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Abstract

While the first part of this report was concerned with the
steady-state mechanical analysis of the fusion reactor first
wall, this part deals with the analysis based upon pulsed

load conditions. In a first section we elaborate various
solutions of the non-stationary heat conduction problem in
plane geometry capable of describing the temperature response
of the wall due to characteristic plasma pulse sequences. These
solutions are input to a quasi-steady-state stress and strain
analysis. Finally, the results of this analysis are set in
relation to the fatique properties of the wall material.

A further section presents a description of a computer program
which uses the mathematical procedure described. The results
of some test runs are followed by those of detailed parameter
studies. In the course of these calculations the influences of
a number of design and operational quantities of a fusion
reactor were investigated. It turned out that the choice of
wall thickness and wall loading are of predominant impurtance
for the first wall fatigue life.
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1. Introduction

The first part of this report /1/ was concerned with the
thermal and mechanical analysis of the fusion reactor first
wall under steady-state load conditions. For a number of
different basic geometries - plane, cylindrical, and
spherical - the mathematical means of calculating the
temperature and stress profiles across the wall had been
provided. Besides pressure loads, the thermal stresses
caused by internal nuclear heating and by heat conduction
and radiation from the plasma have also been taken into
account.

The thorough investigations on the plasma behaviour performed
during the last years have confirmed the view that tokamak
reactors can no longer be conceived as quasi-steady-state
devices. Since the accumulation of & -particles and impurity
atoms causes with a high degree of probability a strong
limitation of the burn time /2/, the operational characteristics
are likely to be those of a pulsed reactor. Therefore, the
necessary consequence for the first wall analysis is to treat
both nuclear heating and plasma radiation and heat conduction

as time dependent.

This part of the report summarizes the fundamental considerations
of this problem. It starts with the treatment of the non-
-stationary heat conduction problem in the wall resulting in a
solution for the space and time dependent temperature variations.
These results are input to the subsequent time dependent stress
and strain analysis which yields the information necessary to
estimate a lifetime based on the material's fatique behaviour.
The entire mathematical procedure was again programmed for

the computer, this program being, in fact, an extended version
of that already described /1/. It has been tested and applied

to a number of sample problems the results of which are
presented in further sections of this report.




2. Theoretical basis

2.1. The basic differential equation

We start from the differential equation of nonstationary
heat conduction in an isotropic solid:

o
div (Qgrad(}) + q =?Cp5-:-£_ E1)

(nﬂé temperature,'k='h(dh = thermal conductivity,

9==9(JH = mass density, Cp = Cp(dh = specific heat per unit

mass, q = q(r,t) = power released per unit volume of the

solid, r = position vector of the point considered, t = time

coordinate).

To remove the nonlinearity in (1) caused by A depending onﬂ?}
we Introduce the heat flux potential

ﬂ,— )
s =A[7\(n9')dc9' (2)
3

(n?é is an arbitrary reference temperature) into (1) and get

div grad S + q =o&(8) %—E— (3)
or As + q =x(s) 3 (%)

(xX=¢ cp/z ). The coefficient & is basically a function ofn9‘
because.Q, Cp, and A depend onaf but & can also be considered
as being a function of S for (2) establishes a unique

relationship between S andeLfor a fixed B

2.1.1. Simplifying assumptions

Because we are treating the problem of the first wall of
fusion reactors, the extent of the solid normal to the wall
surface and the temperature variations across the wall thick-
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ness will be moderate. This allows two simplifications of
the problem:

(a) instead of &(S) we shall use the constant value &,

(b) we shall restrict the analysis to one-dimensional
plane geometry.

Assumption (a) is Jjustified by, on the one hand, the weak
dependence of & on S for the candidate materials(see Table I),
such as, for example, stainless steel (see Fig. 1) and by,

on the other hand, the moderate temperature variations over

Table I: Reciprocal thermal diffusivity / s/cm2 Y 4
for various conticipated wall materials

o

Temp. 1.4970 Molybdenum Niobium Vanadium+ Aluminium
/C/ |Stainl.Steel
0 26.T70 1.833 4,384 10.320 1.007
100 26.87 1.926 4,240 9.852 15053
200 26.04 2.046 4,167 9.470 1.096
300 24.89 2.156 4,052 8.969 1.139
4oo 23.90 2.261 2:959 8.606 1.181
500 23.16 2.386 3.871 8.203 -
600 22.76 2502 3.798 7.918 -
700 22.36 2.614 3.697 7.610 -
800 - e o 3.627 7.289 -
900 - 2.841 3.554 = %
1000 - 2.967 i 1% ) | - -

ks Constant specific heat assumed

t*  Constant thermal conductivity assumed.

The data are taken from /7/ in the case of stainless steel,
/8/ in the case of niobium and vanadium, and /9/ in the case
of molybdenum and aluminium.
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Fig. 1 The function & ( = reciprocal diffusivity)
vs. temperaturefdlfor stainless steel

the wall thickness. The steady-state difference, for instance,
between plasma and coolant side temperatures is about 100 K
for a two centimetre thick stainless steel wall exposed to a
neutron wall loading equivalent to 100 w/cm2 /1/. At a mean
temperature of 500 C this temperature difference. corresponds
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to a variation of X of 2.5 %. The fact that a minor error
is caused by neglecting this small variation of X is far
outweighed by the fact that (4) becomes a linear partial
differential equation if O(=0(O = const. This allows full
use to be made of the mathematical methods developed to
solve such equations analytically.

Assumption (b) is a good approximation as long as the prin-
cipal radii of curvature of the wall surface are large com-
pared to the wall thickness. The smallest values for these
radii of curvature are to be expected for the case of the
wall being made up by modules the surface of which protrudes
to the plasma. To gain some insight into the errors involved,
the steady-state temperature distribution according to /1/
were calculated for cylindrical and spherical surfaces with
radii of curvature r,. As a result Fig. 2 showsAa27(Anfjpl
vs. d/r_ for cylindrical and spherical geometry

( Aﬁ:n?’(x=0)-nﬁx=d), (A;&]pl =Ap.9' for plane geometry).

—
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Filg. 2 Steady-state temperature differences over the wall
thickness d for cylindrical and spherical geometry
(radius rc) compared with the case of plane geometry.
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By using the assumptions (a) and (b) we get from (4)

2
5 4 a(x,t) =
ox

e

‘ (5)

o

o
Finally, we assume for q(x,t) the following form:
a(x,t) = aq,(x).q.(t). (6)

This factorization is possible in our case because the nuclear
heating rate in the solid is proportional to the number of in-
cident neutrons per unit time, on the one hand, and is de-
termined by the spatial distribution of the different blanket
materials, on the other hand. Both influences are independent
of each other, as long, as the flight time of the neutrons in
the solid is small compared with the time scale of q(x,t).

The dimension of q,.q¢ is power per unit volume. The dimens-
ions of qX and q, may differ from problem to problem because
different choices are adequate to different cases.

2.1.2. Boundary and initial conditions_

The plasma surrounded by the wall considered here releases
energy to the wall in the form of fusion neutrons, radiation
over a wide range of wavelengths, and heat and plasma particle
fluxes.

The volume heating by neutrons and absorbed radiation is
accounted for by the source term q(x,t) in (5).

