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Abstract

Theories published on pellet ablation phenomena are reviewed.
Some inconsistencies are shown to exist in some of the studies
available. Models are developed and estimates are given for
pellet ablation rates in hot plasmas with and without magnetic
fields present. The possible existence of a self-regqulating

ablation mechanism is indicated.




The injection of frozen hydrogen-isotope pellets in hot
plasmas in considered as a possible means of increasing the
plasma density in present tokamak experiments Iy @ and for
replanishing particle losses in the next generation of tokamak
installations. The ultimate purpose of pellet injection
experiments is the development of a method for the cold
refueling of future reactor-size CTR experiments. The idea of
refueling by means of pellet injection originates from Spitzer
and co-workers 3. The alternative refueling methods (gas bleed-in,
neutral injection, cluster injection) as applied to reactor-size
experiments either lead to ionization and particle capture at
the plasma boundary, thus generating inverted density profiles,
or require very high injection energies to ensure penetration
times shorter than the ionization time of the particles.
Acceleration of a large number of particles to the required

velocity (typically 5 x 1012 particles/s per watt reactor output
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are considered to be the necessary refueling rate 4) would
require prohibitively large and expensive injector
installations. The injection power requirements are some-

what relaxed if cluster injection is considered 5, but only

pellet injection with estimated injection velocities of the

order of 104

m/s (approx. 1 eV of energy per particle)
offers a real alternative. The magnitude of the required
injection velocity is determined in this case by the estimated

ablation rates.

Pellet ablation in a hot plasma is affected by a
number of physical phenomena. The surface of a pellet exposed
suddenly to a plasma is bombarded directlv by the plasma
particles until the ablation products form a protective
blanket around it. Some of the electrons impinging on the
pellet surface are subject to elastic scattering, the rest
undergo excitational and ionizational collisions. The higher
the energy of the incident electrons the higher is the number
of ionizing events 6, while the energy transferred to an ion
pair produced approaches an asymptotic value. At the same
time, the electrons transfer momentum to the pellet. Also
the ions impinging on the pellet surface transfer momentum
and energy to it. The ions may be subject to charge exchange
collisions: the backscattered hot neutrals are then ionized
by the surrounding plasma and the cold ions left behind
increase the degree of ionization of the pellet mass. With
time the ablation products form a moderately warm plasma
blanket around the pellet,which may be partially or fully
ionized, depending upon the energy flux to the pellet. The
blanket, heated at its outer boundary by the surrounding

plasma and cooled at its inner boundary by the pellet, shields



the pellet,partially or totally, from the incident hot plasma
particles and acts, at the same time, as a heat reservoir for
the pellet itself. There is thus a continuous exchange of
mass, momentum and energy at the pellet-blanket and blanket-
-plasma interfaces, resulting in a continuous phase transition

from the condensed phase to ionized matter.

In this paper, we are concerned primarily with the
first phase of the ablation process, i.e. the determination
of the blanket parameters and the resulting ablation rates
as functions of the incident energy flux. If the parameters
of the surrounding plasma are given, the momentum and energy
fluxes incident on the pellet surface can be estimated in

the absence of shielding by
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Hence, while electrons and ions play an equal role in the
transfer of momentum, energy is transported primarily by the
electrons. If the incident electrons have a Maxwellian
distribution, it can ke shown by integrating over all electron

€, 8

enerdgies that

no 1
d v 5 NgVeth (kTe). (0.3)

Since the electron thermal velocity under experimental
conditions of practical interest is likely to be much higher

than the pellet injection velocity, the heating of the




pellet by the incident particles can be considered as
spherically symmetric and the effect of the pellet motion
on the ablation process may be neglected. (The effect of
a magnetic field has not yet been considered.) Hence the
phase transition time associated with the sublimation or
ionization of the pellet can readily be estimated in a
"zero-dimensional" approximation by writing the energy
balance for a spherical pellet heated uniformly over its

surface:

3
™ rp ng eph’ (0.4)

>
3
[ai
L=l
&>
t
I
W

where rp is the pellet radius, n_ the particle density of

c

the condensed phase, and eph the phase transition energy
per particle. Hence the ablation time At, the average
ablation front velocity u = rp/ At, 'and the mass flux
m = ueg. can readily be expressed as functions of the

incident energy flux (gc = m_n is the atomic mass):

ale’ Ma
_ ] _ =
A = 3 ncrpeph/fb yu = 3f1>/nc€ph, and m = 3ma(1>/6ph. (0.5)

Note that the ablation front velocity and the mass flux in
this approximation are directly proportional to ®. Taking

typical reactor plasma conditions and pellet parameters

- -3
BV 1014 cm 3, T 2 10 keV, @531013W/m2, n 25 x 1022 cm o

(ng c

rp A cm, eph =0.005 eV and 36.2 eV for sublimation and

for producing a hydrogen ion pair 7, respectively) we have

N1.4 x 10—7 s, and At N 10_4 s, respectively.

Atsubl ioniz



Hence if the pellet is to penetrate a plasma column
with a minor radius of a 2 1 m without being fully ionized,
an injection velocity of the order of 104 m/s and higher

would be required.

