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Abstract

In this paper we describe a time-dependent zero-dimensional
tokamak transport model involving besides electrons, fuel
ions and o-particles five types of impurities. In the model
arbitrary profiles of the type (1-6)(7-“70}i“)3+€ can

be prescribed independently for each density and temperature.

The global equations are derived from general space-
dependent ones, and the relation between global models and

space-dependent ones is discussed in detail.




INTRODUCTION

In this paper we describe a zero-dimensional tokamak transport

model developed for use in the IPP system study group.

In the context of system studies zero-dimensional models are
needed for several reasons. Owing to their relatively simple
structure and the low computing time requirements they are
indispensable in all situations where a large number of cal-
culations are required, e.g. for parameter studies and
optimization problems. Furthermore, they can easily be
subjected to modifications and can give at least qualitative
results where space dependent calculations are not yet

available.

These advantages of global models result from additional

assumptions that are made in comparison with space dependent
calculations, and some care is required in establishing the
validity of these assumptions in order to put the model on a

sound basis.

In establishing global models usually specific profiles for
densities and temperatures are assumed, such as constant or
parabolic ones. This implicitly means that the results should
essentially be independent of the profile shapes. It is

easy to verify that this is far from being true. On the

other hand, as one would expect for a boundary value

problem, once the boundary conditions are chosen, the
profiles only weakly change in time and depend only weakly

on parameters such as the plasma size and others for a large

class of situations.

In our model a rather general set of profiles can therefore |
be prescribed independently for the densities and temperatures
of each component. These profiles are found by comparison
with one-dimensional codes.

In discussing the validity of global models relative to
space dependent models, one must, however, be aware of the
fact that the treatment of tokamak transport quite
generally involves numerous, far-reaching assumptions,

partly owing to lack of physical knowledge, partly owing




to the complexity of the resulting equations. Thus, only rough
estimates of diffusion, heat conduction and radiation losses
in a reactor plasma are available. Furthermore, the
diffusion of impurities is largely unknown and, last but

not least, even the currently used set of basic transport
equations is a simple heuristic modification of those of a
stable plasma. Unfortunately, results are very sensitive to
all these ambiguities.

Transport and radiation loss terms are dominant ones in the
particle and energy balance equations respectively. The

burn time of a tokamak is largely determined by the question
of impurity accumulation and even slight modifications in
the basic equations, e.g. Ohm's law, may impose drastic

consequences on the equilibria obtainable [3].

In solving the system of transport equations further
approximations are applied to simplify their solution, such
as the restriction of cylindrical geometry.

Thus, the one-dimensional transport codes are only the most
accurate procedure for handling our reduced knowledge, and
so, despite their numerical accuracy, they may possibly be
qualitative, too, or even completely wrong owing to their
ambiguous physical basis. Nevertheless, we found it
reasonable to discuss in detail the additional assumptions
which are made in establishing global models in comparison
with space dependent ones in order to have a clear distinction
between those more basic ambiguities and those resulting from
ad hoc assumptions. Consequently, emphasis is laid on the
deriv ation of the zero-dimensional equations from general
space dependent transport equations but our model is con-

ventional as regards the physical assumptions.

Apart from these more basic aims, the purpose of this paper
is to serve as a basis for the work within the group and as
a reference for future applications. The presentation is
therefore rather detailed.
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The whole paper consists of two parts. The first contains
the derivation and general description of the model, while
the second will contain examples of applications, including

a comparison with one-dimensional calculations.

In Section 1 of the first part the set of space dependent
energy and particle transport equations in the cylinder
approximation is derived for an impurity contaminated

plasma and the respective source terms are specified.

In Section 2 the global equations are obtained by volume

averaging the space dependent equations.

In Section 3 the way the particle and heat fluxes are
computed and the role of neutral particles are discussed.
Some conditions for the applicability of the procedure are
considered.

In Section 4 we briefly discuss equilibrium and stability
constraints and several operation schemes which are
relevant for practical applications.
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NOTE

In this paper all quantities are in cgs units except 0
in formulae with decimal coefficients where temperatures
are in keV, magnetic fields in kG, injection powers in MW,

beam particle energies in keV and currents in MA.
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1s 1-dimensional tokamak transport equations

1.1 General form of transport_equations
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In this paper we consider a tokamak fusion plasma which is
based on the D-T reaction. Such a plasma consists of,
besides electrons and fuel ions (deuterium and tritium),
a-particles (reaction product) and impurity ions which are

chiefly a result of the plasma wall interaction.
For each component of such multicomponent plasma one has a

particle and an energy equation the general forms of which
are [1]

a.ny 24, (N l7): §
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(1.2) (n7)+ V(%NT |7)+HTVV
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for all species.

The right-hand sides of egs. (1.1) and (1.2) describe sources

or sinks of particles and heat respectively.

The second term in eq. (1.1) describes the streaming of
particles. The second term in eq. (1.2) describes transport
of heat by convection. The third term describes work done
against the pressure. The last term describes heat conduction.
The term-n:ﬁ até/éXﬂ , which results from pressure
anisotropies, is usually small and can be neglected in the

energy balance equation.




The plasma is assumed to be in a stable MHD equilibrium
during its evolution on the relatively slow transport time
scale. Such a quasistationary plasma is locally Maxwellian
so that each component is characterized by a local density
n(f,t) and temperature T(;,t).