The fluxes of heat and plasma particles gilve rise to a time
dependent heat flux density Qw(t) at the wall surface facing
the plasma (see Fig. 3).




S(x)
—_—
Qy () q(x.t)
S0
plasma wall coolant
0
0 X —» d

Fig. 3 Schematic view of the geometry and the g and S
distributions considered.

We assume as the simplest boundary condition possible that
the temperature at the coolant side of the wall is kept
fixed at the value fﬁz for all times, which corresponds to
a value So of the heat flux potential. If we choose

nf = (7)

(A}é is the arbitrary reference value oflJLused in (2))
we get

S, = 0. (8)
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In summary, the boundary conditions for S(x,t) are

(9s/9x) = -Q,(t),

X =0 (9)
s(d,t) = 0 (10)

(for simplicity we shall use d as symbol for the wall thick-
ness throughout this paper instead of tg, as used in /1/).

To distinguish between the contributions of the volume source
a(x,t) and the heat flux density Qw(t), we split the

solution S(x,t) into two parts, which is possible due to the
linearity of (5):

S0} = Sq(x,t) + SQ(x,t). (11)

As boundary conditions we use

(95,/ %), =0, (12)
(98q/ %)y = - Q,(F), (13)
5,(d,t) =0, (14)
Sqldst) = 0. (15)

The boundary conditions (12) to (15) obviously correspond
to the boundary conditions (9), (10) for S(x,t).

To determine the solution S(x,t) completely, we have to
specify S(x,t) at a given instant. We choose this instant
to be the origin of the time coordinate t. We require

Zim S = S(x,0),
t—> 0 (16)




..9..

which we can split because of (11) into

fim S, = 8(x,0), (17)
t—>0

Jim Sq = O

t—0 (18)

S(x,0) is the given distribution of S at t = 0.

2.1.3. Symmetries

Because we shall be making use of the method of separation

of variables for solving (5), we have to deal with spatial
Fourier expansions.

To restrict the series solutions to cos terms in space, we
assume qx(x) and Sq(x,O) to be even functions of x:

a, (x) = q, (-x), (19)
S 0) =5 (-x,0). 20
o (%:0) = 8, (-x,0) (20)
To omit terms of even order from the Fourier expansions, which

would conflict with the boundary conditions (14) and (15),
we further assume for qx(x) and Sq(x,o) the symmetries

q, (x + 2d) = -q,(x) (21)
Sq(x + 24,0) = —Sq(x,O). (22)

The symmetries (19) to (22) and the resulting symmetries of
Sq(x,t) and SQ(x,t) are visualized by Fig. 4.




- 10 -
Tq,(x)
/|
o \
X —»
-d 0 d! 2d 3d]
[
qu (X,O) \""‘--..\ //"—
// \\//
7
Ve
/
7 |
// . X—
-d U/// t/i//\\ 2d J/ 3d
2physicul; L Fd
Cowall 4 ON_| L7
2 7 v
N
Z Z
TSq(X,” t fixed
//’_
/
/
/ K =
-d 0 dfy,  2d /|3d
% /
N /
Tsu(x,t) R
e t fixed
/
/
/ X —»
-d 0 df'\ 2d /|3d
% /
e /
\ /
\\ //
\/

Fig. 4 Extensions of the distributions to a period length
4.4 to make Fouriler expansions possible.
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2.2. Solutions for prescribed power density q(x,t)

-__.._—-—___.-_..-..—_._.._—-__—-—-——__——--.-.-.————-———

Because of (6) the differential equation (5) assumes the form

2
Lxg v ay(x)ag(t) = &, 2. (23)

2.2.1. "Fourier solution" for arbitrary q, (x) and i (t)

= e - — - —— = - —— = = = X _..-..-___——— - -

We put
Sq(%,t) 2%_8‘11,9 - ”ZAvXP(x)TP(t), (24)

By inserting (24) into the differential equation (23) and
taking into account the boundary conditions (12) and (14)
together with the symmetry (19) we get

@ x
X,(x) = cos (V5 3)» ¥V =1,3,5,... (25)
and
dTp ;1 V&2 Cq.p

The coefficients Cq v result from the Fourier expansion
s

(- 4]
I( X
a,.(x) = E Cq,p ¢0s (Y 5 3)
v=1,3.. (27)
a
Cyp = %fo q (x)cos(y-a’i Xax, ¥=1,3,5.. (28)

Equation (28) is valid because of the symmetry (19).

Equation (26) can be solved by integrating the homogeneous
equation and adding a special solution of the inhomogeneous
equation found by the method of the "variation of the
constant". The result is
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-£/%.. -1
- v
Tp(t) CS,V e + - qut(
with 5 d -
Cq sp =3a JS(X,O) cos (V’E a—) dx

and

~ 1 24,2

2y =5 & (

( (30) 1is valid because of (22) ).

@ f
The coefficients Cs,y

B )e “’dt' (29)
(30)

(31)

according to (30) are the coefficients

of the Fourier expansion of the initial distribution S(x,0):

Co

2 x
S(x,0) = CS,P cos (L’§ E) o b, 9

1
C +—
[fs,ncxo

V=1,3..
The complete solution of (23) is
&

= ~
/ X —t/?'n
Sq(x,t)—z cos ﬁ2n+l) 5 a—] e
n=0
where we have introduced
2.n+l1 = .

This leads to

°a
J a,(x) cos

o]

I e

=—""“§1 o« (24
T (2n+1) = (?')

d
‘[‘S(x,o) cos Zf;n+1)
Zr;n+1)

2n+1)

'\)i '-? h)l Q

(32)

t
Al
' z
Cq,n fqt(t e hdtj] s
(¢)

(33)
_)7dx (34)
*/ ax, (35)
"d (36).




2.2.2. "Fourier solution" for arbitrarz_gxggl and

e e e e e -———— -

Because periodical operation may be the working mode of
fusion reactors, we apply the general solution (33) to
the case of qt(t) varying periodically with period i
Figure 5 shows a typical example for qt(t) calculated for
a tokamak reactor plasma /2/. We expand qt(t) in the
following Fourier series (w = 247

AU

Fig. 5 Typical variation with time of the power density
released within the wall as a result of nuclear

reactions.
[+ -]
a, (t) = (: [Cq’mcos(mw't) + 8y, sin (mwt_)/, (37)
m=0
o>~
1
T
2 - B
Con =& a(®costmatat, m = 1,25, (39)
,
== , m=1,2,3,.. . 40
Se m T (;f qt(t)sin(mu’é)dt m=1,2,3 (40)

By inserting (37) (with argument t replaced by ') 1n
(33) and performing the integrations we get
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2 t/y
Sq(x,t) = E Cs,ne"(em'l) 9 b [E‘n+1)()’x

m=0

00 o
E‘ 4 q { x]
+ a;g— Cq,n cos (2n+1) 5 r}
n=0
P
0 (2n+1

)"+ (mwy)?

xZ(.q m(mu; )+S ,m(2n+1)2).sin (mwt) +

<+

m(2n+1)2—Sq,m(maﬁ5)).cos (mwt)
2 t/p-
= (cq’m(2n+1)2-sq’m(mw'zvd)),e‘(2n+1) ' ‘d] (41)

with
ta = X, (=

a (42).