The assumption of instantaneous phase
transition at the pellet surface is well justified for the
vaporization (sublimation) process, but it may yield
incorrect rates for the ionization process, particularly
at low plasma temperatures. Indeed, if the energy flux is
not sufficient for instantaneous ionization at the pellet
surface, the vaporized material may form a cold cloud
around the pellet, thus increasing the surface area exposed
to the incident energy flux. The radius of this could can
be estimated if the expansion velocity of the ablated
particles and the time required for their ionization are

known:

rvap - Vvap Ati; where Ati = Ati(ne, Te). (0.6)

Assuming free expansion in vacuum

(fch/m )1/2 Rov X (4f§/(f11)m)1/2 (0. 7)
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where e/m is the energy per unit mass imparted to the pellet
and is of the order of the sublimation energy (0.005 eV) per
particle mass. The ionization time may then be compared with
the value that can be obtained from equ. (0.5) by allowing

for the increased effective surface:

2
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At = % ncrpeicb_ (rp/r (08)
Experiments performed on the Pulsator Tokamak at Garching2
yielded ablation times of the order of 300‘PS for deuterium
pellets approx.0.6mm in size at plasma parameter values of
18 & 1013 cm-3, T, < 10 eV (¢ P 2.0 % 107 W/mz). The time-
-resolved electron density measurements showed that the
ionization of the pellet mass was completed by the end of
the ablation process. The Ha line emission indicated the
presence of a cloud approx. 5 cm in radius around the
pellet. For the above plasma parameters equs. (0.5) to (0.9)
yield Atvap R ZBO‘Ps, Aty A SO}ps, 262 < L < 1500 m/s,

<
By o}
—_— 8 cm, and At % 320 ps (T, % 107K).

Note that in the above approximation the energy
expended on raising the kinetic and internal energies of
the ablation products has been completely neglected. The
flux reduction caused by the presence of the gas blanket
around the pellet and the effect of the finite penetration
depths of the incident particles 2 have not been taken into
account either. A further significant reduction of the
ablation rates may be caused by possible electrostatic

and magnetic shielding.



Electrostatic shielding may take place if the pellet
is negatively charged by the incident electrons. The
magnitude of this effect is determined by secondary emission
phenomena, i.e. by the number of electrons emitted per .
incident electron. The secondary emission coefficients is
a function of the incident electron energy and of the target
material; and it may be greater or less than unity. Condensed
hydrogen isotope pellets may be treated as dielectrics.
However, the secondary emission process is coupled in our
case with the process of removal of molecular layers from
the pellet surface owing to vaporization. The net effect of
these simultaneous processes has not yet geen investigated

and is beyond the scope of this analysis.

Magnetic shielding is caused by the reduction of the
effective plasma transport properties across the magnetic
field. If WeyTyy >> 1 (wci and 1,, denote the ion cyclotron
frequency and the ion-ion collision time), the thermal
conductivity of a plasma along the magnetic field lines is
dominated by electron conduction, while that across the
field lines is dominated by ion conduction, owing to the
larger Larmor radii of the ions. Chang 4 has shown that
the thermal flux carried by the ions along and across the
magnetic field lines are

d

i
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respectively. Hence, since ¢i > ¢ﬁ (%, /Ri N (mi/mé)1/2)r

it follows that ¢i/¢% < ¢i/¢% i (wciTii) 1

Since (w .} >> 1 for most cases of practical interest,

citii
one has ¢ﬁ >>¢i.+ ¢i. Hence, if no anomalous transport
processes are present, only the energy flux transported by
the electrons along the magnetic field lines play an

essential role, and the pellet with its surrounding blanket

is not exposed to a spherically symmetric energy influx.

The ablation of deuterium pellets in hot plasmas in
the absence of magnetic fields was considered by Gralnick 8.
The results he obtained from a steady-state ablation wave
model were used as inner boundary conditions in subsequent
numerical calculations pertaining to the expansion dynamics
of the ablated material. (The outer boundary conditions were
given by the fusion plasma parameters.) The magnetic
shielding effect was considered by Rose . in a steady-state
spherically symmetric magneto-static approximation. The gas
blanket surrounding the pellet was assumed here to be fully
ionized and field-free. ChangThas proposed a flexible
magnetic nozzle model in which he allowed for field

penetration into the plasma and plasma motion along the magnetic

field lines.



Some of the assumptions made in the above analyses
shall be re-examined and corrected in the present work and
thus some aspects of the above models shall still be
discussed in detail. Ablation rates based on properly
defined mathematical models shall be calculated here both
in the absence of magnetic fields and with magnetic fields

present.

1. ABLATION KINETICS IN THE ABSENCE OF MAGNETIC FIELD

1.1 Graldnick's Model

Gralnick 8 has analyzed the ablation of deuterium
condensate in a hot plasma by means of a one-dimensional
- plane wave approximation using the ideal gas conservation
equations. His model consists of two phases: the undisturbed
condensed phase and the vaporized phase. The two phases are
separated by the vaporization front, in which the energy
flux ¢ transported by the plasma particles is deposited.
The solid phase is at rest in a laboratory frame of
reference, the ablation front moves into the condensate
with a velocity u¢. In a reference frame moving with the
ablation front the conservation equations can be written in

the following form (see Fig. 1):

M =QcVe = §Vr b
5 ;) 2 20 e

M {v.-ve) = ?1Vr CcVe =Pe ~Pp » (1.2)
Y 2 2

1 = P1q 1
5 gc+§vc+q—e1+y1-+2vr ) (1.3)
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where
_ 2B _e_Spn o =
S Tl | §;; g=F = m, ! Vo = — Uy Vyp =V T Uy, (1.4)

subscript ¢ denotes condensate and subscript 1 quantities
downstream from the discontinuity (ablation or vaporization
front) in a laboratory frame of reference. v, is the
velocity relative to the discontinuity surface. The quantity
g represents energy flux per unit mass and is thus a
function of the ablation rate itself. At sufficiently large
flux values the energy spent on phase transition may be
neglected in the energy balance, i.e. q 4 @/ﬁ. The pressure
in the condensed matter P, was corrected by Gralnick 8 by
the amount of the momentum flux carried by the incident
plasma particles.