In what follows we shall specialize to a circular tokamak
system. For such a system if described by usual toroidal
coordinates (r, X, ¥) (see fig. 1) the ¥ dependence
disappears from equations (1.1) and (1.2) owing to

axisymmetry.
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Figure 1
Further simplifications result if only lowest order terms
in € = r/R are considered and one gets the so called cylinder
approximation. Then the " dependence drops out too and the
resulting equations contain the variable r only (1-dimensional 9

transport equations).

This approximation is applied in practical calculations for
reasons of numerical simplicity. With these simplifications
equation (1.1) and (1.2) now read

2N 1 2 _
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Within this model the magnetic surfaces are the surfaces
r = const. Hence v' is the velocity normal to the magnetic
surface. A system in MHD equilibrium can move normally to
the magnetic surfaces by diffusion only. Hence vF is the

respective diffusion velocity.

In what follows it is convenient to introduce the fuel ion
density Ng as ng = ng + ng and to use the indices e, £, a,
& (= 1,2,3,4,5) for electrons, fuel ions, a-particles and
five impurity ions respectively.

As we shall see below, the temperatures of all ions can be

assumed to be equal. In this case it is possible to treat

the ions as one plasma component with density

n. = n. +n + Y ne. . The ion part can then be described
i f o e 6

by one energy balance equation which results as the sum of

the energy balance equations of all constituents. That is,

with eq. (1.5) one has
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In the following we shall assume that heat is essentially
carried by the fuel ions and the electrons. Furthermore, we

assume the impurity particle flux to be small compared with
r r

the fuel flux. Then all terms containing qg, = il Vo Ve

can be suppressed in eq. (1.6) and the condition of

ambipolarity reduces to

(1.7 Ny Vb= ne Vo= T

We now have instead of eq. (1.6)

P) A . k
o 2 2 mT)r L2 (5 KT+ k9, )

5 27 0

this again being of a type similar to eq. (1.5).

Before writing down the remaining equations (1.4) and (1.5)

explicitly, we shall specify the respective source terms.




1.2 Specification_of source_terms

The physical effects that lead to source terms in the energy
and particle balance equations are energy exchange, ohmic
heating, nuclear heating, additional heating, radiation and
refuelling. We now discuss these effects in greater detail.
The resulting source terms will be characterized by a lower
particle index and an upper index which characterizes the

corresponding physical mechanism.

1.2.1 Energy_exchange

The plasma particles exchange energy with each other by
Coulomb interaction. The energy exchange between the heavy
ions is much stronger than between the ions and the light
electrons. For typical reactor parameters the caracteristic
time for the former process ( "V 10_2 sec) [2] is much
shorter than the characteristic times of the other mechanisms
discussed (v 1 sec). Hence the ion temperatures remain nearly
equal during the relatively slow processes under consideration.
As noted above the ions can then be taken as one component
the energy exchange within which need not be considered
explicitly.

The energy exchange of the electrons with one ion species of
charge Z'e, mass m', temperature T' and density n' is given
by [1]

(Sllk _ 3 e Me ( T _7*2)

Ttl ml
< T' 212 /
& 3 n N
=4 Vamr N € Ve £7-e?/z tm' /

where A is the Coulomb logarithm.
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In our case of several ion species the energy exchange to
all ions is given by summation as

-24 “. T X -
(1.10) &f = 4 81-10 T‘—a/i e (l’),c & 1 x)
'TC/Q ol My

2
e L 4L -+:Z€ 2?6‘ He
M & = M ¢

(H= nd/nd gl T and M are the mass numbers).

We shall simplify eq. (1.10) by the assumption Zg/ M,.=1/2
6=1..5 in future applications.

The corresponding ion energy exchange term is obviously
given by

(1.11) of = -0

1.2.2 Ohmic heating

Ohmic heat arises owing to friction when ions and electrons

move relative to each other. Because of the large mass ratio
of ions and electrons the ohmic heat goes almost completely

into the electrons [1]. The ohmic heating term, in general,

is of the form

Q=7 4+ M
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where j and j, are the current densities parallel and

perpendicular to the magnetic field respectively, and 7},
and 7), the parallel and perpendicular resistivities
respectively.

J

As is shown in appendix 1, Qe has approximately the form

3 2 [ 2p
1. = SR L s e
a2 Qe= 7 Jr — =3¢

where j, is the toroidal current density and

: P A4
[c == Ne ¢ 3¢ 52

is the classical diffusion velocity. The second term in

(1.12) can be neglected in comparison with the term

Dﬂc sa;(ng 7;,) if ["»[{ .(Keep in mind that p=pe+pc

and pe=p;)

The latter inequality holds if the anomalous diffusion pre-
vailing in the reactor regime is not purely caused by an
anomalous perpendicular resistivity. This is implicitly
assumed in transport calculations and we follow this line
here too.




In the low electron drift case‘ﬁh can be assumed to have

its classical value which reads

2 €2 e ;

v

Vo =t RV N )
3 pg;;:ﬂ 7; 3/2

where

is the electron-ion collision frequency for one ion species
of charge Z' [1]. In our special case we have the more general

expression

& 2
_ 4Vr NC€ 2 E /]
y;_ 5 /83/2 (}/7)(+4l—//l -I-6~ Z( 6’) J

é

/

where X is the Coulomb logarithm which can be taken as 20 in
the range of interest [1]. This leads in our units to the

expression

- : o -
(1.14) O\Z = 8 63 =10 4847-2 7—e 2 ), //)e4 Z,




with the abbreviation

Z=4+4&‘+§qu

N

We shall find that the ohmic heating plays no role in the
reactor regime. Therefore, we need not consider neoclassical
and anomaly effects.