The solution (41) approaches a periodical behaviour in t

for times large compared with %(tf% r4). This time constant
is determined by the wall thickness d and the wall material.
For a stainless steel wall of 1 cm thickness Z7is about 10 s
(values for other wall materials are shown in Table II).

2.2.3. "Source solution" for arbitrary q (x) and g, (t)

We start with that solution of (23) which describes the case
of an instantaneous plane source in an infinite medium. If
we deliver per unit area the heat d2Q at the location Xg at
the time instant t_, this solution is /3/
2 B 2
2 d Q(Xs!ts) 1 “O(x_xs) ] (43)

d Sq (x;% X, b ) = "

exp —_—_—
, s (4%(0)1/? (t_ts)V? b (t-t )
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Table II: Time constants ?%. s of a l cm thick wall

for various materials and temperatures

S 1.4970 Molybdenum Niobium Vanadium  Aluminium

C Stainl.steel
0 10.82 0.74 1.78 4.18 Oull

100 10.89 0.78 1.82 3.99 0.43
200 10.55 0.83 1.69 3.84 0.44
300 10.09 0.87 1.64 3.63 0.46
400 9.69 0.92 160 3.49 0.48
500 9.39 0.97 1.57 a2 -
600 9.22 1.01 1.54 3.21 =
700 9.06 1.06 1.50 3.08 -
800 - (8 | 1.47 2.95 =
900 - 1.15 1.44 = "

1000 - I 20 1.42 - =

By integrating this solution with respect to X and tS we get
solutions for sources extended in space and time such as
q(xs,ts). Because of

d®a(x,,ty) = a (xg)ag (ty)dxg dtg (44)

we get for S (x 5)

a, (xg)ag (t])
t) =
ool X2 E) (2 b )1/2 / / (t_ts)wz X

t =0 X —-d

“O(X-XS) dx _ dt (45)
exp [- X .
3 B(t-t) F B
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The solution (45) meets the boundary condition (12), but

i1t does not vanish at x = d as it should according to (15).
We can construct the solution which also obeys (15) by
using the concept of "reflection at the boundary". This
means that we add to (45) the function - Sq,a’(Ed—x,t),
which is antisymmetric to Sq’ (x,t) with respect to x = d.
Now (15) is fulfilled but (12) is violated. To right this,
we have to add —Sq,“’(—2d-x,t). Continuation of this pro-
cedure leads to an infinite series solution

00

54(%>t) =Z(-1)/n/ Sq.00 (204-%, 1) (46)

7=-00

with Sqﬂw from (45). When calculating Sq(x,t) from (46),
we have to keep in mind that S ,oo(x’t) is an even function
of x. The series solution (46) would also have resulted
from a formal solution of (23), (12) and (14) by means of
the Laplace transform.

Obviously, the solutions (45), (46) 1is especially applicable
for small values of t and for functions q (x) which are

strongly localized in space such as qx(x)aze'/ux for /ud'« 1
We shall come back to this case in Section 2.5.5.

2.3. Solutions for prescribed heat flux density

2.3.1. "Fourier solution" for arbitrary heat flux density

We start from the solution SQ,C(x,t) of (23) for a heat flux
density Qc at x = 0 which 1s constant in time. With a mathe-
matical procedure similar to that in Section 2.2.1. we find
the solution /4/
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00

84 1 "t/ >
L (%,£:0,)=0, (4-x) -0, £ Z(Eml) e Poos [(ane1) 53] (D)

with ¢ “h according to (36). The solution meets the boundary
condition (15) and the initial condition s (x,O) = 0.

From (47) we can calculate the solution for a time dependent
QW by using the theorem of Duhamel /5/, /6/:

5
SQ(x,t) = 3(x,0) + Of sQ,c [}-(,’c—t';Q (t')]dt' . (48)

SQ " under the integral sign is SQ " according to (47) with t
> b
replaced by (t-t') and Q, replaced by Q (t'). According to

(18) one has S(x,0) = 0 in (48). By performing the integration
in (48) we get

00 El/e
S, )= Zcos (2n41) & ] f o (t')e  Mat'. (49)

n=0

2.3.2. "Fourier solution" for periodical Q, (t)

We expand the periodically varying Q (t) in the Fourier
series (@=27/7T)

()
Qw(t) = E CQ mcos(ma:t) + SQ,m sin (mwt) (50)
m=0
with P
o —%qu t)dt,
(51)
C 2‘/’Qw(t) cos(mat)dt, m = 1,2,3,...

_ 2 = cee
S0 m "t'fQW (t) sin (met)dt, m = 1,2,3, (52)
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From (49) and (50) we get substituting t' for t in (50)

)
SQ(X,'C) = §g— Z [cos [—(2n+1)?2:g-]¥
n=0

0a
X 1

X
m=0 (21r1+1)4 + (m(«:o"«?"d)2

KZ(_CQ’m(mw'b’d) + SQ’m(2n+1)2).sin (mwt) +

2
-(2n+1)° v/
+ (CQ’m(2n+1)2—SQ,m(mbf?a)).(cos (mwt)-e el e é&ﬁg

(53)

2.4. Relation between solutions _for strongly localized g, (x

and_for given 9  (t)

The solution for a heat source strongly localized at x = 0
is intuitively expected to couverge with increasing degree
of localization towards the solution for a heat flux from
outside at x = 0.

This can be formally confirmed by assuming that qx(x) behaves
like a 4 -function. To be consistent with the symmetries
assumed in Section 2.1.3., we choose for Ay the periodical
distribution shown schematically in Fig. 6 (f==x/d).

In the vicinity of fF=x/d = O the spatial variation of B
is given by

a, (f)=cdCE) (54)
with _{J(f)df -1
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-

0% 2 3 L Eexid
7

Fig. 6 Idealized distribution of localized heat sources
within the wall.

Because we want to compare with the solution for given
Q, (t), we determine the constant C from the condition

1
a [ a,(f) a,(t) af =29, (¢), (55)
-1

which means that the amount of heat delivered to the solid
is the same for the two cases. The factor 2 in (55) occurs
because only half of the heat from q is delivered to the
region f) 0

From (54%) and (55) we get

(t)
qx(§)=§Q“’q—tm D> &g (56)




= B0 =

The Fourier expansion of the distribution shown in Fig. 6
is given by

Q. (t) =
a( f )=qx(§-)=§- g—t(-t-) cos £2n+1) ‘g-’%;- . (57)

From (57) we read that the Fourier coefficients CCl o according
to (35) are

_2
Ca,n = 5 TTE (58)

We now go back to (33), the solution for given qx(x) for the
case S(x,0) = 0 (which leads to Cq e 0). By inserting (58)
in (33) we exactly reproduce (49), the solution for given

Q, (t) at x = 0. In doing this we put Cq,n according to (58)
under the integral in (33). This can be done because

Qw (t)/qt(t) does not depend on t as 1s expressed by (56).

We shall come back to the case of strongly localized heat
sources in connection with practical examples (Section 2.5.5.).

2.5. Practical examples

2.5.1 "Fourier solution" for g (x) = const, g,(t) =1
We assume
qx(x) ol B const for 0 x<d, (59)

The conditions (59), (60) lead to the stationary solution of
(23) given by

54(x) = 5 a,, (a2 x°), ogxga. (61)




By inserting (59), (60) into (41) we get for the stationary
case (t/¢ —boo)

16 a° 7§-1) 'F';j
s - e B
q(x) ,»3 - (2n+1)3 cos [(2n+1) 5 3 (62)
if we take into account @ = 0, Sq oo I 0l Cq p = 0 form £ 0,
] s
Cq g = 1, and the Fourier coefficients
_ 4 (-1%n
cq,n =% %0 7.or (63)

Equation (63) follows from (59) and the symmetry (19) described
in Section 2.1.3.

