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IPP III/39 N. Gottardi Iterative Method of
Evaluating Local Elec-
tron Density in Asymmet-
rical Plasma Distributions

Abstract

Obtaining electron density profiles from integrated measure-
ments (e.g. those made with a multi-channel interferometer),
in the case of asymmetrical plasma distributions often entails
serious difficulties. This report describes a method of ob-
taining good results when the profiles have only one maximum,
possibly shifted along the equatorial plane. It is then ex-
tended to more complicated density profiles.
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I. Introduction

In the following, we shall consider the problems of deriving
the electron density profile of a plasma column from a set

of integrated measurements (e.g. those obtained with a multi-
channel interferometer).

We shall assume that the set of experimental data is interpolated,
e.g. by a spline fit, to give a curve; in the case of microwave
interferometry, as in Fig.2, the curve would be the phase shift

of the waves Qg as a function of x.

In order to determine the mathematical problem,some assumptions
about the form of the isodensity level lines (hereafter simply

called "contour lines") or equivalent assumptions are needed.

The resulting integral equation for the unknown density profile
is generally analytically unsolvable; a solution is in fact only
possible when the contour lines are concentric circles. After
general information about the problem and the presentation of
the required hypotheses (Sects. II and III), a simple computer
iteration method is described (Sect. IV) and then tested in
various situations (Sect. V, VI and VII). The report finishes

with a short criticism of the method (Sect. VIII).

II. General remarks on electron density measurements by inter-
ferometry

The use of interferometry to measure the electron density is a
well-known plasma diagnostics method /1/, /2/. In Fig.1 only an
application scheme is shown. Here it should be remembered that:
a) an interferometer gives the total phase shift of a wave

travelling through a plasma, with respect to the phase
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of a wave that travels along an unperturbed path;

b) except for special cases, only information on the mean den-
sity is obtained;

c) in order to obtain some more detail,multi-channel interfero-

meters are used.
In Fig.2, a typical multi-channel interferometer output /3/ is

represented. This is the total phase shift and the mean density
profile in a Pulsator tokamak discharge.

IIT. Basic assumptions

If we use an electromagnetic wave of wavelength \ to scan a
plasma in the hypothesis that the dielectric properties of the
plasma do not appreciably change over a length )\, the total
phase shift Apg that the wave undergoes on passing through the
plasma along a path S is given in the adiabatic approximation

/1/+ /4/ by

4P =(2“/A)Z{{-[1-;nn_(j_)]%}ds ’ fit1)

where n(s) is the local electron density and n, is the critical
density for the wave:

2, 2
nc=ﬁomw/e ]

Here Cbis the permittivity of the free space; n and e are the
mass and the charge of the electron respectively, and w = 21Tq/k
is the angular frequency of the wave.




Equation (III.1) can be considered as an integral equation for
the unknown density profile. One usually takes for the measure-
ments wave whose frequency, while allowing good sensitivity at
low densities, is such that the associated critical density n,
is sufficiently greater than the plasma density n(s). Under this

assumption, we can expand the root in Egqn.(III.1), thus obtaining

ap 22 _ . /ns)ds . (III.2)
S pé¢ Ne 5
—_ n
8 : " Torus
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Fig.3: Three-di-
mentional represen-
tation and contour
lines of a plasma
with cylindrical
symmetry.




If the plasmahas cylindrical symmetry as in Fig.3, Egn. (III.2)
can be rewritten as

d
app) = ./ _nmr J. (ITI.3)

N Jrixr

This is an Abel integral equation; it can be solved /5/ to yield

a
ney = - Ehe,/ a0 g,
Tw r x2-r? |

This is, of course, a rather special situation, in most cases the
plasma column is asymmetrical and then the only information that
we can obtain wihtout further hypotheses is the mean value of the

density. In fact, if we know the total path S of the wave inside
the plasma, the mean density ﬁs is

ng =-(S/u5)ols)/5 ;

and from Egn.(III.2) we obtain

neg = (2en, /w) ap./S . CITE.4)

However, as the most interesting quantity is the density profile,
in the event of asymmetrical plasma configurations one makes as-
sumptions about the most probable spatial displacement, either
introducing appropriate modifications to Egn.(III.2) /5/ or suitably
handling the mean density values obtained from Egn. (III.4) /6/.
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A frequently used hypothesis, justified by the shape of the con-
fining magentic field, is that the lines of equal electron den-

sity are circles, not necessarily with the same centre (see Fig.4).
With a simple computer program the numerical iteration method
described below allows one to get information sufficiently ac-

curate in comparison with the intrinsic total error induced by
the basic hypotheses.