- o= mm s wm = e

The production rate of a-particles due to the D-T reaction
is given by ng n, <&v> where <§v> is the Maxwellian averaged
reaction rate. With ng/(ngy + ny) = ng/ng = ¥ we than have

v 2

(s G, o= w (1-2€) Ny K€ v

For each a-particle two fuel ions disappear. This yields
N 2

(1.16) S)c = —9 3 (1-) Ng LEV

The rate of power production by the fast a's is given by
2
Y (1-2) Ny C6V> Ex . ( E,= 3540 keV)

This energy is distributed among the other components during

the slowing-down process.

The slowing-down time is relatively small compared with the
characteristic times within which the plasma parameters
change. Thus the slowing-down process can be assumed to
happen instantaneously, and one can write
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Q)= E.xt(1-2) Vif {EVY Uy (Ex)
and

QY- E, n(1-%) Ny (6v> U, (Ex)

where the fractions Ue and Ui of the o energy that go to
electrons and ions respectively are given by the model in

Appendix 2.

It is convenient to use the approximate expression [4]

B
12

A . /3 = " :
<6‘ V> = 7, 6 T;. (A=3,68 10 °; B=19,94 in our units),

(7

with which we get
g LA7%
Nng ¢ %
7. :

N -12
1. § = 3,68 10 X (4-0t)

77, 74

v -12 2 T
(1.18) S,c =-736 10 x(1-2) m"_/_é/a

19, T4
T3

2
v - 17
. _5¢) Ng €
(119 Qe = 2,07 10 A (1 ) —

3
(1= 0,0137 (+2)% Te + 0,000847 (3+2) T.)

/
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Here in addition the expression(A2.5) and(A2.9) for Ue and Ui

respectively in Appendix 2 are used.

In the following we shall only consider heating by neutral
deuterium beam injection.

A neutral particle penetrating into the plasma will, in
principle, be ionized by charge exchange and electron or
ion impact. For energies considered here (Eo R 200 keV) ion
impact is the dominant effect [5].

The penetration depth depends on, besides the ionization
cross-section and density profile, the specific mode of
injection to a large degree. We do not study the ionization
process here but prescribe a certain production rate NH(r)
of energetic deuterium ions with energy Eg (beam energy) .
The fast ions are then assumed to give up their energy to
the plasma by Coulomb interaction. As to the deposition of
energy of the fast ions we shall use the test particle model
described in Appendix 2.

Apart from the direct transfer of energy from the beam
particles to the plasma some deuterium ions undergo a fusion
reaction. Though very few beam particles react, both effects
are of comparable magnitude owing to the high energy of the
fusion g's (3540 keV) compared with the beam particles

( ~ 200 keV).




P

We shall write QZH = QZHO (direct transfer) + QZHF (fusion) .

We then get

ZH O

Q:HO Ny Eo Ue Q. =Ny E, UL

s

where U and U; are the fractions of energy that go to the
electrons and ions respectively during the slowing down
process and are given by eq. (A2.4) and eq. (A2.5) together
with eq. (A2.7) of Appendix 2.

We find it convenient to express N, by means of the total

H
injected power Pinj' With A

= 1 olt /\/H , where V is the plasma volume, !
it follows that

NZ—NH PLVJ}
" Ny Eo 2T*a*R

With the explicit form of U, and U; as given by eq. (A2.4)
and (A2.5) we now get

ZHO 11 P N
. o =il 6T 10 L
{1.21) Q R o N, ’7

+2/M

{ (’l —r2077/2 +77

9 - 777/?. _,_l_—/._}
a/r(/t? 7 I
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and
ZHO gEPe Ny
= 40710 172 — &
v G i [ 43
'{%(7_’0%1”7) +2/3
1+27)72 +7)
W(ﬂz +_]-Z
B/
_10(+2)% 7,

where -
?) E,

The injected particles represent a source of electrons and

ions. The corresponding source terms are obviously given

by

z2i_ Ny Pinyg 2 2
{1:23 = = d .=
' OS¢ T, 2 o"RE wa 5= 0

which in practical units yields

ZH 20 . :
(1.24) S = 3 16 10 & _Pl__"?__
- ' Ne E,orR

H

In the expression for S? we have neglected the small

number of beam particles that undergo fusion reactions.

In addition, we neglect the change of € due to the injection

of deuterium. This can be done since ng changes by at most
a few per cent owing to injection during a particle con-

finement time.
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The heating power generated by fusion is given by
ZHF :
O\L” = Vy Eux V& UL(E"‘),

ZHF

Qe = Vv Ex Vi Ue ( Ex)

_ N, Ea Vi - Q"7

Here E, 1is the energy of a fusion a-particle. V  is the

probability that a beam ion undergoes fusion during its
slowing-down. With Va' U, and U

i as given by Appendix 2 we
get

2 : - __3
(1.25) O.?HF_ 2,59-10" ¢ firg OZ"" Ny (1- ) /6/2_/_0_7(
R o N, E5? e

{&7 4 "7”’#7) 0 /T

1+ 277 +7]

_’//z

r‘117b2

1 492?4P 1 3 3, 4
73 X ¥ 1 72 2 |~
J ox ¢ EVE" X (X "+ 7
(0]

3
ZHF 16 P’ g T 25N
028 Gle. = 35400 2505 pm (1- %)

1 17 e . )
7%/ b4 2

-Io/x g ESX" 7 (X ", ) -Q;

(0]
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where /?7”k 6_1 44 - ,/0"3 ( +2) 2/, T

4

2
10 (o +2)7T,
Egs

The fusion reactions give an additional source of a's.