The solutions (61) (with the symmetry from Section 2.1.3.) and
(62) are mathematically equivalent; (62) is the Fourier ex-
pansion of (61).

The rapid convergence of the sum in (62) (nzl/(2n+1)3) is

visualized by the example shown in Fig. 7 [ﬁ = maximum value
of n used in the summation of (621] :

2.5.2. "Fourier solution" for q 0 d(x/d), (t) = 1

To model a heat source strongly localized in space, we choose

a (x/d) = £ q_ & (x/d), 0¢x<d (64)
(Qo - heat per unit area delivered to the solid at x = 0).

The Fourier expansion of (64) is again (see Fig. 6 and (57))

q(x/4) = -3— f cos [E2n+1) g%] . (65)

n=0
From (65) we get

2
C =59, (66)
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— N=0
09 N2
— | exact solution
08 N=1
07 \
! s \\
..“::. 05 \\ 0
04 \
03 ‘\
02

' Se(x)=exact solution \\
01 L Se (0) = % dZon

Sy ()15 (0)= 34 ¥ Eq.(62)

L1
0 0.2 0.4 06 08 10
x/d —»

Fig. 7 Comparison of truncated Fourier solutions with the

exact result for a heat source constant in space
and time.
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With (66) we get for the stationary case qt(t) =1 from (41):

S ( ) = 8d = ¥ x
% 5z Q nZ(—;—i—)-g cos EQrHl) 5 a—] . (67)
To get (67), we had to take into account w= 0, Sq,m = 0
cq,m =0 form#£ O, Cq,O = 1.

The direct stationary solution of (23) for q, given by
(64) is

54(%) = @, (d-x). (68)

Equation (67) is the Fourier expansion of (68) for the
symmetry assumed in Section 2.1.3.

Figure 8 shows the convergence of (67) towards (68)
(N = maximum value of n used in the summation of (67)).

The convergence [Nl/(2n+l )2) is one order less than in

the case Q. = const and can be considered as the worst case
of all spatial distributions qx(x) with respect to convergence.

" n 71\' X
2.5.3. "Fourier solution" for q_(x) = g cos (5. 3),

------------------------ sl By 200 100
ag(t) =5 [1 + cos (@t]]

With the assumptions
a (x) = a,, cos (3 %), (69)
a (t) =5 [1 + cos (wt)] (70)

we model the case of an extended spatial distribution qx(x) which
varies in time in a pulsed manner, the effective pulse duration
being of the same order as the down time.
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Fig. 8 Comparison of truncated Fourier solutions with

the exact result for an external heat flux constant
in space and time.
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From (69) and (70) we read

Cq,n = qxo forn=1,
Cq,n =0 for n» O,
Sq,m = 0,

o H _
Cq,m =5 for m=0 and 1,
Cq‘m =0 form?>»1.

By using these values we get from (41) for t>>'2"’d the
periodically varying S-distribution

2 o
2d 4 x d 1
S, (x,t)= == q, cos (3 %) E+ sin W¢ + —————_cosW t
a e X, e & 1+(£u'26)2 1+(w'£~d)2 J
) (71)
(9
4
= %35 - cos(§ %) 1 + L sin_(61t+£f)
© 1+(w?'d)2

with
1
= arc t ——— R

To get an idea of the magnitude of the fluctuations of Sq(x,t)
in time produced by the periodically fluctuating qt(t), we
calculate the ratio

S - S5
= q,max q,min (72)

t Sq,max il Sq,min

with

|

S, max = M qu(x,t)] , (73)

q,min = Min ESq(x,t):' s (74)

0]
|
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These values occur at

(®t) ., = arc tg (@7y) + r.2% (75)
and

( Hw t)min = arc tg (b'ba) % (¥ 4 1/2).2%° (76)
respectively.

By using elementary relations between trigonometric functions
we get

<70 )

_ 1 ) 1 B
Nt [+az)? 7%~ lve™)2 ] 172

Figure 9 shows r vs.‘?a/i?. We see that for small values

£
of '?E/i? which correspond to the practically interesting

10

08

\
T 06 \\
Tl

N

02
® \
0 3
0 0.4 08 12 16 20
Tyg/T —=

Fig. 9 Degree of modulation re produced by periodically
varying heat sources as a function of ?E/'?V( -
wall time constant/period length).
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case of long pulse duration the values of r. are close to
unity. This means that the wall temperature at any point
fluctuates with a high degree of modulation. This de-
monstrates that the thermal inertia of the wall for prac-
tical wall thicknesses has 1little damping effect if the
pulse duration and down time are of the same order.

We assume the following distributions qx(x) and qt(t):

X0 ("\'X
B )= < ©os (5 3) (78)
()
0, (t) =2 &(t-p7) (79)
p=0
(h. = heat delivered per unit volume at x = O, 7= period

Xo %
length, J &(t) at = 1).
-0

By means of (78) and (79) we model the case of an extended
spatial distribution qx(x) which varies with t in a pulsed
manner, the pulse length being very short compared with the
pericd

The distribution (79) is shown schematically in Fig. 10.

The Fourier expansion of (79) is given by

(£v]
ag(t) = 142 D cos (mwt). (80)
m=1

From (80) we read

Cq,0 = 1
Cq,m = 2 for m> 0, (81)
S = 0.

a,m
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For t»?& we get with (81) from (41)

432 Pxg >
Sq(x,t = -,F-g- = cos [(2n+1) 5 —6]*
E i
1 + (m%,)sin(mw t)+cos(mk t)]]. (82)
mZ=1-_1+(mto‘2“a)2 L &

The convergence of the summation in (82) is very poor
(~1/m for the sine term). Therefore, the Fourier formalism

is not adequate for solving the problem of a periodical se-
quence of "heat spikes".

g, [t]l—

tiIt —

Fig. 10 Idealized sequence of pulsed heat sources.

For such problems one should use (33) to calculate the time
behaviour during one period and start a new calculation
with the beginning of a new spike. At this point in time
one has to use the distribution of S_ as initial values
Sa(x,O) for the next step. For't\')?‘d these values are

virtually zero. In this case we get from (33) for 0£t < 2~

(with Cg | = 0)
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h =Y
8 (x,t) =’_i$_'__x_o cos [(2n+1) '-Z-V%{-]e ?d. (83)

Sq(x,t) according to (83) repeats periodically in time with
period 7-.

2.5.5. !Source solution” for g (x) = g, e / " _and
arbitrary g (t)
We assume for qx(x) the distribution
- JUX -x/8
x) = e = e L
Ay (x) = a, e/ Ay (84)

with the additional condltion

e - o

- (85)
(we use the "1/e length" § instead of the "half-length"
h = #n 2/ u used in /1/).

V4

Condition (85) means that the heat input is strongly peaked
at x = 0. Physically, (84) describes the heat produced by
the absorption of plasma radiation. This heat is expected
to be absorbed in a very thin layer which leads to the
condition (85).