The following assumptions are made:
a) Adiabatic approximation;

b) Plasma density much lower than the critical density: n ( n_i
c) The isodensity curves are symmetric with respect to the X-
axis, as shown in Fig.4.

The program, developed in order to obtain the local electron
density profile directly from the data yielded by a multi-channel
interferometer for a fast plasma diagnostics acquisition system,
may also apply to other diagnostics and also in fields other than
plasma physics (e.g. analysis of the light emitted from a flame

in combustion research).

IV. Establishment of the method

The upper part of Fig.5 shows a three-dimentional model of the
electron density distribution with displacement along the X-axis
but still with symmetry about the equatorial torus planes. Here
the shape of the contour lines has circular symmetry but this,

as explained later in Sect.VI is not essential in principle to
the application of the method, but it does simplify understanding
of the method.

It should also be stated that the phase shift function A (x)
that interpolates the experimental data is, in reality, only

a function tabulated with a certain number of points. This means
that in the following we refer to aAp(x) as a vector whose ele-
ments are A (xk) , where 1£k<£t.

Let us now come back to Fig.5 and consider a plasma density cross-
section perpendicular to both the equatorial and interferometer
planes and passing through an interferometric channel line with abs-
cissa X - Let us apply Eqn. (III.2) to the path (-a, +a) in the y
direction:
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Fig.5: Cross section of a shifted density distribution (top)

corresponding to an interferometric channel path (bottom).




a
A xy) = (w/ecn. ). /niyydy . (IV.1)

The cross-sectional area, but for a constant, represents the
total phase shift of the wave for that path.

Approximating this with a figure in steps as shown in Fig.6 and
remembering that. for the above hypotheses, the shape of the den-
sity function n(y), although unknown, is symmetric, we can re-
write Eqn. (IV.1) as

m
apc)/h = Aéca,m)cxk) EZZ“-LAE& P (Iv.2)
i=1

where Aqb is the area of the approximating figure in steps @and
h=w/s2c n.- We ‘can also write (see Fig.6)

m

and, in addition,
L
ni::z;z;qj i (IV.4)
J:

In Egn.(IV.3), the left-hand side is experimentally known; about
the quantities on the right-hand side we observe that, since for
definition thezsni are arbitrary, they are chosen very small to
yield a good approximation, and all of the same height An ex-
cept, possibly, the last upper tlnnn. Then Egn. (IV.4), written
at the point of maximum density, becomes
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m
n_ = Z Ang= (m-f)an + an_

(Iv.5)
where Anm £ An,
We define AN as a very small fraction of the mean density:

N E,[ﬁ (xk)] g (IV.6)

where n is derived from Eqn. (III.4), and n<n . For the follow-
ing it will be useful to think of the area of the approximating

figure in steps (see Fig.6) as if it were devided in three parts
(see. Fig.7);

& Py my) = Ai’aﬂka) Ot m-p 0¥ b

(IV.7)

where
q m-1
AP (x) = 0.an and Yy (. j= . An ;
(497 K ; ‘ i) " Tt b '
particularly for g = 1 Egn. (IV.7) becomes
[ = (Iv.8)
A(’Bu.m)(x'k) - Ad}ﬁ,ﬂ(x")* AqD(a,m-a;)b"‘k)*’ Qma "

From Fig.8, which represents the density distribution in Fig.5,

approximated by a solid with step-like structure, we see that %
is the total path of the wave into the plasma:

91 =2a (IV.9)
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Torus
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Fig.8: Schematic representation of the electron density
distribution of Fig.5 approximated by a solid with
step-like structure.

The elements of the cross-section corresponding to
abscissa Xy have the same significance as in Figs.6
and 7.
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The value of the first term on the right-hand side of Eqgn. (IV.8)
is easily determined from Eqns.(IV.9) and (IV.6):

A, 20 = ¢an . (Iv.10)

We thus write

= (IV.11)
8 Py mR =40, xi)= Ad, I+ an

or

Ad’(z.m)(xk) = Aq)(a,a)(xk) +AQDca'm_4)(xk) + EmAnm p (IV.12)

From Egn. (IV.10) and from the above considerations we know the
value of the left-hand side of Egn.(IV.12), which is of the
same form as Egn. (IV.8). Because of

if we know the value of ez it is possible,with a process similar
to that leading from Egn. (IV.8) to Egn. (IV.12), to deduce the
value Ofﬂq}(B,m) (xk) .