With the above notations one gets

H
(1.27) 5:: = Vn V« 3
20 Ny Ping (1-2¢) s 7;./2

6. Ni: Roak: BFBs=s]e
jozx ¢ ETXs X (X))

o

1.2.5 Bremsstrahlung

Bremsstrahlung results from the deflection of electrons in
the ion fields. In the presence of a-particles and impurity

ions with charge Z+ and density n and ns respectively

a
Karzas and Salter [6] give the expression

2
(1.28) &f*= -C/Te Ne (V?,c % +4‘/7¢9f.¢+€29c25 /’7;)

(C = 4,86 -10"%% in our units)
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for the electron energy loss term. For our purpose we may
neglect the small temperature dependence of the gaunt

2
factors gf’a’€(z /Te) and set g;,a,g*‘1'3'
The bremsstrahlung can leave the plasma without reabsorbtion.
Therefore QeBr is the only source term due to bremsstrahlung.

1.2.6 Recombination and line radiation

Recombination and line radiation are caused by the inter-
action between electrons and partially ionized impurity
atoms. Electrons lose energy owing to further ionization

or excitation of these ions. This energy is radiated out of
the plasma when an electron is captured (recombination
radiation) or the ion returns to its ground state (excitation

or line radiation).

For highly ionized ions Post [7] gives for recombination

radiation losses the expression

o 4
R Y4

(1.29) ee = —(_2 —7:‘61;—3 }qe nb"
g (4

(c=1,3 - 10°2° in our units).

An approximate expression for line radiation which is valid

for ions with at least three rest electrons was given by
Hinnov [8].

Le
(1.30) ae . CZ Pe s
=

(C=2-10 in our units).
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For ions with one electron Post [7] gives the expression

Le n( ﬁé’
(1.31) =—( E ———l,_ﬁ

(C =2 -10“20 in our units).

We shall apply this formula to two-electron ions, too.

Now if T1 and T3 are the temperatures at which O and 1
electron and 2 and 3 electron ions respectively are in

equilibrium we have

Le -20 V)) _— ¢ 1
1.32) Le =- 210 Fej zl/}( (P(/K;,TOJ})
6

—2.10" ne ) Ne P(0,Te, T)
6. F

41 if Ole X &P

L{’(or,x,io) =

o oOtherwise

The above formula for recombination radiation holds for

one-electron ions and approximately for two-electron ions.
The value given by the recombination radiation formula is
much smaller, or at most of the same order, for very high
7 values than line radiation for ions with three and more

electrons. Since recombination radiation decreases rapidly

for weakly ionized ions, we need not worry about recombination

radiation in this range and can neglect it for ions with
more than two electrons. Consequently, one has

R ~2% o¢ 3
(1.33) Q\ec=—”,3‘40 V%"ZZg Vg 90(7_;,7;,""’)_
'
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1.2.7 Cyclotron radiation

Bremsstrahlung, recombination and line radiation are local
effects inasmuch as the radiation energy which is produced

at one point as a result of the interaction between electrons
and ions can leave the plasma without reabsorbtion. This

is not true of cyclotron radiation and the computation of
cyclotron radiation losses is much more complicated. There-
fore, only vague estimates of cyclotron radiation losses are
available. Fortunately, in the temperature range expected

for a tokamak reactor cyclotron radiation is relatively

insignificant compared with other radiation losses.

In view of this situation we decided to make use of the

relatively simple formula

.
5/2

2y A Viro Vne_Te
(1.30) Qe = -2,2:10 Br (a4 Vor

proposed by Yang et al. [9]. The wall reflection coefficient
1 is taken to be 0.9 in most cases.

As to refuelling we only regard cold refuelling such as

pellet injection. We characterize the refuelling mechanism
by a given particle source NF‘ The neutral fuel particles,
when ionized, lead to fuel ion and electron sources of the

same form:

(1.35) Ser Nr:

F
(1.36) SL = N¢
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1.3 Explicit_set_of transport_equations

We now have the following set of equations for particle and

energy transport.

Electron energy balance equation:

(1.37) %%(ﬂeﬁ)-!—%a—al_-(k[grn—!- 0/(])

N Br
——E—;%—(l’?erc) - O\f‘-&- &3-!— Qe + Qe

L Re Zy ZH
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Qe--4737-70 24—/6_:,—72'/06(//7,( 2 + ot
2

T 6
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&

© 2
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Vi 2 e
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=1 Ny Z <,

1% 74
Y, 17 2 FNITs
Qe= 2,07 10 atM—%)VU-Q7;7

L

- 4
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0 else Q
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. .2 4 Vo
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Qe = Qe+ Qe
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Ion energy equation:
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2, 7
(0,0137 (#+2) 'Te - 0,000074 (3+2)T.")
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ZH zZHO zZHF
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/23
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Electron particle balance:

zZH
(1.40) D—?’i-‘-‘%"a—},(f’/—') S,(+S>‘
F
te Sfr
__4%94*
NV -1 _ 2 g 7;1/3
3} - = 7,34 40 }((/’ 2{) //])t _/_L.Q/?' )
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o-particle balance:

PYAN Z & R i 27
(1.41) -DT—I—'T-Q—I-_—(I’MA l/d)_Sa( "'Sd,
N -12 -
S, =368 10 " n(a-21) Vg
_ 1794
e T:7/3
A

3
b ps g0l Pang (1200 gy T
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Impurity particle balance:
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2. Volume averaged transport equations

2.1 General form of volume averaged transport_equations

e e S e S S R S S S e . S e — S —— i ———————

Equations (1.37) to (1.42) of the last section are a system
of partial differential equations for the time and space
dependent densities and temperatures which must be solved
with appropriate initial and boundary conditions. To simplify
the problem, one often solves the corresponding zero space
moment equations with some more or less plausible assumptions

as to the density and temperature profiles.
We shall follow this line and consider the space averages

of equations (1.3) and (1.5%) respectively. Quite general,

one has

L Vel PV Kl A ( F(F)

where V is the plasma volume, L come functional, f some

quantity such as n or T,
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If we apply the averaging procedure to egs. (1.3) and (1.5)
we get
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2.2 Profile forms and explicit_set_of_averaged_eguations
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To evaluate the averages in egs. (2.2) and (2.3), one has ;
to know the exact solutions of egs. (1.3) and (1.5). To %
get a closed system from egs. (2.2) and (2.3) alone, one %
must specify the solutions of egs. (1.3) and (1.5) in :
such a way that they contain at most one free parameter,

the time dependence of which is then described by

egqs. (2.2) and (2.3).

Usually it is assumed that the density and temperature
are constant in space or have a parabolic shape. To have
more flexibility in fitting density and temperature
profiles we consider those of the type

oo 1= o[-0 ] T-T, [-n(a-E) )]

The o, B8, €, Y, 6, v are assumed to remain constant

during the time evolution of the system.

With these profiles the above averages can be explicitly
evaluated. As a result, we get a set of ordinary
differential equations for the time dependent peak

densities ng(t) and temperatures To(t).
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To put the averaged equations in a comprehensive form, it

is convenient to introduce the following functions:
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With these auxiliary functions and eq. (A3.8) the volume

averaged particle and energy balance equations take the
following final form:

Electron energy balance:
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The first terms on the right-hand side of egs. (2.5) to
(2.10) describe the flux of energy and particles respectively
through the plasma boundary and work that is done by the
diffusing plasma against the pressure. These terms will be

specified in the next section.

3. Neutral particles and the plasma boundary

Up to now nothing has been said about neutral particles.
Particles (deuterium,tritium, wall material) leaving the
wall are neutral owing to the low wall temperature and the
low temperature in the region between wall and plasma [10].
On entering the plasma, the slow neutral are either ionized,
giving a source of electrons or ions, or undergo charge
exchange reactions, giving a source of slow ions and fast

neutrals some of which may fly to the wall.

Ions that reach the plasma boundary through transport
(diffusion) are usually neutralized to slow neutrals before
reaching the wall.

On hitting the wall, the slow and fast neutrals are reflected
or absorbed. Furthermore they may cause sputtering of the

wall material, giving a source of impurities.

These particles then undergo the reactions described above

when they enter the plasma or hit the wall again.

In a large reactor plasma these processes happen in a
boundary layer the diameter of which is small compared
with the plasma radius. This layer must be taken into
account when the terms in brackets in equations (2.5) to

(2.10) are specified.
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3.1 Electron and fuel ion flux through_the_boundary
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We shall assume the refuelled particles to be deposited
near the plasma centre. Furthermore the a-heating may be
regarded as an energy source localized at the centre
owing to the strong temperature dependence of the D-T-
-reaction rate [11].

Energy and particles are transported to the plasma boundary
by heat conduction and diffusion. At the plasma periphery
additional transport is provided by energy exchange reactions
with neutrals as described above.

The particle flux and heat flux of each species are in
general a linear functional of the densities and temperatures
of all plasma components. Plasma transport theory has
developed the complete form of the diffusion and heat con-
duction tensor only in the classical and neoclassical domains.
With respect to the uncertainties in the theory of anomalous
transport we shall, as usual,make the most simple

assumption

.

1 g 5 2l
F 7 n X QF

r=-D

o

for electrons and fuel ions in the domains of pseudoclassical,
trapped electron and trapped ion transport, which will be
relevant in future experiments and fusion plasmas. As to the
specific form of the transport coefficients in these domains
we shall use [12]
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As to the ion heat flux we take Ie > IL' , except
for the trapped ion regime, where It T = ¥£ TI

The behaviour in the whole domain can be sufficiently
¢
approximated by

All relevant source terms decrease rapidly towards the
plasma boundary, apart from those including neutrals which
are localized in the outer plasma periphery. Hence the
particle flux (of electrons and fuel ions) is nearly

constant, apart from the central and outer regions, and is




determined by diffusion and heat conduction. Therefore, we
compute the electron and D-T particle and heat flux at some
point r = A a (typically A = 0,7) instead of r = a and do
not consider the effect of charge exchange reactions on
transport in the peripheral region. That is, we assume that
the particle and heat fluxes through the plasma boundary are
determined by anomalous transport in the region between the
centre and periphery. We then get the following expressions
for the fluxes of heat and particles through the surface in
equs. (2.5), (2.6), (2.7) and (2.8) respectively
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(that is we assume that Nge and n, as well as Ti and Te are

similar in shape)
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The assumption of similar shape of ne and n, is critical.