The investigations of this section are intended to clarify
the possibility of replacing the exact solution for
qxrve'/ux by a solution for an equivalent heat flux entering
the solid from outside. The complete equivalence of such
solutions has been shown in Section 2.4. for the extreme case
of g, hehaving like a & -function.

We introduce (84) in the source solution (45). By using the
condition (85) we can replace the limits of integration d
and -d by co and -0 respectively. Then the integration with
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respect to ts can be performed analytically. The result is

q.  t/% L —tg/
Sq, (x,t)= -éif:e ‘;[2 cos h(x/é')f a, (ty)e 574 ae
(e]

t 72
-t /S t-t_ 1/2
_ S -x/8 s %5 x/d
To[ ()¢ E et [(—"?—) i 2(1:-1:5)1f2

1/2

t-tg
+ exﬂs erf (-:c—d + ziéﬁ at_

with
(o 2
JJ-—- 0(06 i (87)
(o
By (87) we introduce a second thermal time scale ¢y in
addition to ?:_1 according to (36). Between i\é and ?’d the
following relationship holds:
oo
< J\2
( ) (3) - (88)
4d

Equation (88) shows that 7 is much smaller than Q? because
of condition (85). thives the order of magnitude of the
time during which the layer near x = 0 1s heated up adia-
batically by the absorption of radiation. For t >?J heat
conduction comes into play and the temperature increase with
t becomes increasingly smaller (see Fig. 12: curves t/?ﬁd
and Sq,oo(o’t))'

If we take the boundary condition (14) (Sq(d,t) = 0} A5t6
account by using (46) the time constant'}h also becomes
important. Equations (86) and (46) do not show this fact
explicitly, but it is clear from dimensional reasoning and
also from the Fouriler solutions discussed earlier.

As an example we show the development of Sq(x,t) according
to (86), (46) from the initial values Sq(x,o) = 0 to the
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steady state for the case qt(t) = 1. The stationary solution
of (23) for this case 1is given by

d _x

Sq(x,t—> ) = qxoég (J 3 e'x'/J ¥ e"d/qr ) (89)

Figure 11 shows Sq(x,t) (solid curves) calculated from (86)
and (46) as a function of x/d with t/??d as parameter. The
values of the parameters involved are: OKO =/25 s/cmg, d =1 cm,
d=10.1 cm, ‘?a = 10.13 s, 'Zgz 0.25 s.

For comparison we show the solution calculated on the
assumption that the same amount of heat is delivered to the
solid by an external heat flux. This problem has been solved
in Section 2.3.1. This solution according to (49) is also
shown in Fig. 11 (dashed curves). Obviously, the use of the
time scale ?} is now formal. It is only used to make the
comparison possible. The steady state solution for this

case 1is

SQ(X,'C—)OO) = Qo(d-x). (90)
The assumption of equal input in both cases leads to

Qo = 9y, § Tor e d/J «1. (91)

o}

From (90) and (91) we get

Sg(x,t—>00) = a, & (d-x). (92)

Figure 11 shows that the maximum differences between the two
cases occur at x = 0. To get an idea of the error perpetrated
by using SQ instead of Sq, we calculate the ratio

P -d/§
Q__Tq _d(1-e )y
( Sq )x=0,'t"*m - d- 6 o ’ (93)

Q

The ratio cf/d = 0.1 used in Fig. 11 was choosen for demonstrat-

2

ion. In practice, we expect §/d values of 10™° or less, so that
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Fig.ll1 Comparison of S distributions for a heat source
strongly peaked at x = 0 (solid curves) with those

for an external heat flux (dashed curves).
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we conclude from (93) that SQ can be used instead of S
for most practical cases. This is true only if we are
interested in S-distributions and do not need the derivative

25/ Ox.

The use of SQ instead of Sq offers distinct calculational
advantages:

- the use of the source solution (45) can be avoided,
which is advantageous because (45) and (46) mostly
lead to the cumbersome necessity of numerically
manipulating error function type solutions of large
arguments (see, for instance, the example given by
(86)). The source solutions are, on the other hand,
well suited to investigating Sq-distributions of very
small times t (see end of this section).

- it is true that using the Fourier solutions (33) or
(41) for Sq instead of the source solution (45) makes
the numerical situation better, but one has to take
quite a high number of sum terms into account.

This is due to the 1/(2n+1)2 convergence in the case of strongly
localized sources as shown in Section 2.5.2.

Tt is obvious that the boundary condition S(d,t) = O affects
the solution only for times comparable to or larger than the

time constant 1@&. Figure 12 demonstrates this fact: Sq(O,t)
and Sq oo(O,t), the first term of the series (46), are close
2

together for O\(t/'Z‘d.Sl and increasingly diverge for t/'b’d) 1.

Sq is also shown vs. time at the position x/d = 0.5. The small
time 1lag near t=0 is that time the bulk of released heat needs
to diffuse to x/d = 0.5.
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Fig. 12 Comparison of S distributions corresponding to
S(x=d,t) = 0 at finite d with the case d-»0g.

For very small times (t/?sﬂf 1) the solid is heated adia-
batically, as already stated. The expansion of (86) for qt(t) =1
in the vicinity of t = 0 and x = 0 is given by

" 2 = _ -
8(0,8)x 8, (0,t)&a, §° (t/F4 )= <. £, (L 2y ). (9%)

Relation (94) formally derived from (86) also follows from
simple physical reasoning. The dashed line in Fig. 12 re-
presents the relation (94). It is obvious that (94) is not

a useful approximation on time scales larger than}ag such as,
for example, Qfa or the period length Z° of most pulsed reactor
concepts. An important exception is the case of fusion by

inertial confinement.
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3. Stress-strain analysis

In practical cases of first wall thermomechanical analysis,
we are concerned with a periodic sequence of pulses. There-
fore, the solutions presented in Sections 2.2.2. and 2.3.2.
are those on which the further considerations will be
based. Using equations (41) and (53) the space and time
dependence of the heat flux potential S is determined by

Six.t) = s0 + Sq(x,t) + SQ(x,t). (95)

This equation has to be applied if, deviating from (7),

the wall temperature 4"‘ at the coolant side of the wall is
not identical with the reference temperature 4?' used to
define the heat flux potential. By inverting equation (2)
we obtain the temperature'ir(x,t) from S(x,t).

The remainder of the stress-strain analysis 1is straight-
forward. Since there is negligible time delay between the
temperature and stress fluctuations, we can consider the
problem to be quasi-stationary. This means applying the
equations of the steady-state analysis described in /1/ for
every time instant desired.

In doing this, we apply equation (95), which was derived
for plane geometry only, to cylindrically and spherically
shaped first wall contours as well. As was outlined in
Section 2.1.1., this approximation is not too bad for real-
istic ratios of wall thickness and wall radius. Since, how-
ever, the mechanical stresses depend very strongly on the
geometry, we have to use the equivalent equatlions for the
stress and strain evaluations specified in /1/.

The mechanical performance of a material under pulsed load
conditions is generally assessed by means of 1its fatigue
properties. -The number of cycles permitted until failure
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has to be expected depends upon the strain range A€ bet-
ween the maximum and minimum values g — and emin’
Therefore, the evaluation of stralins has been introduced
as an extension ¢o /1/. Thecalculated strain range is
finally correlated with the fatigue behaviour to arrive
again at an estimated lifetime.