By induction we rewrite Egn. (IV.11) in the form

(IV.13)

AB i, my ) - Acp(P_p)(x,,) =Acb(p+1,m—4)(xk) +8an

where

oo

(.12 .an  and  dgpsm .




If we suppose that we have a method of finding the value of all
the other chords 13...lm, Egn. (IV.13) is an iterative expres-
sion whose left-hand side, which represents the area of Fig.7
from which one substracts every time the area of the lowest step,

is known at every step.

The iteration is terminated when the whole step-shaped area is
exhausted. At this point the left-hand side cf Egn. (IV.13) as-
sumes a negative or a zero value since Janms‘an.

By means of Egn. (IV.5), truncated at the (m-—1)th term, we now
obtain the value of nm(xk) with an error of about an . The
problem of deriving the electron density in the equatorial plane
of the torus is now reduced to that of finding the chords li' As
already stated, this problem is not solvable without some assump-
tion about the form of the contour lines.

We shall, however, show in the following that two conditions must
always be satisfied, at every plane of our step model, for every
form of the contour lines. Let us show this first in the very
simple case of a two-step model, as in Fig.9 (the cylindrical

form of the disks is not essential, as will be seen).

The lower part of Fig. 10, shows an equatorial section of Fig.9,
while the upper part shows the corresponding total phase shift
profile. The tabulated total phase shift profile can be written

as
2 (x) =h[BEon+0,(x ) (n-n)] = agx+ag, (x) , (IV.14)

where E:ka) and ?2(xk} are the chords through the points Xy -
It should now be noted that the phase shift due to the lower disk

is

ap,(xy = hln, ;
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model of Fig.9 and corresponding phase shift (top).




if we subtract this value from anp(xk) given by Egn. (IV.14),
we get the contribution to A(Pka) by the upper disk:

a@,(x) = hE ecp(n-n) .

This contribution is, of course, different from zero only when
Xo < X < Xpp o a scanning of the points of the tabulated phase
shift function, after subtraction, will therefore yield Xe and XD'
It is now clear that the density profile can be derived from the
measured values of AQ(x)) only if a relation between (xc,xD) and
lz(xk) is given, possibly on the basis of physical arguments;

for example, the isodensity lines are completely defined by
(xc,xD) if they are circles. Naturally, this rough process may

be extended by induction to models with several steps approximat-
ing the true electron density distributions. In the general case
we also scan the tabulated values as already described to elimi-
nate all those which are zero or negative and to fix the new ex-
tremes. The latter give the necessary parameters for determining
the chords of the next step. By means of Eqn.(IV.13), where p is
the common iteration index for all the X, s One goes on till the
whole A¢(4,m)(xk) is exhausted. The local electron density n(xk)
is obtained from Egn.(IV.5), whereby it has to be remembered that
m assumes the value of the common iteration index p just when the

Acﬁ(p'm) (x, ) become zero or negative.

Appendix I presents the basic program in Fortran which performs
the foregoing for the next examples.

V. Testing with assigned density distributions with only

one maximum

It is assumed that the electron density distribution is given;

we then evaluate the phase shift and finally deduce from the
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phase shift the density profile by the method just described.
Let us assume that the electron density distribution is

n(x.Y = -@/0Y (x*+y>-9) ; (V.1)
hence the profile is

nee) = - @ /%) (x"~9 , (V.2)

2

|
where ? 2 (x +y2)'2' is the plasma radius and & 1is the maximum

of n(x).

The corresponding phase shift is given by Egn. (III.2). The func-
tion Acp (x) is then tabulated with 1000 points, and An (see
Eqn.IV.6) is chosen as 1/500 of the maximum of the mean den-
sity profile obtained by means of Eqn. (III.4).

