty Sy =G (hew)

and the coherent frequency shift‘/\z. For ;T,é' 1 there exists an

introduce the parameter

undamped coherent oscillation § & according to (20) with eigen-
value ))O. This mode disappears for X’> 1 and the remaining
modes are the continuous eigenmodes (16), which show phase mixing
or Landau damping. For ’X§>1 we have essentially single particle

behaviour with no coherent effects.

The existence of a real discrete eigenvalue L’O is pertinent to
distribution functions Fo(u) which are nonzero for only a finite
and sufficiently small range of u. This eigenvalue 1is associated
with an undamped dipole oscillation and is predicted in ERA-
devices for most of the practicable boundary conditions 5). It
may require extremely large energy spread for damping in the 1li-

8) 9)

near regime of the resisitive and electron-ion instability

The set of solutions (16), (17) is complete for a sufficiently
large class of functions (which obey, for instance, a Holder con-

dition 6)) defined on —oa<u <00 and it is orthogonal on the
6)

solutions of the adjoint equation
~ 39 e
! ! !
(250 (w-») gy@) = —f@(w) gp(u)olm
- &0

Hence, in order to solve (7), we use the expansion

do X = X wth+ X @b = ot §°@)+ f A,@)Sﬂ@u dy




4. Resonance Crossing

For slowly time-varying )’i the driving term in the inhomogenous
equation (7) excites those eigenmodes of the corresponding homo-
geneous equation (12) which are in resonance. If we assume linear

time dependence in kO

@k, = 30 - ()

and use the orthogonality properties with the adjoint eigenmodes
we find for the amplitude function of the coherent stationary
wave the equation
2/
. 2 ‘ §2
o) s ga: - g‘f‘to s L(,&°+ AQZ >C( R -"‘2L 53/1 :qu)
T ¢
2820 @—,—)z

and for waves of the continuous spectrum

- L BZA;, ;‘)Ay . -
(29) == o + T v (A + /@,V) A,
with
’&ngE'F%Y> . 4Qw
- A - A
T 8, LA QY ) ATy = A+gsza? e
i :FO(V) # 0 , otherwise Hy-‘:-‘ o

Since in (28), (29) the coefficients of the terms ao, Ap are
sufficiently close to zero, the time independence of the right
sides permits to describe a particular solution of (28), (29)

by the reduced equation

(31) __‘i 3@3

ot
With the initial condition %1&9 O we get

Gyl = 6%[ fg(f)di]faorp 3&‘9u]dx
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(a) Crossing of resonance for the coherent stationary wave

i Inserting (27) into (28) we assume that 4 = gas Q,); =9 ("“ta)
} crosses zero. This coherent resonance results in c.o.m. (i.e.

dipole-) oscillations of the beam. To evaluate (32) we wrlte

| @)(tta

1 [ 2
y+ﬁv—yttﬂ —im
24%)%% e’ "

234

(33 af)=
Mo

and find for small g

Ak g [ﬁo + ’& ﬁn@'_ to)]
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where we have assumed that the integration limits obey

]

— -1
Lo Ciﬁnﬁi
(35) 12

Mo + @ﬂu»>4

2)

and therefore can be shifted towards infinity

Since g1 gives the rate of crossing through the resonance, we
observe that the amplitude factor in (34) has the same structure
as for a single particle crossing the resonance, except that hO
has to be evaluated according to (28) for a given distribution

of particles.

(b) Crossing of resonance for the continuous spectrum ("incoherent"

resonance)

We have to solve (29) for each » with FO( y) # O and g(» ,t) = I

+ k1v = g1(t—t ) crossing zero. Under the same conditions as in

(35), with P replaced by ¥ , we obtain

b ga [5o+ﬂw 3,(“)_]}

BMA@$H4QQQW




and with (16)

( ot K, @-t)
X{.M@tf) N :;“ ("-t)jH exp § L [3 . J[?Q&?@)&L—;ﬂw

Zﬂﬂ w=»

The principal value 1ntegral in (37) with the rapidly oscilla-
ting exponential function can be evaluated asymptotically for
g1—943 with the result that after crossing the resonance the

leading contribution to the integral is from the residue at

Y =u (App.II.4). Hence, with (10, (30) and e By =__Qg21
™ Jo
3o+*u-3@-§vﬂ
“() o ()60 2 5[
(38) XL’.,"_(“' ) ’ Q 3 A" ‘( > g Gl '2.3',

5. Ring Displacement and Radial Growth After Resonance Crossing

From the above derived expressions for the dipole excitation

we obtain by integrations over the angular momentum the radial
displacement and grwoth in radial beam size. Since we have

in general, the system enters into the "incoherent" resonance
first and then may, eventually, cross the coherent resonance.