4. Computer program

Since the non-stationary analysis relies to a great extent
on the solutions and hence on the programs developed for

the steady-state case, the program described in /1/ has now
been extended to cover both types of analysis. At the same
time some modifications and extensions in the former part
have also been introduced. These, however, refer essentially
to the now existing possibility of calculating the nuclear
heating rates internally from blanket parameters.

The new program structure is shown in Fig. 13. For a better
understanding of this flow diagram and the explanations
belonging to it (see Section 4.2) the reader should first be
familiarized with the input quantities needed.

4.1. Input specifications

Card No.1l (1216)

MTRL material identification number (see: a))

MOD geometry option

= - 2 spherical, convex curvature

= - 1 cylindrical, convex curvature
plane
cylindrical, concave curvature
spherical, concave curvature
toroidal

I
W = O




= B

(" nput5 ) [ Eum ]| ( Input6-8)
| ]

0 nsTH—20

Input 8-10
0 0

Input 1

(input 12-1)

.—__
Output 1
40 =0

( Output2 )
Sdt

d
Qutput 3
I

Micro- Int.
[

TTPRF

SPRF

OPRF

(Output 15 )(" Output 14 )
1

FATG

TPRF

SPRF

i

OPRF

Output 7

i

LPRF

Output 8

U

Fig. 13 Flow diagram of the computer program
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number of available intervals (see b))

>0 number of macro-intervals

=0 power density profile 1is internally generated

€0 number of data points for power density
profile. /MQ/ values are needed. Use only if
INST = 1.

number of micro-intervals desired (see b)).
If MQ&LO =+ NP = |MQf - 1

Option for stress evaluation
= 0 axlal or lateral elongation prevented
=1 axial or lateral elongation permitted

option for thermal stress evaluation
=0 no stresses at low temperature TO
=1 no stresses at average wall temperature TM

option for thermal stress evaluation
=0 E,v, ande temperature independent
=: 1 E,V, and& temperature dependent

option for reference stress evaluation
strength hypothesis to be applied is:

=0 normal stress
=1 maximum shear stress
= 2 octahedral shear stress

option for reference strain evaluation

=0 reference strain is evaluated from
reference stress

= 1 reference strain is evaluated using
strength hypothesis defined by IS3.

option for calculation type
=0 steady-state calculation
=1 non-stationary calculation.
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Card No. 2 (6E12.5)

RT torus radius /fem/

RW wall radius /Jcm/

TFW wall thickness /Jem/

TB thickness of breeding zone /cm/

EPS structure material volume fraction 1in
breeding zone /=7

HD half-thickness for radiation absorption Jcm/
(see c¢))

Card No. 3 (BE12.5)

PWN neutron wall loading [ﬁ/cm%] (dummy, if INST = 1)
PWS radiation wall loading Zﬁ/cm%7 (dummy, if INST = 1)
TO wall temperature at the cool side /C7

PIN wall inside pressure /bar/

PAU wall outside pressure /bar/

Card No. 4 (5E12.5)

RA outer radius of cylinder or sphere in the case
MOD > O [em/
radius of circular plate for MOD = 0 /cm/
(see d))

AA edge lengths of rectangular plate /Jem/

BB} for MOD = O; BB < AA
(see 4d))

Card No. 5 (5El12.5)

Q values of power density by space point Z'w/cm3_7.
(IMQl values). Only needed if MQ < O.

card No. 6 (BEl12.5)

QN power density by interval due to neutron reactions
['w/om3_7 (MQ values) only needed if MQ 2 O.
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Card No. 7 (5El2.5)

QG power density by interval due to gamma reactions
Z’w/cm3_7 (MQ values). Only needed if MQ 2 O.

Card No. 8 (5E12.5)

DX widths of intervals /em/ (MQ values),Only needed
if MQ > O.

The following cards are only needed if INST = 1.

Card No. 9 (12I6)

ITT option for the initial temperature profile
= 0 constant temperature TO is used
=1 arbitrary profile specified by input

ISD output option for time dependent stress and
sctrain profiles
=0 only reference stress/strain is printed
=1 additionally thermal stress/strain is printed
= 2 total stress/strain is printed
KT number of time intervals per cycle
KT2 number of time instants per burn period (KT2 & KT + 1)
NFXM maximum order of spatial Fourier expansion
NFZM maximum order of temporal Fourier expansion
MX number of space intervals to be printed

(MX &€ 10, NP = N # MX with N being an integer)

Card No. 10 (5El12.5)

TC duration of one cycle /57
FQT conversion factor for the QT array (see e))
FPT conversion factor for the PT array (see e))




Card No. 11 (5E12.5)

TAN values for 1lnitial temperature profile Z@]
(NP+1 values).Only needed if ITT = 1

Card No. 12 (5El12.5)

QT . time function of nuclear power density
( & KT+1 values) (see e)).

card No. 13 (5E12.5)

PT time function of radiation and conduction
' wall loading (€ KT+l values) (see e))

Card No. 14 (5El2.5)

ZZ1 initial value of interesting time domain /S/
zZ2 final value of interesting time domain /s7/

v | time increment /s/.

Comments:

a) MTRL: material identification number

- ———— = e o e R o = m e e e S e -

According to /1/ the following numbers have been assigned:
MTRL material specification
2601 1.4970 stainless steel = Sandvik 12R72HV
2602 1.4988 stainless steel
2603 1.4961 stainless steel
2604 1.4981 stainless steel
2605 1.4436 steinless steel
2606 1.4919 stainless steel
2607 316 SS stainless steel

2801 Incolloy 800
2802 Inconel 625
2803 Hastelloy X
2804 Inconel 718




b)

« D =

Assignment of a material identification number does not,
however, automatically mean complete availability of
data. For the materials mentioned above the thermal
properties (thermal conductivity, thermal expansion co-
efficient, density, and specific heat) as well as the
principal elastic constants (Young's modulus, Poisson
ratio) were compiled on the basis of the data given by
K.D. CloB /10/ and K. Ehrlich /7/. The time rupture
strength, however, is at present only available for
material No. 2601 /8/, data on the fatigue behaviour
for material No. 2607 /11/.

MQ, NP: number of intervals_

Because of the need for numerical integration procedures
throughout the program a sufficient number of NP micro-
-intervals has to be defined. For each interval a certain
value has to be specified for the power density. This
can be done in three different ways controlled by the
integer MQ. If MQ ”» O, the program expects to receive
values for the average power density due to neutron
reactions, QN(M), and that due to gamma reactions,
QG(M), in a limited number, MQ, of arbitrarily sized,
DX(M), macro-intervals (cards 6 to 8). If MQ = 0, the
power density profile is internally generated using the

information stored in the subroutine EUM for a special
blanket type. Only these two possibilities can be used

in the case of steady-state analysis. For non-stationary
calculations a third possibility is provided, MQ < 0; in
this case the program expects to receive |MQ| values for the
power density defined at each interval boundary (card 5).

For non-stationary calculations (INST = 1) the definition of
HD is meaningless because the solutions used always assume
the radiation to be a heat flux entering the wall from
outside.
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If MOD 2 0, TFW and RW and, in the case MOD = 3,
additionally RT are capable of describing the geometry

completely. In this case, RA, AA, and BB do not have
any meaning.