We now apply the method described in Sect. IV to the phase shift
given by Egn. (III.2). The result is given in Fig.11. There are
no appreciable differences between the assigned profile and the

result. The error, which may be shown by a print-out, is < 041%.
As another example, we now consider the highly asymmetric dis-

tribution

(V.3)

?tn(x’g)z —_ [x+ (Sn(x'y)]a.,.g“!__ ?2 ,
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_

where J is a shift parameter; the corresponding profile in
the equatorial plane is

91n(x):-_ —o({[x-t-én('x.)Ja-?z} 5 (V.4)

In Fig.12 one sees the assigned profile compared with results
obtained again with 1000 points. The error is < 0.1%.

Finally, to test the method in a very abnormal situation, we
start with a step-like distribution. The given density profile,
the phase shift and the evaluated profile are drawn in Fig.13:

only the step corners have undergone a little erosion.

VI. Testing with assigned density distribution with several

maxima

The experimental phase shift is often more complex than in the

previous examples.

A frequently observed phase shift is of the type illustrated in
Fig.14 A. The usual hypothesis is that it is due to a plasma dis-
tribution of the type shown in Fig.14B; in fact, it could also
derive from a distribution of the type given in Fig.14cC.

VI.a Two-hill model

As already stated, circular symmetry of the contour lines is

not necessary for the method described in Sect.IV; in fact, all
the expressions in Sect.IV are written for a cross-section through
a general point Xk; what is needed is the shape of the contour
lines.
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Fig.14: The density profile sketched in (A) may give rise to
ambiguous interpretation: in fact it may belong to both
distributions sketched in (B) and (C).

The representation (D) is the approximation assumed in
the case of hill-shaped distribution of (B).
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Fig.15: Application scheme of the proposed method for a
two-hill shaped distribution.

It is assumed that the two-hill model in Fig.14B can be ap-
proximated with a step-like solid such as sketched in Fig.14D
we then apply the same method as for the one-maximum distribu-
tion, but with the difference that after subtraction of the

contribution of a step we scan all the points (not only the
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lateral ones) to find a possible "valley" (see Fig.15A); if

we find one, we proceed to exhaust the first area shown in
Fig.15B, and then the other one too (see Fig.15C). An exten-
sion to distributions with more than two maxima is easy; how-
ever, it must then be remembered, and anyhow cases where the
valleys are too deep, that the intrinsic error of the assumed
step model becomes much larger than that introduced by the
iteration method. Since a two-hill model is very complex, we
consider the model shown in Fig.14D; the results are presented
in Fig.16

VI.b Crater model

Let us imagine a very simple "crater" distribution: a disk with
a hole whose cross-section is shown in the lower part of Fig.17.
We rewrite Egn. (IV.14) for this case:

ACP(xk)=A‘P4(xk)“A‘PJ’Ck)- (VI.1)

To find the points Xc and XD' we use the same process descri-

bed after Egn.(IV.14), noting that, for the negative sign in

Egn. (VI.1), we must terminate scanning at the first two negative
points; after this, we restore the original cross-section by sub-
tracting from the right place in the whole disk the step corres-
ponding to the hole. The general case is given in Fig.18: the
profile is restored till all the points of the tabulated phase
shift function become negative (see Fig.18A); one then subtracts
from it the profile due to the negative area (Fig.18B) treated as
in the model described in Sect.V.

As an example we start from the following distribution model:

?z(i +Y {[:!: +dn (x,g)] 2+ya}) necy) :—oqr{[x +dn (x,jj]z-;-t_.ﬂz...
+eyeepood {x+dneeye g+ flep) 5

(VI.2)
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Ar

I'ig.18: Application scheme of the proposed method for a

crater-shaped distribution.



— DI =

*91T30xd poubrisse 2y3z Uy3lTm SapIo
-utod ATTeoTr3ioead 81TFoxd A3TsSusp pe3ILAUT 98Ul ‘Osed UuoTINgIIlsIp projogeaed ayi Ul sy
‘WO Ll =4 PpuB pwor-= @ L wogk=R
‘g-Wdp 0L - T = ¢ ‘g WO 0L - S°CT =p:UYITM (€°AI) "ubg Aq ueaTb se a7TFoad A3Tsusp paubrssy :6l°PTa

(3 € ! STI3NNVHD

J-sG vl Cvo § iy

C~ 7= G- 8~ Omu SY313WILINTD

| 1 L 1 Il | | 1 1 1 1 1 1 | A I 1 | 1

3018100
TR0 il P <}— ZUSNL

Apicvagueayp pavbissy

[avd LT ]
2)7/o *LINN L4IHS 3SVH
hirsua@paubissy |
-] _CFL 8|
bw.uwme\ \um\m.w:kh oz _H > WO €1 ! H_