The system of equations (1.1) to (1.4) is supplemented by

the Jouguet condition

2
v.’ = Tpg/$;- (1.5)

The state parameters of the condensed phase E?c' Par ec)
are assumed to be known.
Equations (1.1) and (1.2) yield the well-known Rayleigh
relation:
2 -1 -1
Pe ~P1 =8 (81 - 8 ) (1.6)
whereas equ. (1.3) can be reduced, by means of equ. (1.6),

to the Hugoniot equation:
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With the help of equs. (1.5), (1.6), (1.7), and the equation

of state Gralnick arrived at the following quadratic relation:

v “ v e +qg-v 2/2
y+1 X 4 y#1 (x| _ ¢ c = B
y-1 Ve Y Ve s ’
Ve /2

whose solution he gave for y = 5/3 as

- + 1 2 1/2

€=v. /v, =0.4 -{ 0.16 + 0.25 [(e, + Q)/5u, - 11} .
Note that € reduces to unity at zero heat flux only if
ec/ui +[Y(Y-1)]_1- i.e. if u¢ approaches the isentropic

signal velocity of an ideal gas. Hence Gralnick implicitly
applies the ideal gas state equation to the condensed phase
as well. Note, furthermore, that in the above equation not
only € but also u¢ and g are as yet unknowns. At this point,
Gralnick introduced two additional assumptions: (a) he
replaced the unknown energy flux per unit mass by a given
energy input per particle ea: q = (1.5 Wy - EH,)/2 mp,

Wo ¥ 36 eV, Eg, ¥ 31.67 eV, and my % 3.35 x 1027 kgm;

(b) he substituted for the ablation front velocity u¢ = = A

the value obtained for a shperical pellet in a zeroth order

approximation (see equ. (0.5)) by assuming Maxwellian electron

: : . 8b
energy distribution "7, With g and v, known, v_ and the rest
of the flow parameters can readily be found from the above

set of equations. For an assumed set of reactor plasma

015 -3

cm ~, T = 108 ©

conditions (n = 1 K, % 4 x 109 W/cmz)

he obtained the following ablation parameters: |u¢| =

= 1.3 x 102 m/s, V4 B 1.3 =2 104 m/s, T4 = 2.0 % 104 °k, and

§./8. * 1072,
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Note, however, while the first of the above assumptions
is permissible in a mathematical sense (it only decouples the
ablation rate parameters from the actual reactor flux
conditions), the second assumption makes the problem over-
determined. Indeed, if the state parameters of the condensed
phase are given, equs. (1.1) to (1.3) with equ. (1.5) are
necessary and sufficient for unique determination of the four
unknowns Var Ver Pqr and g1 (and of the associated quantities
Uy Vqr ﬁ, and e1) in terms of the given energy flux o.

Moreover, as shall be shown in the next section, the solution

can be obtained in explicit form.

1.2 The Two-Phase Jouguet-Type Ablation Model

For the sake of simplicity, it shall be assumed that
the equation of state of an ideal gas applies also to the
condensed phase (the problem also being solvable without
this assumption). Eliminating the pressures and internal
energies from equ. (1.7) by means of equs. (1.4), (1.1),

(1.5), and (1.6), we obtain

xz - 2% + 1 - 2uq/vr2 = 0,
(1.8)

where x =8,/ = v /v, and u = (y-1)/y+1).

Introducing now the notation

i
v = 2 e - N2 y
ug % 2u(e/m éph/ma) v 2ud/m, (1.9)
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the solution of (1.8) yields

1 N + @

= S 1 bl | (1.10)
e % v
-u¢ =iy = ., (1.11)
v, =+ 0. (1.12)

A combination of equations (1.2), (1.5), (1.10), and (1.11)

yvields a quadratic equation relating Vs and V:

Vr2 + (y-1) % Vi = (cc2 + YGZ) O 18z (1.13a)
1 + o+ p
ve= sy w = /T +a 19 1= 30
where
2 c_\2
s 2 [¢] 2 _
n® () (%’) i P Gy B MR/ cs =19

The first double sign in equ. (1.13b) originates from the
solution of the quadratic equation (1.8), whereas the second
cne is from the solution of equ. (1.13a). As shall be seen,
the selection of the proper sign combination is unique.

A second relation between T and ¥ is obtained by substituting

equ. (1.11) in equ. (1.9):

Expressing v.. from this equation and substituting it in equ.

r

(13a), we arrive at an explicit expression for ¥:
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Ay- - 1 =0, or y3(y B A) = 1, where

(1.15)

Js, 78 2ue \1/2 .
y = v/vc, Vs E (?EE;) , and A = (Y+1)vc/cc.

ccC

Note that the solution of equ. (1.15) may be positive or
negative. Note, furthermore, that replacing y in (1.15) by

-y only reverses the signs of the second term. Because of

this symmetry property it is sufficient to consider only the
positive solutions (¥ >o0) of equ. (1.15). Since, by defi-

nition, v, > O and /1+n > u (y= 5/3), we may rewrite equ. (1.13b)
in its final form:

v, = % (v¢1) T Ewm e ; ¢ > o. (1.13¢)

We may now identify the two branches corresponding to the
positive and negative signs in equs. (1.13¢c) or (1.15). As

can be seen from equs. (1.10) and (1.12), the positive branch
corresponds to compression: the compressed matter follows

the propagating ablation front. This is a detonation-wave-like
solution. The negative branch corresponds to expansion: the
flow in this case is directed away from the discontinuity

surface. This is a slow-burning-type subsonic flow solution.

Let us now consider the domain of y variations
corresponding to the positive and negative signs in equ. (1.15).

Since only positive ¥ values are considered, as can readily be

seen,
18 20 ep 3
(a) positive branch: 1 € y ¢« A 70 % x‘?/cC < (T:TQ ) ;
: (1.14)
(b) negative branch: 1< y<A; 0 ¥/c_, < 2(y-1)¢7,

% = 3
where 6% = @[fccc (1.15)
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is the dimensionless energy flux. The upper and lower

limits correspond to ¢*>>1 and ¢* <<1, respectively.

Assuming ¢* >> 1, which is certainly the case under
reactor-like plasma conditions, and taking the values of
¥ given by the upper limits of equs. (1.14), explicit
expressions can be obtained for all plasma parameters both
for the detonation-like and the slow burning-type solutions.
The corresponding expressions are given in the first two
columns of Table 1. All quantities denoted by asterisks are
nondimensionalized by means of the condensed state para-

meters (gc ¥ 167 kgm/m3, . % 10 OK,t:c ¥ 262 m/s).