In ERA applications, however, the coherent resonance is not
crossed and there remains only an effect by the proximity of this

resonance.
(a) Radial displacement

The perturbation of the radial position <}>>ﬁ)is given by (App.I.4)
and requires integration of Xc (u,t) and X c(u t) . The incohe-
rent part, 1nduced by the continuous spectrum has a vanishing con-
tribution to (r> ). This results from the fact that due to phase
incoherence the integral arising from (38) has the asymptotic 1li-

mit zero for g1-ﬁ?0 (App.II.3).

If the system stays in the proximity of the coherent resonance
without crossing it, there results a stationary amplitude given

by a particular solution of (24)

° (ko + &, ¥,)




where ho follows from (28) and DO from the dispersion integral

(19). In the limit of no spread, i.e. F° = (u), we find

(40) ¥ -——4—— R, = é—————<RQ>%
° T KQAL ! @ 20

and thus

(RG>

(41) <'Y> = Qp T 20w

with the coherent frequency given in this case by
2
(42) W (LI + 4
. 2 <8y

For finite —X but X( 1, we find that h is slightly modified

and vanishes for'X

In case of crossing of the coherent resonance at a rate
2
(AN
(43 O F <Q> ace()4>

(41) is replaced by
<><4) < ><Q>§Bz
(44) (T x
08
which agrees with the single-particle formula.
(b) Radial beam width
We evaluate the formula (App.I.11) for the perturbation of the

radial beam size after crossing the "incoherent" resonance. De-

fining the real quantity
— Lo
(45) X(u(f,g) = QC[(X +ch> J

we have

JX J[pﬁ ac\@ e (2 2’] (Xco&.e )Qex.me )
J[Qc ,MCLZO)J




with the exponential in (38) the second integral on the right
side vanishes by phase mixing (App.II). Here we assume that the
first integral containing the contribution due to the proximity
of the coherent resonance is small, and obtain with the third

integral

(47) Jézm A f’x"“l

Evaluating numerically (30) with the distribution function (21)
we get with (37), (47) and (App.I.10)

O [ o a8
(48) (gz> & (W <RQ> j: qS(Y)
The reduction factor results as

(49) (1}() 97( ( _3?: +l;{; [3__ _ %4-_2}}10(’3

A+y

and with sufficient accuracy we find
2

T 43

o 40 Q

Y 1> ¢

This scaling is in agreement with the result of the calculation
2) , which was done for the limits ,X( 1 and X>>

6. The Half-integral Resonance

It is of interest to compare (48) with the beam widening that re-
sults from the simultaneously occuring half-integral resonance

10) to be driven by a second

2 V), = 2. This resonance was found
harmonic field gradient error on the basis of an analysis of the
radial equation of motion which was decoupled from azimuthal mo-
tion. A more careful analysis shows that this resonance is also
driven by a second harmonic field error, which acts as an azimu-
thal force and results in a radial perturbation by virtue of the
centrifugal force term. The differential equation governing the
quadratic moment of the first order perturbation is readily ob-
tained from (App.I.1) and is simplified by the absence of cohe-

rent forces




(¢2) (R))

o U (e o [ 563) 2 ]

x
with L the same differential operator as in the equation for

_&}f an (App.I1.8). No ring displacements occur after crossing
the half-integral resonance, whereas the square of the beam

width is increased according to

o (TGS @) - )]

=2

Z

7. Tolerable Field Errors

From the requirement of a resonant change in ring quality small
compared with the orginal radial beam size 910 we get the follow-

ing tolerances for flrst harmonlc errors

S(LA)
‘ (53) 3: £ <§’ic’) ?Q) incoherent resonance )’r =1
)
(54) —2;- < & élﬁ proximity of coherent resonance
X R <2
(1) Ao

éigz Eb(:cr/>
(55) —m <: T coherent resonance (not in ERA)
R, R\COe

and for a second harmonlc error accordlng to (52)

532
o [ 48] )

As an example we take the case of the Garching "Pustarex" ERA
L with parameters for the compressed ring g2.~ 1010 sec _1

QO/R ~ 107" “"/SZ’R-' .02 and G'/Q:‘* 2-10 8, which corresponds
to a change of )’ € by .02 in 1 msec. This may result from an
effective increase of the ion loading f_E?N‘ up to .035 leading
to resonance by stripping heavy ions to high Z. If we assume

'Xk % 5) we get from (53)




(2>4)

(57) 8% ¢ 20

X2

and from (56) also
o
(58) [ %} + B‘) @ 2 lO
[

With these strong requirements on the magnetic field it appears
necessary in this case to avoid crossing of Pr = 1 by keeping

f below the critical limit of a few percent or increase substan-
tially the crossing speed & by a rapidly changing field index

n.
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Appendix T

Moment equations derived from the Vlasov equation.