FLINA ALISN3A NOYL23713

Jpypaseyy pavbissy
o SWOO -~JWIL

00000
"d39NNN LOHS




= Of. =

and profile

otV s dnee Fro = ey feedne]
+ (oY e+ p—m)[au c!n(I)]a"' ?z ("“p) ’

where of, ﬁ and Y are parameters related to the shape of the
crater,d is a shift parameter, and Q is the radius of the plasma.
For this case a more general version of the program was used; it
is given in Appendix II and can also be applied to the preceding
cases. the results are presented in Fig.19. The error, al-

though not visible in Fig.19, is a little greater than in

the paraboliod distribution case owing to the longer iteration.
For the sake of brevity the case of a symmetrical crater has not
been reported; this gives better results than the asymmetrical

case.

VII. Practical application

Thetime evolution of a plasma profile in a real case is re-
presented in Fig.20.; shot no. 12.792 in the Pulsator tokamak.
Each profile was evaluated assuming the hill model described in
Sect.IV.a, starting from the corresponding phase shift of the
type shown in Fig.21 for the time 40 ms. We note that the phase
shift is known at nine points: at the positions of the seven in-
terferometric channels and at the two extreme zero points. The
interpolating phase shift function is obtained by means of a

cubic spline fit with arbitrary end conditions /7/.

Owing to the small number of experimental values, the interpo-
lation introduces errors which are comparable with the errors
due to the choice of the form of the contour lines. In the case
of Fig.22, the proposed method was applied with two different
heights of the steps (see Egn. (IV.6). It is found that in the

(VI.

3)
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case of a rough approximation we also get good reliability in
the mean shape of the density profile. This allows us, when
good detail is not required, to save both time and computer
space.

VIII. Concluding remarks

As shown above, the proposed method gives very good results in
the case of symmetrical and asymmetrical paraboloid distribu-
tions; it also gives good results in the symmetrical and asymmet-
rical crater distributions. In the case of distributions with

more than one maximum the results are satisfactory.

It should be noted that this method can be used in an automatic

data acquisition system.
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SUBROUTINE INVERS(X,Y,N,AK,YNVERS)
Ch¥RRURRXXEENEE TNVERSION OF HILL-SHAPED DENSITY PROFILES %X ¥R %¥%%%x
DIMENSION X(1000),Y(1000),YNVERS(1000)

¢ ¥%(X,Y): TABULATION OF THE PHASE SHIFT.
E ¥%¥N: NUMBER OF THE TABULATION POINTS.
C ¥¥AK: NORMALISATION CONSTANT.
C ¥¥YNVERS: INVERTED DENSITY.
Y(1)=0.
Y(N)=0D:
YMAX=0.
XMAX=0.
¢ ¥%*YMAX: MAXIMUM OF THE PHASE SHIFT.
C ¥*¥YMAX: ABSCISSA OF THE MAXIMUM.
DO 1 I=1,N
YNVERS(I)=0.
IF(YMAX.LT.Y(I)) GO TO 2
GO TO 1
2 YMAX=Y(I)
XMAX=X(I)
1 CONTINUE
C ¥¥DETERMINATION OF THE STEP THICKNESS "AN".
C***!*******************l**
NSTEP=500
C**!***i****i**************
o ¥#¥NSTEP: "MINIMUM" NUMBER OF STEPS.
C ¥%¥AN: THICKNESS OF LOCAL DENSITY DISK.

PROD=X(1)*¥X(N)
SUMM=X(1)+X(N)
AN=YMAX/(NSTEP*AK*SQRT(~-XMAX*¥*2_PROD+XMAX*¥SUMM))