For moderate and small values of ¢*,9 is determined
by solving equ. (1.15) for y = 0/00 (an iterative solution
is straightforward). Ablation product parameters calculated
by this method are shown in Fig. 2 as functions of the
energy flux ¢ both for the detonation-like and the slow-
-burning wave solutions. Note that with ¢ -+ o u¢ e (see
(equ. 1.13a with ¥ + o) and thus the dimensionless mass flow
m* = ’u$| defined in accordance with equ. (1.1) approaches
to unity instead of zero. For this reason, at low energy
fluxes it is advisable to use the product 91v1 for determining
the ablation rate. As can be seen from Fig. 2, f1v1 *lu¢l 9c

10 2 14

W/m“. The results corresponding to ¢ %4 x 10 A

at ¢ ~ 10 W/m

are quite different from those calculated by Gralnicka.

Note the basically different functional dependences on

¢* in the two cases considered (detonation-like, slow
burning-type solutions). While the detonation-like solution
predicts increasing mass flow and increasing ablation rate

at higher energy fluxes, in the case of anexpansion-type
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solution the ablation front velocity and the mass flow
decrease with increasing energy flux (in contrast to
Gralnick's model, in which m* « &* was assumed a priori, and,
as a result of overdetermining the problem, an expansion
solution (91{rc << 1) was found). This second case in fact
corresponds to heat being added to an already choked flow

(a consequence of the Jouguet condition), which, as is well

known in gas dynamics, causes a reduction of the flow through-

put.

Summarizing the results of this two-phase Jouguet
flow approximation one sees that two types of solutions are
possible: one corresponds to compression and reversed flow
behind the ablation front, the other to expansion and out-
wardly directed flow. Intuitively, one would not expect
reversed flows and vapor densities higher than sclid phase
density in ordinary ablation processes. Besides, the incident
radiation in this case would be intercepted by the shocked
material; hence the basic assumption of the model (energy
deposition at the discontinuity surface) would be violated.
This model can thus probably be omitted from further considerations.
On the other hend, the m o ®—1 proportionality characterizing
the expansion solution cannot be considered as nhysically
realistic either. Hence the two-phase Jonguet model is not
generally applicable even if it is posed and solved correctly.
The defficiency of this model is due to neglecting an
essential physical phenomenon: the intense - energy deposition
at the surface discontinuity inevitably leads to the formation
of a shock wave which penetrates the condensed phase preceeding
the ablation wave. Part of the energy flux transmitted to the
medium is dissipated in the shock wave and the ablation wave

propagates in a shock-heated medium. It is thus necessary to
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consider a model consisting of at least three phases: the

undistrubed condensed phase, the shocked phase, and the

ablated material.

1.3 Three-Phase Jougquet-Type Ablation Model

The system considered is shown in Fig. 3 in a

laboratory frame of reference. The ablation wave moving to

" the left with a velocity uy

is preceded by a shock wave

penetrating the undisturbed condensed phase with a velocity

ug - The density is assumed to decrease across the ablation

front, i.e. the expansion-type solution is assumed to apply

to the second discontinuity surface. The conservation

equations applied to the dicontinuity surfaces and, written

in the respective relative reference frames, are as follows:

Mg = ~fUg = §5(VgTUg) s

S’s(vs-us)2 - gcus2 = Pc T Pgr

e, + gﬁ + Eug = 8yt ;i & % (v, = us)z,
ﬁ¢ = (vS - u¢) 51(v1 -u),

g1(v1 u¢)2 = $ (o, — 0 )2 = pg ~ Pqs

where e = ;—— P , and g N = .

(1.16)

(1.17)

(1.18)

{1.19)

(1:20)

(1.21)



As before, the equations are supplemented by the Jouguet con-

dition:
(vq = u,)° =y g L1:22)
1 ) f1

A unique solution of the above system of equations requires,
in addition to the Jouguet condition, specification of still
another constraint (unkown: ug, Ugr Vgr Vir Pgr Pqo 9+ and g1).
There exist some obvious physical arguments which could lead

to an additional condition but, unfortunately, none of these
yield a single-valued explicit constraint of the type of

equ. (1.22). For example, if steady-state conditions are to
prevail, the stagnation pressure downstream from the ablation
wave may not be less than the ambient pressure. This con-
dition defines a whole range of admissible total pressure

values.

Instead of choosing any particular and, to some extent,
artificial constraint at this point, we shall first obtain
a series of solutions with one of the flow variables as a
free parameter. Analysis of the solutions thus obtained may
then define the region of physically possible plasma parameter
values.

Note that equs. (1.16) to (1.18) are the conventional
shock wave equations and their solution is unique if one of
the shock parameters is given. We shall thus proceed as

follows: prescribing a compression ratio

a=¢./¢.= g; (1.23)
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we compute the state variables behind the shock wave by

means of the Rankine-Hugoniot relations:

1
pt = BW . o =l [els a)/2
S 1-ap ' s s Y+1 1-na

(1.24)

The energy dissipated in the shock wave is given by the
change of the stagnation temperature of the gas in the

laboratory frame of reference:

& =m [lv2+% S5 - 5. (1:25)

The energy flux affecting the gas at the ablation front
is the difference between the total energy flux deposited
in the ablation wave ® and the energy flux expended on

shock-heating the condensed matter:
®ogf =%~ %5 (1.26)
Hence defining

S and 9. T (—m—) (1.27)

-

-V
y=a—,A c
S o ‘SS

v

mn
=
+
—
S

all flow parameters can readily be computed by finding v

from equ. (15) and following the procedure outlined avbove.
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The value of "a" can be varied between 1 and

amax amax(Qs)’ where the lower limit corresponds to vanishing

shock wave strength (¢_c¢ %6, ¢, +0), and the upper limit
corresponds to the case where all energy is dissipated in
the shock wave (o, % ¢ , ®.gf > O). For the case a > 1 the
slow burning-type solution displayed in Table 1 is applicalbe,

whereas the second case ( a * a ax) corresponds to a two-phase

m

shock model, without the Jouguet condition applied.