If MOD £ 0, however, additional information 1s necess-

ary to describe the relation between the entire toroid

and a single module. Of the two possibilities of doing

this - either the number or the sizes of modules can

be fixed - the latter was chosen. RA therefore defines

the outer radius of the cylinder or sphere limiting

the module at the side exposed to the plasma. AA and BB
do not have any meaning.

If MOD = O, there is a possibility of deciding between
the assumption of a circular or a rectangular plate

of thickness TFW. If a circular plate is chosen, RA has
to be set equal to the outer radius of the plate;

AA and BB have to be zero. In the case of a rectangular
plate AA and BB have to be set equal to the side lengths
of the plate; RA has to be set equal to zero.

These quantities specify the time variation of the nuclear
power density QT(X) and the external heat load to the wall
PT(K) for one complete cycle, assuming that there will

be a periodic sequence of such cycles. In the present
version the time intervals have to be chosen equally
spaced.
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Since in the case of non-stationary calculations the
space dependent nuclear power density profile is
generated on the basis of a neutron wall loading of
1 Mw/m2 the time function QT has to be normalized to
this value. For this purpose the conversion factor
FQT can be used. In the present version a value of
FQT = 2.2524-10" 1% MA/ME Lo ced to adjust the out-
put of the plasma mgégT S /2/ to this program.

For the same reason the conversion factor FPT is

: >
currently set at FPT = 1.0-1077 d/cm o
erg/cm”s

4.2.  Program structure and operating sequence

The present version of the program consists of the main pro-
gram and 20 subprograms, the names of which together with a
rough characterization of their purpose are listed below.

MAIN Input, output, control
QPRF evaluation of power density profile
TPRF evaluation of steady-state temperatur profile

gg g auxiliary programs for TPRF

SPRF evaluation of stress profile

CYy g auxiliary programs for SPRF to evaluate stress co-
CZ

efficients for rectangular plates

DPRF evaluation of strain profile

LPRF evaluation of life profile based upon time rup-
ture strength data

TTPRF evaluation of non-stationary temperature profile

EUM evaluation of energy multiplication factors for
special blanket type

CONDIT evaluation of heat flux potential

COND evaluation of thermal conductlvity

DENS evaluation of density

CAP evaluation of specific heat
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ALFA evaluation of thermal expansion coefficient
E evaluation of Young's modulus

NUE evaluation of Poisson's ratio

LMP evaluation of Larsen-Miller parameter

FATG evaluation of fatigue rupture time (cycles to failure).

A flow diagram of the main program is shown in Fig. 13.

The program starts by reading the input information (cards

1 to 4) which is needed for both steady-state and non-
-stationary calculations. Depending on the specification of
MQ, if requests the values for the nuclear power density
either by micro-interval (card 5) or by macro-interval
(cards 6 to 8); if MQ = 0, no input is needed, the necessary
information being internally generated by calling the sub-
routine EUM. In the case of non-stationary calculations
additional input information has to be provided (cards 9 to
10 and 12 to 14). Only if ITT # O has card 11 to be supplied.

After completion of the input operations, the first output
1ist (output 1) is produced by presenting a first set of in-
put quantities which is extended by "output 2" in the case of
non-stationary program runs. Only in this case 1s a program
step added in which time-averaged quantities of interest are
evaluated. They are printed by "output 3".

The next program step is to establish the micro-interval
structure. If the nuclear power density profile is not de-
fined by micro-interval (MQZ 0), the subroutine QPRF 1s
called to do this job on the basis of the macro-interval
information specified by the input or based on the results
of the subroutine EUM. The power density profiles are prin-
ted by "output 4". At this stage the calculation procedure
is branched, depending on the type of calculation fequested
(INST). '
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In the case of steady-state calculations (INST = 0) successiv-
ely the subroutines TPRF, SPRF, DPRF, and LPRF are called

to evaluate the profiles of the temperature, stress, strain,
and lifetime, respectively. Each calculation step is followed
by a print-out (output 5 to 8).

In the case of non-stationary calculations (INST = 1) first
the time and space-dependent temperature distribution is
evaluated by subroutine TTPRF. To save computer time and
storage, this evaluation is done for a limited number (MX+1)
of svace points.

The results of this evaluation are printed by "output 9".

On the assumption that the pressure loads do not vary with
time, the stresses and strains for this constant load are
calculated next by calling the subroutines SPRF and DPRF.
These steps are followed by equivalent output operations
("output 10" and "output 11"). The program now enters a DO
loop inside which the stress-strain analysis is performed for
every time instant specified before. The constant mechanical
stresses calculated before are input to this procedure. For
numerical reasons the original fine spatial subdivision is
again used. In practice, this means that the coarse mesh sub-
division used in TTPRF is extended to a fine mesh structure
by an interpolation procedure. When the loop is completed,
"output 12" and "output 13" 1list the time-dependent reference
stresses and strains again at the coarse mesh interval
boundaries. With an option (ISD) it is additionally possible
to print the time variation of the three components of thermal
stresses and strains ("output 14") or total stresses and
strains ("output 15").

In the course of the non-stationary calculation the program

checks at each space point for the maximum and minimum
stresses and strains and calculates the strain ranges A€ at
each space point. The maximum A€ is finally fed to the sub-
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routine FATG, which calculates the number of "cycles to
failure". Using the cycle duration TC and the time-averaged
wall loading, the main program provides information about
the useful life and the integrated wall loading to be
expected with regard to the fatigue properties of the ma-
terial considered ("output 16").

4.2.2. Some special subroutines

Most of the main subroutines used have already been briefly
described in /1/. We therefore comment here only on those
subprograms that are new to the system.

DPRF calculates the strain profiles. The elastic strain is
evaluated from the total stress using Hooke's law, and the
thermal strain from the temperatures resulting from either
TPRF or TTPRF. Subsequently, the total and the reference
strains are provided. As is the case for the stresses, the
material properties can be treated as temperature dependent
or independent. The reference strain is evaluated elther
from the reference stress or from the three components of the
total strain using the same strength hypothesis as is used
for calculating the reference stress.

TTPRF evaluates the space and time dependent temperature
distribution for a periodic sequence of pulses. Both inter-
nal heat sources and heat conduction from outside are taken
into account. The time function of both contributions may be
arbitrary as may be the space distribution of the internal
power density. The program starts with the evaluation of

an average temperature by means of the subroutine TPRF. This
temperature is used to calculate the thermal diffusivity and
the time constant for the wall from the materials properties.
Afterwards the space function of the power density and that
of the initial temperature distribution are Fourier-analized.
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The same 1s done for the time functions of internal and
external heat loads. The Fourier coefficients resulting
from these procedures are used to construct the solution
for the heat flux potential which is finally converted
to terms of temperature.

EUM 1is a multi-purpose subroutine providing a set of energy
multiplication factors for special blanket types. In the
present version the data for a blanket composed of 1liquid
lithium in its natural isotopic composition and stainless
steel are stored. Depending on the main blanket parameters
(first wall radius, first wall thickness, thickness of
breeding zone and structure material volume fraction in the
breeding zone), a total of eight multiplication factors are
calculated, which, multiplied by the energy or power of the

14 MeV neutron current incident on the wall, yield the

energy or power delivered in the following regions: first wall,
breeding zone, last wall, magnet shield, and magnet coil.