From quasineutrality one has
Ne=Wy +2 N +) e Ne
€

Now in cases where one has impurity accumulation it is

still true that ne >>na, ne, but it is only roughly true

that ng >> 2 n,. Z ng . In such a case, if the impurity




distribution differs from that of the fuel ions, n

and ne

can no longer be similar in shape. On the other haid at the
beginning of the burn, when no impurities are present,

n, = nc. Hence the concept of constant profiles becomes
questionsable in the case of impurity accumulation if the

impurities are much more or much less peaked than the fuel.

Within this limitation Z depends only weakly on r and hence

we set Z(ra) = Z in the expression for D(ra).
e 2 (MeTe)
Finally, we have to evaluate the terms /ne or (Flele and
rzn}g%(;q{7l) in egs. (2.5) and (2.6). By definition we have
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Keeping in mind what was said about the sources we have as a

reasonable approximation r[' = const. It thus follows that

he ?53 e 9 F
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Within the parentheses on the right-hand side the contribution
of the second term relative to the first one depends much on
the shape of T, and n,. One has
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O if n, is very flat cbmpared with T,.

= P (0), ok
'Té(o) ln(ne(o)/n&(a)) if T, is.wvery flat
compared with n,.

It thus follows that

r 2 e
(3.10) /ne-;a;(ﬂeﬁ) -::—-—J,[Ff-]mro J
@< €n(Neco)/ Ne(al)),

@ depends purely on the profiles of densities and
temperature and hence will be, like all other profile
parameters, prescribed as an input data, according to
the situation.

Usually the term ¥ T Y %F(F W) in eq. (1.4)
is not considered. However, we must emphasize that
this term may even be considerably larger than the
diffusion and heat conduction loss term for certain

situations.

By analogy one gets

(3.11) % —-a—(V); i)’-‘-——%;[[—'[-]m TO‘. ] _ (

(In the case of not too high impurity concentration nge and
n, do not differ greatly so that the same value @ can be
taken.)

Combining equations (3.7), (3.8), (3.10) and (3.11), it now
follows that
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3.2 a-particle and_impurity_ion_fluxes

As to the a=-particles and impurity ions we shall assume
that they diffuse inwards and stay in the plasma. The
effect of the boundary layer is then characterized by a

surface particles source for each type of impurity.

Simple models of the plasma wall region which will be
adopted here have been proposed by several authors [10],
[13]1, [14]1, [15]. It is a common feature of these models
that always

(3.15) S;:-——%-[;"V)JVG‘L]:"‘%’%E[F"L:

ot
=~ ¥ S;

with some constant coefficients B}-. We shall specify the

X¢ in the respective applications.
As to the o-particles we shall assume inward diffusion

too. Since there is no source of a's from the boundary
it holds that

(3.16) S: = — %, [ﬂd l/: I’]w =0 .
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In specifying the fluxes of energy and particles, we have
now completed the equations (2.5) to (2.10) to a closed set
of ordinary differential equations for the time dependent

S i e i i A
quantities To(t), Té(t), ng(t), no(t), no(t), ngxt).

4., Numerical treatment and stability constraints

The above dervied system of 10 ordinary differential
equatlons for the time dependent guantities T {t), T (t),

n (t), n_ (t), n (t), n (t)....ng(t) is solved numerlcally.
Four types of input data must be considered:

1) The system parameters, R,a,BT,...., which characterize

the plasma under consideration.

2) Profile indices such as ae, Be, c€e, ye, e, ve .... At
the beginning of each run all auxiliary functions that
depend only on profile indices are calculated. Those
which depend on time dependent quantities too
(such as Ix(Ti""")) are tabulated.

3) The initial values of the time dependent quantities,
. e i e 1 5
that is TO(O), TO(O), nO(O), no(O) ..... no(O).

4) The time dependence of arbitrary source terms.

In the above equations the heating power P1nJ and the

refuelling rate Np can be chosen arbitrarily.

As to additional heating three modes of operation are L
intended: %
a) Heating with constant power for some time t

b) Heating with constant power until T reaches a

given value,

c) Heating with constant power until BP (for definition

of Bp see eq. (4.1)) reaches a given values.
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As to refuelling the following modes are intended:

¥
- N —7H= oln
a) Np=- (s‘E + sfgslg) so that %)It = 0 and ncf)

remains constant.
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This mode controls the fuelling rate in sauch a way that
the value of the poloidal beta (for definition see eq. (4.1))
is kept fixed near some values B, as long as possible during

a burn phase.

These modes are the most important ones but obviously others

can easily be provided.

In solving the above derived equations two constraints are
relevant which are given by tokamak stability and

equilibrium theory respectively:

1) Bp = some given value.

Here Bp is the poloidal beta defined as

(S5 + 5§+ 5S5) & Pr-Bo<o and Qo,
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where A = R/a is the aspect ratio and ¢(r) = r BT/R BP is
the safety factor.