An analytic solution with ¢, = ¢ as given parameter
can be obtained for this limiting case as well. Indeed, expressing
@s ,definéd by equ. (1.25), in terms of the compression ratio a,

we obtain, with the help of the Rankine-Hugoniot relations,

o 3/2 )2
o = —S o = (=2 N g (1.28)
& §cCc = (1-ua) >/ 2
This is the equation that defines a = s in terms of a

given ¢§ value. The value of "a" can readily be found from
equ. (1.28) by iterative means. Furthermore, assuming

a = a the shocked flow parameters can be expressed as

max’

functions of the dimensionless energy flux @g by means of
equ. (1.28). The results are given in the last column of
Table 1 (see also the corresponding curves in Fig. 2). As

can be seen, the functional dependence is the same, as in the
case of the detonation-wave-like solution, only the numerical
factors being different. This difference is due to the

absence of the Jouguet condition in the ordinary shock wave

n n

solution. The quantity "a", of course, is itself a

function of @3, but its variation may be neglected if

> 13 7,

¢, ~ 10 w/m“ (a =+ d).

max
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Varying the value of a between 1 and a sets of

max’

solutions to equs. (1.16) to (1.22) can be obtained for any

given ¢ value. Typical reduced flow parameter variations are

11 7.

shown in Fig. 4 as functions of a for ¢ = 10 w/m~. In the

same figure, the ratio of the energy flux dissipated in the

shock wave and the total energy flux absorbed is also shown.

The existence of several characteristic flow regions can

ot
> u o

[0} ]

and thus no steady state exists with two discontinuity surfaces.

ats
“w

readily be observed in Fig. 4. For a R 3.13 one has u

In the region a A 3.1 the value of gﬁ becomes greater than
unity. As has been discussed above, this situation is also
inadmissible under steady-state conditions. Finally, if

a R 3.01, vy > O, i.e. the ablated material streams towards

the condensed phase as in the case of detonation and shock
waves. This case, too, is very unlikely to occur under normal
ablation conditions. The same characteristic parameter regions
are found at other incident flux intensities at well. Moreover,
at high flux intensities still another constraint may be defined
which imposes a lower limit on the value a: the temperature

T1 should not exceed the ambient plasma temperature.

We may consider the vy O case as the upper limit for

ablation rates and the associated plasma parameters. The

:1;

to this upper limit are plotted in Fig. 5 as functions of the

ofe
b

reduced mass flow rate €%*u and the temperature T.,* corresponding
s P 1

incident energy flux ¢. For the sake of comparison, ablation

rate and temperature values corresponding to the average compression

ratio within the inverval 1 - a = a(vy = 0)< g1v1> and <T’i‘>,

respectively, are also shown in this figure. As can be

seen,at high flux intensities the value of <T,;%*> approaches to the limit
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represented by the abmient plasma temperature. Realistic
ablation parameter values should lie between the respective

limit curves shown in Fig. 5.

The ablation rates obtained from the three-phase Jouguet
model without shielding effects present are extremely high.
The pellet injection velocities associated with these ablation

rates under reactor conditions are well over 104 m/s.

2. ABLATION IN THE PRESENCE OF MAGNETIC FIELD

2.1 Rose's Balloon Model

Rose > assumed that the ablated material ionizes
instantaneously at the pellet surface and expands by blowing a
diamagnetic balloon around the pellet. The main feature of this
model is the reduced heat flux to the pellet: assuming that the
particles are confined to magnetic surfaces, energy is trans-
ferred to the ablated material only by those gyrating particles
whose orbits dip into the sides of the balloon as they travel
along it. Thus the balloon model consists of three regions
(spherically symmetric geometry): (a) the cold
pellet of radius rp, (b) the fully ionized diamagnetic balloon
of radius rq surrounding the pellet and consisting of a plasma
of temperature T1, density ng, B1 = 1 (B1 = 0), (c) the un-

perturbed background plasma with ng, T B , where

or "o
2 2
+ o, =
Py Bo/%po Bvac/%PO' The state parameters of the unperturbed
plasma are known. It is assumed that o, = A} and Te = T4'in all

regions. The ablation products can only escape along the magnetic
field lines, and the outflow velocity is assumed to be the

local sonic velocity (flow area % ﬂr12). Rose described this




model in a magnetostatic

following equations:

=Dl

approximation by means of the

Particle continuity: Trr?n1vS = G, (2:1)
Pressure balance: 2n1kT1 - Bsac/%Po' (2.2)
Energy balance at r = r, apF1 =G § [2:3)
Energy balance at r = r,: a;F = G(§ + 3 k Ty) s (2.4)
where G(sec_1) is the particle ablation (ionization) rate,
F, = 0.5 n1%ﬂtET1 and Fo = 0.5 N Veoth kT are energy fluxes

(correspinding to Maxwellian distributions)

surfaces, a_ =

p
r, = mv/eB << r, is the gyro-radius, and Ve
Since r ;Vi¢nT4 = ToeVethle!

at the respective

2 2 2
4ﬂrp, a; = ﬂ[(r1+rc) - r1] A 2mr, T,

1/2
(2Ti/mi) .