AN2=YMAX/10000.
R N R N RN R RN R R R R R R RN AR RN RN RN NN R RN RN RN RN RN RN R RNN RN

C ¥*BEGINNING OF THE "SLICING".
IBEG=1
IEND=N
E ®¥*IBEG, IEND: FIRST AND LAST POINT OF A SINGLE SLICE.
C**************************
KBREIT=10
CREREEXEXREXEXREXR XX XXX R EHEXN
C ¥% KBREIT: WIDTH OF THE THE SMALLEST AREA TO BE CONSIDERED; I.E.IF
C ®¥*¥ AFTER A NUMBER OF POINTS .LT. "KBREIT" A VALUE OF THE PHASE
5 ¥* SHIFT LT. "AN2" IS FOND, ALL THE PRECEDING POINTS ARE IGNORED.
C ¥*%* KBREIT WILL BE DEFINED TIME BY TIME.
5 ¥%* KBREIT CANNOT BE .LT. 3.
il I2BEG=IBEG
NVAL=0
C ¥¥NVAL: COUNTER FOR KBREIT.
I3END=IEND-1
DO 5 I3=IBEG,I3END
IF (Y(I3+1).LE.AN2) GO TO 6
NVAL=NVAL+1
GO TO 5
6 IF(NVAL.LT.KBREIT) GO TO 7
I2END=I3+1
GO TO 8
7 I2BEG=I3+1
NVAL=0
5 CONTINUE
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IF(NVAL.GE.KBREIT) GO TO 9
IF(IEND.EQ.N) GO TO 14

IBEG=IEND

GO TO 10

IEND=I2END

IBEG=I2BEG

CALL SLICE(X,Y,AK,AN,IBEG,IEND,YNVERS)
IEND=N

GO TO 4

CONTINUE

PRINT 11
WRITE(6,12)(X(K),Y(K),K=1,N,10)
PRINT 3
WRITE(6,12)(X(K),YNVERS(K),K=1,N, 10)
FORMAT(1X/1X, 'RESIDUAL"')

FORMAT(1X, 10F11.5)

FORMAT(1X/1X, 'INVERTED DENSITY')
RETURN

END

SUBROUTINE SLICE(X,Y,AK,AN,IBEG,IEND,YNVERS)

TO BE CALLED BY INVERSION SUBROUTINE FOR HILL-SHAPED PROFILES #¥#*%
DIMENSION X(1000),Y(1000),YNVERS(1000)

PROD=X(IBEG)*X(IEND)

SUMM=X(IBEG)+X(IEND)

IBEG1=IBEG+1

IEND1=IEND-1

¥% TRUNCATION OF THE DO LOOP TO AVOID SQUARE ROOT NEGATIV VALUE.
¥* FOR THE ABOVE STATEMENTS "KBREIT" CANNOT BE .LT. 3.

DO 1 I=IBEG1,IEND1

AROOTH=-X(I)**2_-PROD+X(I)¥*SUMM

Y(I)=Y(I)-AN¥AK*SQRT(AROOTH)

YNVERS(I)=YNVERS(I)+AN

CONTINUE

RETURN

END
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SUBROUTINE INVERS(X,Y,N,AK,YNVERS)
CRE¥RUERRURXE® INVERSION OF CRATER-SHAPED DENSITY PROFILES **¥k¥¥xkxxxxx
DIMENSION X(1000),Y(1000),YNVERS(1000)

E ¥¥(X,Y): TABULATION OF THE PHASE SHIFT.
c #¥N: NUMBER OF THE TABULATION POINTS.
G #¥AK: NORMALISATION CONSTANT.
c #®*YNVERS: INVERTED DENSITY.
LOGICAL REVERT
REVERT=.TRUE.
Y(1)=0.
Y(N)=0.
YMAX=0.
XMAX=0.
G #¥®¥YMAX: MAXIMUM OF THE PHASE SHIFT.
[0 #%¥YMAX: ABSCISSA OF THE MAXIMUM.
DO 1 I=1,N
YNVERS(I)=0.
IF(YMAX.LT.Y(I)) GO TO 2
GO TO 1
2 YMAX=Y(I)
XMAX=X(I)
1 CONTINUE
& #¥¥DETERMINATION OF THE STEP THICKNESS "AN".
C**i*l*!***************i***
NSTEP=500
C*************i******l*iill
& ¥¥NSTEP: "MINIMUM" NUMBER OF STEPS.
G ¥¥AN: THICKNESS OF LOCAL DENSITY DISK.

PROD=X(1)*X(N)
SUMM=X(1)+X(N)
AN=YMAX/(NSTEP*AK*SQRT(-XMAX**2_PROD+XMAX*SUMM))

AN2=YMAX/10000.
CRERERE R RN R AR RN R RN R R R AR R R R R RN R RN RN AR RN A R R AR X RN R RN R RN AR R RRRRR R

C ¥*BEGINNING OF THE "SLICING".