Bp is computed at each time step and the computation

terminates if Bp exceeds the limit wvalue.
<

2) qgl(r) Z 1 for O g r - a

In our calculations only g(a) is needed. g(a) is connected
with the plasma current I through Ampere's law, which reads

in our coordinates (stationary case)

It thus follows that

o
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(4.4) BP(O’) = 2,00-10 R T

To take the condition q(r)z1 into account, g(a) is computed
by solving eq. (4.2) so that g(r) takes its minimal value
g(0) = 1. This has been described elsewhere [16]. It is
found that the corresponding g(a) is given by
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s oo =oj olz [(1-7e) (1-27) 5 + V2]

[(1-¢) (4-Z“°)f‘+ Ee] _
[(1-%4) (1-2%) P+ ¢,]

]3 (Okc,ﬁt,fe, y"‘g‘f yc/ d’-l ﬁ}; Ef) .

The corresponding I is then computed from eq. (4.3). This
procedure is reasonable for stationary situations. There
is some experimental evidence for a flattening of the
temperature profile within the central region giving

g(r) = 1 in this whole region. To cope with this situation,
where the simple considerations of [16] might not apply,

g(a) and I can be prescribed as arbitrary input data too.

These two modes are adequate for the I = const case. In

the more general case when I is time dependent as is the
case for instance during the current rise phase the coupled
system of equations (2.5) to (2.10) and the transformer
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equations that describe the ohmic heating transformer must
be solved simultaneously. Instead of I the primary voltage
and current are then given and I(t) is computed self-
consistently. We shall treat this procedure in detail in a
later study.

Apart from the densities and temperatures all other interesting
quantities which are functions of them are computed such as

all source terms, wall loadingsetc. For all these quantities
the integral.rtﬂt“-~ can be computed if desired. All

computed quéhtities can be plotted in any combination.




APPENDIX 1. " Ohmic heating

J "2 2
In this appendix we compute &g = "7:; ?n + 47_1_ ?.L .

For convenience we consider the cylinder approximation with
usual cylinder coordinates (r,tl,z) and assume Bp << B
(Bp = poloidal field, B, = toroidal field), so that

BT 2~ B. We then get

T
T

: = 5 .92 2 2
(A1.1) 4”2.—_ [_g-‘i (Bj,)] < (B Eﬁr)

[ Br 7p + Br‘ﬂlrjz

=% [Bpjp-l- Br'gr]z.

The system under consideration is assumed to be in MHD : =5
equilibrium. Hence the force balance equation C V["= ? XB

must be fulfilled, which in our coordinates reads
2P ' '

1.2 £l =9, B, — B

a2 CSp =2p B — 77 Bp

Eliminating jp from eq. (A1.1) by means of eq. (A1.2) we
get

2 4 ' . BS B 2pP7%
Fu =?[4TBT+?T_‘:+C Ef_a—;—"

e T ' Br 2P 72
~ 23 [4r Br+¢C w50 ]
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The last term in the bracket can be neglected compared with
the first one if (3 << 7 . It thus follows that

: 2

- 2
1.3y 4, = Jr

2
Next we consider the term 77, - 7& . From the force
balance equation it follows that

= cl7P><l§>
;11 = EBZ _ 6

One thus has

- 2

_ 2
w7, L = 7, (%}B—)
2 (vp)* 2 2b

2
where E/V)c - —77_[ C —g—f' -Bi’ is the classical

diffusion velocity (in this geometry). Combining equations
(A1.3) and (A1.4) it now follows

22 e AR
w5 Qi Jr = B SF .
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APPENDIX 2. " Thermalization of fast ions

In the plasma considered in this paper fast a-particles and
fuel ions are produced by fusion reactions and ionization

of fast beam neutrals. The respective distribution

functions are then no longer Maxwellian and the thermalization
should be treated by a kinetic equation. A much simpler
method is to treat the fast ions as a test particle slowing
down in a time constant, homogeneous and Maxwellian back-
ground plasma. This procedure is reasonable if the plasma
does not change much during the slowing down time and over

a slowing down length. The theory of a slowing down test
particle has been rederived for a multicomponent plasma by
W.A. Houlberg [17].

If the reasonable assumptions V << Vth and V >> Vth'

j = f, a , 6 (V the (ensemble) average test particle
velocity, Vth the thermal velocities of the respective
particles) are made the mean test particle energy E changes

according to

o % _ 1 ¥2 e
w2y 2o f% =— (E"+E )

-13 Z:- Ne &7-/.\.8

Mtl. Tegfz Y

A =45 a0
T

E.= 148 T. Mu[ m”%m

-J.,(é- Mf

(te indicates the test particle).




A2 -2-

E, is the test particle energy at which the rate of energy

loss to the electrons is equal to the rate of energy loss

to all ions.

Equation (A2.1) can immediately be solved:

p >
(1-¢7%)

3 s Y2
C

w22y E(¢)=E, €% — E

EO is the initial energy of the test particle.

From eq. (A2.2) the slowing down time at which E = Te is

derived as

3/ K
E.“+ Eo,

a2.3) T.=T @n( <
S 7_55/24" E:/z

3,
=~ T &1 (/I . i (gj)/z) § (sinceTC « E,_).

In deriving the energy balance for electrons and ions, we
need the fraction U and U, of the test particle energy that
goes to electrons and ions respectively. From [17] we get

w0 Ui=F[On(357E) + 217

V7
() ] 7T

a2.5y Ue = 1 - U

In deriving eq. (A2.4) T, << E, and T, << E_ are used.
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With equation (A2.1) one gets

(A2.6) n:é _ A48T, Mu[ 4 (mx nl\.