.only one species of particles

is considered as energy carriers and the energy spent

on heating the vaporized

gas is neglected. The ablation

kinetics (ablation or shock wave propogation, etc.) is not

considered in this approximation. The above set of equations

is sufficient for unique

determination of the four unknowns

G r r1 r n-1 I and T1 -
rr’ B (BKT;\1/2
G = £ (equs. 2.2 and 2.3), (2.5)
€. %p T M.
i o e
r m_ 1/4 /XkT.,1/2
1 32 Ta 1
- t? = (1:) (equs. 2.1 and 2.3), (2.6)
P e i
Bjac
n (equ. 2.1), and {2.T)
1 %pOkT1
kT, . | [( n kT, )(22 T§)1/4 (fEi) (§29)1/2 _1] (2.8)
éi 3 B2 T m Iy Gi
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A thorough analysis of Rose's solution was given by
ChangT. He showed that the plasma temperatures obtained
from this solution are much too low (T, % 1 eV under reactor
plasma conditions) to justify the assumption of a fully
ionized diamagnetic balloon around the pellet. Chang also
showed that, in the framework of this model, physically
possible solutions (T1 > 0) are only possible for certain

pellet size and magnetic field strength combinations.

2.2 Chang's Magnetic Nozzle Model

Since the blanket surrounding the ablating pellet is
not likely to be fully ionized, Chang7 allowed for the
presence of magnetic field in the blanket by prescribing

the ratio
€= B1/2001 4 (2.9)

where subcript 1 denotes parameter values around the
pellet and at the entrance section of the "magnetic nozzle".
His model is described by means of the following equations

(see also Fig.6):

garee = SR1V1 (2.10)
p/gr = p1/g;]f y (2:-11)
gv® - ¢.vi =p; - p (2.12)

2 _ _ 2 _ o2
p+B /%pd— const = po+86/%Po - . /%Pbt(2'13)

aB = a,B

T=1= (2.14)
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where a is the stream tube cross-section: a = wrz.
Equation (2.14) implies that the stream tubes are
identical with flux tubes, i.e. the plasma is only allowed
to move along the magnetic field lines. Hence the ablation
products stream away from the pellet as if they were
enclosed by a (flexible) nozzle. The pressure variation
is coupled to the magnetic field strength variation along
the nozzle by means of equ. (2.13). Chang has assumed that

the flow becomes sonic at the nozzle throat:
_ { 1/2
Ve = ( P:‘e/gfc) ’ (2.15)

and that the throat area is equal to the pellet cross-

-section:

ax, =a_; ry =r_. (2.16)

He further assumed that the throat pressure is given by

the surrounding (known) plasma pressure:

Px = pO ;Bf: = B ] (2.17)

i.e. undisturbed background plasma conditions prevail

at the throat of the nozzle. Similarly to Rose's approach,
the ablation kinetics is neglected also in this
approximation; the ablation rate G is assumed to be

given by

_ 2
G = nrp Ny Vieh kTT/Gi' (2.18)
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As can be seen, the first three of the above equa-
tions correspond to isentropic nozzle flow, and hence,
for stations between a, and a,, the relation known from ideal

gas dynamics apply (equ. 4.8 of Chang7):
s

2

Pi. ¥

i G 1GHT (2.19)
o] (o]

Il

r 4 f
Py - Y41 .

Considering equs. (2.14) and (2.16) together, one
notices that only those magnetic flux surfaces that were
initially embedded in the cold pellet remain trapped in
the ablation products. The flux tube, which was originally
attached to the cold pellet surface, forms the boundary of
the magnetic nozzle at later times, i.e. no field or
particle diffusion takes place across this boundary. Hence
the external magnetic field does not really penetrate the
ablation products and the model is in this respect not

different from Rose's diamagnetic balloon model.

Note, furthermore, that it follows from equs. (2.9)

and (2.13) that

2 2

B /2 B
_ _vac’ }o 1, _ _€
Pq= T+ , and (B ) = =7 - (2.20)

vac

Furthermore, equs. (2.14), (2.16), and (2.17) yield

r, 4
(El) = (1-8) %;l , where 8 T —E—BL-—-
P Bvac/%PO
is a given parameter. Since
B%_ /2
P _ Bvac/PPo Yo 1
Po 1+€ 5 g2 B(1+€)

vac
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we obtain

i N 1-8 ] ’
(r ) - 1_(p1/b0)3 r (2.2 )

which is a second relation between (r1/rp) and (p1[po) incom-
patible with that obtained from ideal gas dynamic considerations
(equ. 2.19). Hence, the system of equations treated by

Chang is also overdetermined.

There is no simple way to modify this model. To
remove one of the constraints used, one would necessarily
have to change a number of other assumptions as well. For
example, if we remove the ry = Ip constraint, the pressure
could be computed from equ.(2.20). However, ry # rPis

equivalent to allowing for field penetration and thus

equs. (2.14) and (2.17) would have to be modified as well.

Since field penetration is a diffusion process, any
steady-state approximation allowing for non-vanishing magnetic
fields in the ablation plasma should include some assumption
regarding the inward diffusion of the magnetic field and the

outward motion of the ablated and ionized matter.

2.3 Magnetic diffusion model

The model considered here can be described as follows:
The pellet is initially in direct contact with the surrounding
plasma and thus the ablated particles are ionized within a

time At; = At; (n

" oo’ Teo)r where subscript "o" denotes the
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surrounding plasma (neé =n T = TO). Considering

o’ “eo

collisional ionization, this time is much shorter than

the ablation time in all cases of practical interest. As
time goes on, the ablated particles form a blanket around
the pellet, whose temperature is different from the un-
perturbed plasma temperature: T1 <To. The ionization front
moves some distance away from the pellet surface (r1 > rp).
Some of the electrons in the blanket recombine,and, since
the characteristic recombination times are also much

shorter than the ablation times (owing to the high densities),
the electron density in the blanket n,, may be approximated
to a fairly good degree of accuracy by the equilibrium (Saha)
density value corresponding to the temperature T1. The
particles ablated leave the pellet with a random velocity
whose magnitude lies in the range given by equs. (0.7), and

are ionized after a time Ati = At. (n

i a1’ T1), where subscript

"1" denotes parameter values in the blanket around the pellet.
The ionization front while moving outward displaces the
magnetic flux lines. If field diffusion could be neglected,
the magnetic flux originally imbedded in the pellet would be
distributed over the blanket of radius ry- However, as will
be shown, the penetration depth of the magnetic field Al is
comparable in some cases to the blanket radius or is even
larger. The penetration depth is given by

AL = (at/eug) /2

The field penetration is complete if the field diffusion
velocity is greater than or equal to the outward directed

flow velocity, i.e. if
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LY -1/2 - Ar, - 0
Vi = e = (G%quT) > ¥ =g Ar = r, Y

Rm = €T1uOV1Ar <1, (2. 22)

where Rm is the magnetic Reynolds number based on the blanket
parameters. Thus the Rm = 1 condition represents the limit

between magenitzed and diamagnetic ablation plasmas.