IBEG=1

IEND=N
C ¥*TBEG,IEND: ARE THE EXTREMES OF A SINGLE DISK.
CHEXEEXEREXRERRREXRRRNRARRS
C*****igi****ii*!**!***i***

¥*% J3: WIDTH OF THE THE SMALLEST AREA TO BE CONSIDERED; I.E.IF
¥%*¥ AFTER A NUMBER OF POINTS .LT. "J3" A VALUE OF THE PHASE SHIFT
*% LT. "AN2" IS FOND, ALL THE PRECEDING POINTS ARE IGNORED.
**% J3 WILL BE DEFINED TIME BY TIME.
¥% J3 CANNOT BE .LT. 3.

4 IBETRI=0
IENTRI=0
¥ TBETRI,IENTRI: OPERATIONAL PARAMETERS; THEY INDICATE THE FORM
** OF THE SLICE: IF(IBETRI.EQ.O.AND.IENTRI.EQ.0) A CILINDER OF
¥% HEIGT "AN" IS ADDED;
** TF(IBETRI.EQ.1.AND.IENTRI.EQ.0) A CILINDER WITH TIANGULAR
¥* CROSS SECTION (THE FULL HEIGT IS ON THE RIGHT HAND) IS ADDED;
** TF(IBETRI.EQ.O.AND.IENTRI.EQ.1) A CILINDER WITH TIANGULAR
¥* CROSS SECTION (THE FULL HEIGT IS ON THE LEFT HAND) IS ADDED;
** TF(IBETRI.EQ.1.AND.IENTRI.EQ.1) A CILINDER WITH HEIGHT "AN"/2
¥% TS ADDED; IN THIS CASE THE TOP OF A PARALLEL CRATER IS FOND.
¥¥ THEY OPERATE IN SUBROUTINE "SLICE".
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5 IBEG1=1IBEG
IEND1=IEND
I2BEG=IBEG
I2END=IEND

IA=
IB=

0
0

IA1=0
IB1=0
IA2=0
IB2=0
IA3=0
A2 2222222222222 222222222 L]

J50=50
CHERBERRFRRBRRERRRRRRRRNENN

# %
* ¥
* %
* %
* #

DO

aaoaoan

J50: MAXIMUM FORSEEN AMPLITUDE OF THE CRATER EDGE TOP.
IT WILL BE DEFINED TIME BY TIME BUT ALLWAYS .GT. J3.
IA,IB: LEFT AND RIGHT COUNTERS FOR J3.

IA1,IB1: LEFT AND RIGHT COUNTERS FOR J50.

IA2,IB2,IA3: PARAMETERS FOR LOGICAL BRANCHING.

6 I=IBEG1,IEND1

KSTOP=INT(FLOAT(I2END-I2BEG)/2.)

C ¥

KSTOP: PARAMETER TO AVOIDING THE OVERLAP OF THE TWO EXTREMES.

IF(KSTOP.LE.J50) J50=KSTOP
IF(KSTOP.LE.(J3+2)) J50=J3+2
IF(IA2.EQ.1.0R.IBETRI.EQ.1) GO TO 7
IF(Y(I).GT.AN2) GO TO 8

IA=

0

9 IA1=IA1+1
IF(IA1.GE.J50) GO TO 10
IA3=1
GO TO 7

10 I2BEG=IBEG
IBETRI=1
IA=0
IA1=0
IA2=0
IA3=0
GO TO 7

8 IA=

IA+1

IF(IA.EQ.1) I2BEG=I-1
IF(IA.LT.J3) GO TO 9
IBETRI =0
IA=0
IA1=0
IA3=0
IA2=1

i KI=IEND1-I+IBEG1
IF(IB2.EQ.1) GO TO 11
IF(IENTRI.EQ.1) GO TO 12
IF(Y(KI).GT.AN2) GO TO 13
IB=0
IB1=IB1+1
IF(IB1.GE.J50) GO TO 14
IF(IA3.EQ.1) GO TO 21

22 IF(KI.LE.(I2BEG+J3)) GO TO 16
GO TO 6

21 IF(KI.LE.(I+J3)) GO TO 16




115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
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138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
15
156
151
158
159
160
161
162
163
164
165
166
167
168
169
170
171