1. First order moment

From (2), (5) we obtain with the independent variables
T’e% uv,?el‘*t:{'

Ue 4 Uy , 3 0 ; Us + Yo
Lf f ‘7_3 (gjg k2 %!: L;' 5£ [76+M(EY : BJDu,
¢ 5[5~ er]E
& ()
(I.1) [ %(3 5& «;Bej'é{ -e[ —(Be+53;)+ 3] 3

o (4) uv @)_.E

In the highly relativistic limit the self-field perturbations

only depend on the ring displacement

+ A )
(e I_f);:zdu SRy = X J,f[(n - (RY[f ‘] du

using (6), (8) and

du = d  (RY= (RF%du JF dux 4

(I.2)

With appropriate integrations over the transverse phase space

equ. (I.1) leads to the first order equation for the dipole mo-

ment )K(k )
bl X+ 2Q2 &l‘afx e D%)X -

T e ARl s 2]

06
For perturbations ~ e and slow time-dependence we get from
(Io1) N 0) o
F X, e d(gR¥)
R~ 2R du

and for

(I.4) (~r> v()(o(u

«4 we may approximate (I.2) by

R~ (R
R




- 18 -

We obtain equ.(7) if we collect the coherent force contributions

kN
in a coefficient /L defined by

4 , @ Y o
(I.5) /((O = e LQRRE, + w%m(Ef\LV,Bz)

(N
where /& includes the ion space charge shift for a fractional
ionization gs giﬁ and the coherent frequency shift by electrons
. 5) ¢
and images o s

o A 100 Us Fu-aB)(ED (e e b ez ]

2. Second order moment

The second order perturbation éZ)Obeys

@ @) (s & @
© o & 02 : wa R oF
B Y SR E O SR A R L
ul 2 07 50
*7 ~g[E -3 B [

2

Second order field perturbations may be discarded if we assume
that only ring displacements, which are taken into account by
the first order equation, may affect upon the coherent fields.
Owing to the quadratic nature of thetiggfmogeneous terms, only
the quadrupole moment D(u,t, &) = |X }: d§ is resonant at A

= 1. It is a solution of the partial differential equation

4 ¥D > Qr.r 3 o8 ) ODEERIEND
g &2 B %'a—t?aeD* '7:‘(’4‘“1 %Qﬁ* ‘a”("*w'ae‘ 56

6 w _w —
= A, JRIEIE, 2. $3.X)

where the nonlinear inhomogeneity )Wﬁqe contains zero and second
azimuthal harmonics and involves differentiations with respect to
t, ® . We observe that real perturbations according to (10) have

to be used in (I.8), because ‘kﬁﬁ,a is nonlinear and superposition

no longer holds.

] o
Observing equ. (I.3) along with the asumption that f~ depends qua-
dratically on x, which is consistent with harmonic transverse
betatron oscillations in equilibrium it can be verified that

(I.8) is solved by (11).




To determine the radial beam width we calculate the averaged

square amplitude 2,0 al) @)
) ‘((r—<7‘>)(f Ffef ) dodu
(I.9) <S> e O
SO 7 ) do o

which gives, in leading order, with (11)

(1.10) €8> = (8 B J(é&) -(8-R’ + 4(R- <Q>)JX0(M 1{)(0‘M

Appendix II

Asymptotic Integrals

The asymptotic value for 34—>.o of an integral of the type
(IT.1) I(ﬂa = f\/(z)%p{i ‘%*.’%dz :
A4
C

where C is a contour in the complex z-plane and \iz), ﬂy (z) are
analytic in some region including C, is required. With the method
of steepest descent (see for instance )) I(g1) is obtained by
summing up contributions at the critical points of‘yf(end points,
stationary or saddle points) after deforming the contour to co-
incide with the lines of steepest descent at critical points.

The stationary points of

[
(1r.2) Y@ =1 [30 + k2 - 34({-@)]

occﬁr at resonance (%-Y=°) thus for the values of (37) and

-(le (u,t)du after resonance we need not take into account sta-
7)

tionary points. End point contributions are found of order 94
thus

-2 e
(II.3) JXWQL#)M g O(ﬂa) AP (Tl o]

Evaluation of (37) requires consideration of the singularity at

Y = u. To this end we deform the integration contour (fig.1) ‘
|



1
L'—_\
+
=
I
£
—
(o
wfg
—y

(IT.4)

c

and obtain the result that the leading contribution is due to the

‘residuum at » = u.
Big.1

Deformation of contour of integration in the complex ¥ -plane

with critical points and lines of steepest descent

saddle point
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