It is assumed that the electrons heating the pellet can
only move along the magnetic flux lines. Energy is thus
transported only along those flux lines which either pierce
the blanket or are at a distance from it not larger than the
electron gyro-radius. The effective area exposed to the

thermal flux @O = 0.5 noveOkTO is thus given by
2 2

ap =21 {2+ [rPm(r-a0?1 + Ly + 1 9% - 1%,

c
where the first and second terms of the r.h.s. account for

the magnetic flux lines that were originally imbedded in

the pellet and those diffused into the blanket, while the
third term accounts for the gyrating electrons, whose
trajectory dips into the sides of the blanket. The energy
carried by the gyrating ions is accounted for simply by
doubling the corresponding electron flux term. As éan

readily be seen, for magnetic field strengths of practical
interest (B R 3 T), this contribution is altogether negligible
relative to the fluxes corresponding to the first two terms.

There is of course a limit on a; : a1 X 2ﬂr12.
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A quasi-steady approximation is used, the time-
-dependent build-up of the blanket around the pellet nét
being considered here. The shock kinetics discussed in
the previous sections as well as the phenomena associated
with the finite penetration depths of the incident particles
in the blanket are also left out of consideration. It is
assumed that the energy flux incident on the pellet surface
causes only vaporization, and that the radial velocity
component of the vaporized particles vVap can be approximated
by the sonic velocity at the pellet temperature. The major
part of the energy is transferred to the particles at the
blanket-plasma interface. It is assumed, furthermore, that
the vapor velocity does not change appreciably over the
ionization length Ar. The motion remains spherically symmetric
up to the ionization radius Tqs and the charged particles
then lose their radial momentum and leave the blanket region

along the magnetic flux lines.

The system of equations defining the model can thus

be written in the following form:

2

2 ol 1 3 , 3
2ﬂr1 n@o = G(zmav1 * 5 kT1) + %3 (ei + 5 kT1), (2.23)
arr %6, =G € (2.24)
' p 1 vap' *
- p - = _
r1—rp = Ativvap’ Ati = (ne1SC1) : Sc1 Sc(ne1, T1) (2.25)
where
G=G_+G, G_ = 4rr.“n v,, G_ = 2iir 25
r Fa 1 1° 1 "e 17




T

| i
n = min (n0,1), AL = Ar/Rﬂ%3r1/Rmfy Rm1 = 6;uov1r1, and

1/2 (2-Rm;1/2) + 2 (rec/rT) (2 & Boleg] e

=
Il

(rp/r1)2 + Rm;

In the present estimates, the ionization coefficient values
9
tabulated by Diichs on the basis of the analysis of Bates,
10
Kingston, and McWhirter have been used. The above equations

are supplemented by the Saha relation

2
ngq = ong, o/ (a=1) = fs/n1,

where n, = ny + n,, and f = const. T?/zexp(— €;/xT ) (2.26)

The energy flux ¢ is defined by equ. (0.3). We thus have four
equations (2.23) to (2.26) with five unknowns: Nyr Ngqr T1,

Vi and rq-

Sonic approximation. To make the above system of equations
7

closed, we shall assume, as Rose5 and Chang’' did, that the

ablation plasma leaves the blanket with sonic velocity:

- 2
1

2 — . ] . —
c,” = fb1/g1, Py = nakT1 + 2 ne1kT1, 91 = nm_. (2.27)
With this assumption the above set of equations reduces to

(MKS system) :

né, = n,c,kT, {(1-a/2) (¥(1+a) + 31 + o (Ei/kT, + 3/2)}, (2.28)

kT, 1/2

r

El _ (74.921/2 a 1) ) (2.29)
P (a+1) 2-a evap

rq - rp = VvapAti ’ (2.30)
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1/2

ngq = ng(ng, g, ¢ = [T(1+a) kTi/m, ] (2.31)

el

which can be solved iteratively for any given values of ¢O,

r , and v (v Y fch/ ma)1/2

p* vap vap
Results calculated on the basis of this approximation are

% 262 m/s).

displayed in Table 2 for ¢o flux values ranging from present
low-temperature boundary layer ablation experiments up to
future reactor conditions. A discussion of the results

follows below.

Approximation with transverse momentum balance. As is known
1, 12

from laser-plasma calculations , the assumption of sonic
flow is a rather crude approximation for spherical flows with
energy influx. It is thus of interest to check in what way

and to what extent the ablation parameters change if the sonic
constraint is removed. Since the velocity V4 is now an

unknown quantity, an additional condition is introduced in

the form of the transverse momentum balance:

2 2 _ B 2
(p +§v” + B /2110)1..‘_‘s r, = p, + BO /2 T Bvac/zuo' (2.32)

Since the magnetic field penetrates into the blanket to a
depth A% and the ionization radius ry is thus located in the
region of the surrounding magnetic field, there is no.field
discontinuity at r = r, and equ. (2.32) reduces to

2
(1~a)f1v1 + (1+a)n1kT = 2nOkTo. (2.33)

1

For checking the effect of the magnetic pressure on the
ablation parameters, some calculations were performed also
by retaining the B2/2uO term in the above equation and assuming

that
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2 _ 2
ﬁrpBo = Tr(r1 AL) B1, (2.34)
which is an additional equation defining B, = B(r € r1).
In the momentum balance approximation equ. .(2.28) is replaced

by

no, = n1c1kT1M1'{(1-u/2)[(1+a)fmf + 31 + a(€/KT,+3/2)} (2.35)

and is supplemented by an equation that can be obtained from
equ. (2.33):

(140) [1 + (1-(1)er] n kT, = 2n KT . (2.36)

The system becomes somehwat more complicated if equ. {2.33)

is replaced by equs. (2.32) and (2.34).