16
14

I3

29

12

11
15

18

19

23

25

24

13

et
26

= o, o

GO TO 6

I2END=I2BEG

GO TO 17

I2END=IEND

IENTRI=1

IB=0

IB1=0

IB2=0

IF(IA3.EQ.1) GO TO 15
GO TO 18

IB=IB+1

IF(IB.EQ.1) I2END=KI+1
IF(IB.GT.J3) GO TO 20

IB1=IB1+1
IF(IA3.EQ.1) GO TO 21
GO TO 22

IB=0

IB1=0

IB2=1

IENTRI=O

IF(IA3.EQ.1) GO TO 15
GO TO 18

IF(IA3.EQ.1) GO TO 15

IF(IA2.EQ.1) GO TO 18
IF(I2END.LE.(I2BEG+J3)) GO TO 16

GO TO 19

IF(IA2.EQ.1.0R.IBETRI.EQ.1) GO TO 18
IF(I.GE.(I2END-J3)) GO TO 16

GO TO 6

IF(KI.LE.(I2BEG+J3)) GO TO 16

GO TO 19

CONTINUE

IBEG=I2BEG

TEND=I2END
IF(IBETRI.EQ.1.AND.IENTRI.EQ.1) GO TO 23
GO TO 24

REVERT=.NOT.REVERT

CALL SLICE(X,Y,AK,AN,IBEG,IEND, IBETRI,IENTRI,YNVERS)
IBEG=IBEG+1

IEND=IEND-1

DO 25 K=1,N

Y(K)==Y(K)

YNVERS(K)=-YNVERS (K)

CONTINUE

GO TO 4

CONTINUE

CALL SLICE(X,Y,AK,AN,IBEG,IEND,IBETRI,IENTRI,YNVERS)
IF(IBETRI.EQ.0) IBEG=IBEG+1
IF(IENTRI.EQ.O0) IEND=IEND-1

GO TO 5

IF(REVERT) GO TO 26

DO 27 K=1,N

Y(K)==-Y(K)

YNVERS(K)=-YNVERS (K)

CONTINUE

CONTINUE

PRINT 28
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28  FORMAT(1X/1X,'RESIDUAL')
WRITE(6,29)(X(K),Y(K),K=1,N)
PRINT 3 '

3 FORMAT(1X/1X, 'INVERTED DENSITY')
WRITE(6,29)(X(K),YNVERS(K),K=1,N)

29  FORMAT(1X,10F11.5)

RETURN
END

SUBROUTINE SLICE(X,Y,AK,AN,IBEG,IEND,IBETRI,IENTRI,YNVERS)
C*%% TO BE CALLED BY INVERSION SUBROUTINE FOR CRATER-SHAPED PROFILES ¥*#*#%
DIMENSION X(1000),Y(1000),YNVERS(1000)
PROD=X(IBEG)*X(IEND)
SUMM=X(IBEG)+X(IEND)
IBEG1=IBEG+1
IEND1=IEND-1
C #% TRUNCATION OF THE DO LOOP TO AVOID SQUARE ROOT NEGATIV VALUE.

DO 1 I=IBEG1,IEND1
AROOTH==-X(I)**¥2_PROD+X(I)*SUMM
IF(IBETRI.EQ.1.AND.IENTRI.EQ.0) GO TO 2
IF(IBETRI.EQ.0.AND.IENTRI.EQ.1) GO TO 3
IF(IBETRI.EQ.1.AND.IENTRI.EQ.1) AN=AN/2.
Y(I)=Y(I)-AN*AK*SQRT(AROOTH)
YNVERS(I)=YNVERS(I)+AN
IF(IBETRI.EQ.1.AND.IENTRI.EQ.1) AN=AN¥2.
GO TO 1

2 TRIT0=(X(I)-X(IBEG))/(X(IEND)-X(IBEG))
Y(I)=Y(I)-AK*AN*TRI10* SQRT(AROOTH)
YNVERS(I)=YNVERS(I)+AN¥TRI10
GO TO 1

3 TRIO1=(X(I)-X(IEND))/(X(IBEG)-X(IEND))
Y(I)=Y(I)-AK*AN*TRIO1* SQRT(AROOTH)
YNVERS(I)=YNVERS(I)+AN*TRIO1

1 CONTINUE
RETURN
END
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