E, E, Ne en /e 2

.‘.—

g (1-H) bn L+ 44 N n N\« +Z Z: Ne &QA:)
3 - Mg
&

In the range of interest one has approximately

rh N = OnNun Ao = 62 Ny = 20

and én A\ e= 17 . Furthermore for 6 = 1...5 one has

Ze/Mg = % or smaller. With these approximations we get

- 2
7 =50 Muolc [:Zi (2+2‘t+3 V)en-;l’/f)]/g.

In typical applications’%%eis not smaller than 0,3. In
this range the bracket deviates only slightly from 2+ 2€ .

Hence we take the following final expression for 77

y;
ot
w2y M= 5,0 Mt (;+ ) 7 Te

Equations (A2.4), (A2.5) and (A2.7) must be applied to fast
beam ions and fusion a-particles.
We shall only consider deuterium beams and therefore must

set M . = 2 in eq. (A1.7) in this case.

In the case of fusion a's Mt = 4 and Eo has the fixed wvalue

Ea = 3540 keV. Owing to the smallness of

2

2 - 2
Ot +2)" T _ 56510 (+2) T,

(a2.8) 74 = 20,0 3540

73




AP =de

it is sufficient to expand the bracket in eqg. (A2.4) to
first order in,ﬂa?‘.

A 2 —¥2
a2.9) U; = 0,013F (n+2) " [e - 0,00084% (o+2) 1

The fast deuterium ions may undergo fusion reactions to an
appreciable extent when slowing down. To compute the
resulting energy production rate, one has to determine the
probability Va that a deuterium ion undergoes a fusion
reaction. Obviously, it is valid that

Ts
(A2.10) l/,;. = J V}t (‘V)(Ec{-)) o/'é_
0

7
From eq. (A2.1) one gets Oli‘ =-%T -E—-E;/—ﬁ;so that
3 le CEVI(E) E olE
VoL = —,_—T £

°

L]

2 !
With F, = 20,0-(X+2)/’ Ie .o e = (12305, \

¢
T according to eq. (A2.1) and the approximation
A% 74
-42-+¢ EB
<6-V>=3,(3‘40 E2/3

we get

e o Eo _ 194
(1-20) 14 7;/’[ ¢ E
%

V7 [4 E Ef/‘ (E 3/z+ (20(x +z)"§T¢)5‘é)

(a2:19) V. = 4,33
Te




Since the integrand of eq. (A2.11) is very small in the

range E‘<Te, one can integrate from O to Eo‘ Finally, with
X = E/EO, one gets

., 1794
3 Vs X7
\4 =433 (4'}{)”’(7:/1 ol x f R
Sy X7 (X7 7%
o

where‘7 is as given by eq. (A2.7).
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APPENDIX 3.  Volume averaged ohmic heating power density

From eq. (1.14) we have

M

J AE
(3.1) Qe =3,63-70 7r Te ZW

Z¢,¢ n’(—l—‘f’ nd‘ +ZZ "/‘777%

We shall assume the toroidal E field to be independent of
r as is valid in the stationary case. One then has
(A3.2) E___ e ;r 7' Z#, independently of r.
It thus follows that
. -3 ‘ -3
2 [4
(83.3) 47 o = ;ro [o ~Zyo
¢

: . -3 3 )
or ?T = ;'To Z“/o T: 2T¢/2 Z#"(o indicates the value at

r=o0 as usual).

From egs. (A3.1) and (A3.3) we eliminate jT:

-1 -2 2 -3 % -1
(A3.4) Qe-—363 10 Jr, Ze,yaT: 7:_ Zc//
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By definition one has
(A3.5) I: 277‘] olF F ?T , where I is the total current,
]

= JT 0/2 ?7‘ , where ﬁris defined as in
eq. (2.1),

i

Y Jre Zwo TE Y T2

-1

s
1

< 1,067 1070 v, 20 T E T2 70

or

in our units. On the other hand, from eq. (A3.4) one gets

gy B 2
(A3.6) &3 = 3,310 ”77‘0 Zcﬁ’(o 7_: [ e

From egs. (A3.6) and (A3.5) we eliminate j‘ro:

12 TI? 4]
a4 Tei’/z Z;

(a3.7) Qg =3,34-10




It holds that

= =T 3 1
T =Te " Ne N

-1

4 3 52
:fo/g ns [a-)(1-5")%+ ve ]
NG [(1-)(1-5)%r¢,] 7

o

[ (1-€)(1-5%) e+ €. ]
¢

~Ioh f;/g [ (1= %) (1- 579+ e 17
F -
[(1-¢)(1-5%)%+¢,]

[(1-2e) (1-§%) "0 e, ]

e
M j; (d\e,ﬂe,ic,}’t,sffﬁ,fﬂﬁﬂf’ Ef), ¢

2
+Z Ze‘ nf :] (OK( ﬂc,ig,4 o, a‘fﬁ;f;)

(J, is as defined in section 2.2, and Z is assumed to be only
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weakly dependent on r, which is in agreement with our
previous assumptions).

It follows that

7 az " Vo Z
@3.8) Qe = 3,317 40 -5/‘*/’70' T Vs

73-4 (de,ﬂh te, Ye,Se, Ve, R4, [33, E;).
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