An iterative solution to the above system of equations
is somewhat tedious, but possible. Results based on the
approximation with equ. (2.33) (or eqg. 2.36) are displayed

in Table 3.

Discussion of the results.

The parameters r., N4, T1, M.I = v1/c1,and the ablation
rate G are displayed in Tables 2 and 3 as functions of- £he
input parameters ¢O(nO,TO) and rp. The last two rows in
both tables correspond to two different pellet sizes at the
same flux value (reactor plasma conditions). The ablation

time T = NP/G is also shown in Table 3.

The results corresponding to the two different approximations
display a common characteristic: as the flux intensitiy ¢o
increases, the blanket radius r, decreases, but, at the same
time, the blanket density n, increases, and so the blanket
temperature T, remains practically constant (of the order of

1 evV), over 5 orders of magnitude of ¢O—variation. Hence the
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TABLE 2 MAGNETIC DIFFUSION MODEL, SONIC APPROXIMATION (M1 = 1)

w -3 =3 -1
¢o(;2') nofcm ) T (e) rp(nm) r,(m) n, () T, (eV) G(s )
2x 10" 1.2x1013 1.0xlo 0.31 43.8  2.0x10'? 1.80  4.17x10%2

100 2.0x103 9.7x10  0.60 16.1 1.0x10'! 1.05  3.07x10°3
Yool 2.oxt0 2.0x103  0.61  3.15  1.4x10'° 0.99  2.11x10°°

103 1.ox10M  1.sx10? o0.60 1.00  1.6x10%' 0.97  1.76x10%°

13 14 4 21

10 1.0x10 1510 5.10 6.35  1.7x10%' 0.92  7.45%10°7

TABLE 3 MAGNETIC DIFFUSION MODEL, MOMENTUM BALANCE a)

3 1

y 5 y
¢>0(r—;§) rp(mn) r1(rrrn) n1(cm ) T1(eV) M, G(s ) T (us)
2 x 10’ 0.33 42.8 4.8x10'%  2.50 1.70  1.75x10%% 433
9 14 23
10° 0.60  36.8 9.7x10 ~  1.38  3.% 4.85x10 93
1011 0.59 17.5  1.7x10"°  1.35 15.3  7.70x10%> 56
1013 0.61 9.5  3.3x10'° 1.36 55.4  1.50x10%% 31
1013 5.15 6.9 1.7x10'° 1.20  54.3 4.25x10%° 678
a)

The ng and To values corresponding to a particular ¢o are

the same as in Table 2.
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ablation process seems to be self-regulating: the constant
(flux-independent) blanket temperature provides an effective
shielding also at high flux intensities. Owing to the flow
restriction, the sonic approximation yields rather high
blanket densities at high flux values. Removal of the sonic
constraint yields Mach numbers of the order of unity at low
flux values, but rather high Mach numbers at reactor con-
ditions. The corresponding ablation rates vary acocordingly:
at low flux values the two approximations yield results of
the same order of magntidue, which are also in agreement
with experimental observations1'2; at high flux values,
owing to the rather high inherent blanket densities, the
sonic approximation yields ablation rates that are of 2 orders
of magnitude higher than those obtained with the momentum
balance. Considering experimental installations of the type

of ASDEX in Garching (¢O X 1011) or larger, the ablation
times corresponding to the momentum blanace approximation
would require pellet injection speeds of the order of ‘IO3

to ‘IO4 m/s.

It should be noted that the assumptions leading to the
ablation rates desplayed in Tables 2 and 3 are rather
optimistic: computations performed with vapor velocities
vvap greater than the sonic velocity at the pellet temperature
yield higher ablation rates. Diamagnetic effects may cause
an additional increase of the estimated rates. For example,
if in the momentum balance approximation equ. (2.33) is
replaced by equs. (2.32) and (2.34), for the case with

11

¢ = 10 wymz, B = 3 T, and rp = 0.52 mm (ASDEX-conditions)

vac
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the following set of ablation parameters is obtained:

17

r, =5.6mm ng = 3.2 x 10 (cm'3), T, = 1.1 ev, AL = 4.4 mm,

M, = 4.7, G = 5.4 x 1024 5_1, and T = 5.3 us. The functional

relation among ¢0, n,, Tqs and r, is qualitatively the same

in all these approximations.

3. CONCLUSIONS

a) An alaysis of the kinetics of ablation waves requires a
two-wave approximation: the effect of the shock wave
preceeding the ablation wave cannot be generally
neglected. The two-wave model has one free (unknown)
flow parameter, which should be chosen in accordance

with experimental observations.

b) The magnetic Reynolds number based on the parameters
of the blanket surrounding the pellet plays an important
role in the ablation process: it determines whether the
blanket remains diamagnetic or becomes magnetized and

thus affects the magnitude of the energy influx.

c) The field diffusion model presented here indicates that
the ablation process may be self-regulating: higher
energy influx is compensated by smaller blanket radius
and higher blanket density, the blanket temperature of
the order of 1 eV being practically independent of the

energy flux value.
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A self-consistent analysis of the ablation process should
include the consideration of such phenomena as the inter-
action of the incident plasma particles with the blanket
(penetration depths, energy deposition rates, etc.); the
ionization, recombination and charge exchange processes

in the blanket, the blanket-magnetic field interaction,

and the ablation wave kinetics in the pellet. A simultaneous
account for all these effects is likely to require properly

posed numerical models.
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