The latter three are assumed to be invariable in thickness and
material composition. The multiplication factors of the first
wall, breeding zone, and last wall are added to define an
equivalent factor for determining the "useful power", those

of the magnet shield and coil for determining the "loss power".
All factors are added to determine the "total power". The
information stored in this routine is based upon systematic
neutronics/photonics-calculations /12/ performed with the
INDRA program system /13/.

FATG calculates the number of cycles to failure from the
strain range under pulsed load conditions. At present only
data for MTRL = 2607 (Type 316 SS) are available which were
taken from /11/.
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5. Program testing

In order to check the reliability of the program and to
gain some experience of the sensitivity of the results

with respect to the order of Fourier approximation some
test runs were performed.

5.1. Verification of steady-state results

Already in an early stage of program development it was
tested whether the results of the subroutine TTPRF are
consistent with those of a steady-state calculation.

Assuming a neutron wall loading of 1 MW/m2 and no external
heat load, the build-up of the temperature profile in a

1 em stainless steel wall was investigated. The time function
QT was set constant in this case. The results of this cal-
culation are shown in Fig. 14. It can be seen from this
picture that the heat flux potential S at the hot surface
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Fig. 14 Time variation of the heat flux potential S at
various wall depths x for a very long burn pulse.
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and in the middle of the wall approaches the values of the
steady-state calculation with increasing time. After about
40 to 50 seconds, which corresponds to about 4 to 5 times
the time constant of the wall, there is nearly no difference
in the results (see Section 2.2.2.).

5.2. Verification of the analytical solution for

Excluding again external heat sources to the wall, the example
described in Section 2.5.3. was recalculated with the computer
program. The space function qx(x) was represented by 46 power
density data points defined in the micro-interval structure
(MQ = - 46), and the time function qt(t) by KT2 = 61 data
points for one cycle. The cycle duration T was varied between
5 and 60 seconds. In this way the entire range of the quantity
'Té/f' is covered, the analytical results for which were pre-
sented in Fig. 9.

From the results of the subroutine TTPRF the maximum and
minimum values of the heat flux potential S were extracted
and the ratios rf evaluated using equation (72). In Table III
these results are compiled together with those obtained on
the analytical basis using equation (77). The comparison
shows that deviation of the numerical results from the

analytical ones cannot be excluded.

This is due to the fact that because of the subdivision of
the time domain into a number of equélly spaced time inter-
vals the position of the real maximum or minimum does not
automatically coincide with an interval boundary. This
feature explains why the absolute deviations (}r@ are always
negative.
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As can be seen from Table III, the absolute deviations Arf
are of similar magnitude. Since, however, the value of rn
decreases with increasing €3 /€ the relative error AI'f‘/rf
increases. In the range of cycle durations % of interest

for fusion reactor operation, which should be in the range

of & 60 seconds, the relative error of about 1 % should be
acceptable. In the case of higher time constants than assumed

for this special calculation the choice of smaller time inter-

vals can maintain the accuracy at similar values.

5.3. Influence of the order of Fourier expansion

The application of the Fourier solution to the problem of
non-stationary heat conduction makes it necessary to in-
vestigate which.order of Fourier expansion will be reasonable
to arrive at satisfactory results. We have studied this prob-
lem using constant time functions for the internal power
density qt(t) and for the external heat flux Qw(t) and look-
ing at the transient behaviour of the temperature in the

first few seconds of operation.

Figure 15 shows the development of the temperature profiles
with time, assuming only internal heat sources (Fig. 15a)
and only an external heat flux (Fig. 15b). In both cases
five terms in the spatial and ten terms in the time ex-

pansion were taken into account. The picture reveals re-
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Fig. 15a) Development of temperature profiles

across the wall with time due to internal
heat sources

markable differences. While the temperature profiles due fto
internal heat sources (15a) look very smooth, rapidly
approaching the parabolic shape expected, the profiles due
to an external heat flux (15b), which should approach a
linear shape with increasing time, still show significant
spatial fluctuations. The explanation for this different
behaviour must be sought in the different convergence be-
haviour. Since the spatial power density profile, qx(x),
which is approximately a step functlon according to Fig. 4,
is - in contrast to the external heat flux - expanded 1n a
Fourier series, improved convergence is the consequence.
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Fig. 15b) Development of temperature profiles across
the wall with time due to external heat flux.

This can also be concluded by comparing equations (41)
and (53).

To improve the accuracy of the temperature response to

an external heat flux, we increased the order of spatial
expansion to ten, while reducing the order of time expansion
to five. The result is shown in Fig. 16. The temperature
profiles calculated on this assumption come much closer

to the behaviour expected.
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Fig. 16 Development of temperature profile across the
wall with time due to external heat flux using

increased order of spatial Fourier expanslon.

To exclude similar difficulties in further calculations we

decided to use in the subsequent program runs 10 terms for
the time expansion and 20 terms for the spatial expansion.
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6. Parameter studies

Having checked the program for reliability and accuracy,

we applied it to a number of scoping and parameter studies,
the results of which are reported in the following sections.
The main purpose of these studies was to find out in what
way the first wall reacts to real plasma pulses and which
are the significant parameters affecting the fatigue life.
No Jjudgement 1s to be made concerning the absolute size of
the results.

Each of the following investigations, except those performed
to search for the worst combination of program options (see
Section 6.2.), is based on the same real plasma pulse. It
results from the zero-dimensional time-dependent model for

a tokamak plasma elaborated in our laboratory /2/ which
calculates inter alia the 14 MeV neutron current and the
plasma radiation striking the first wall as a function of
time.

In doing this, 1t was assumed that the plasma 1s contained
in a toroidal vessel of 18.2 m major and 7.5 m minor radius
with a magnetic field of 3.57 T on the axis. Using a safety
margin of gq(a) = 3 at the plasma boundary (a = 7 m), a
value of Bpol = 2 folloys from the stability criterion. In
order to obtain an optimum power density in the plasma
fthese conditions were to be maintained during the entire
burn period. This was achieved by an appropriate choice of
ion density and plasma heating conditions. The ion density
was fixed ton, = 4.3 . 10!2 em™> and assumed to be main-
tained at this value by cold refuelling. At an ion tempera-
ture of T, = 4 keV neutral injection is started by means of
300 keV deuterons, which deliver a total power of 200 MW to
the plasma ions within the first 12 seconds of the pulse.
Based on these assumptlions the time behaviour of the plasma
was evaluated using the boundary conditions that no divertor
is present, and that both & -particles and impurity atoms




emerging from a stainless steel first wall will be in-
finitely well confined.

The resulting 14 MeV neutron wall loading and the radiat-
ion load at the first wall are represented in Fig. 17 by
solid and dashed lines, respectively. The neutron wall
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Fig. 17 Time variation of neutron wall loading Pwn and
radiation wall loading Pws due to a characteristic
plasma burn pulse.

loading essentially follows the behaviour of the ion tempe-
rature and hence the reaction rate. The first steep increase
during the heating period is followed by a slower rise, which
is in keeping with the further temperature rise due to

& -particle heating. With increasing impurity content of the
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plasma the radiation losses increase until they finally

cool the plasma to temperatures where the fusion reactions
are quenched. The dashed line representing the continuocus
increase of the radiation losses characterizes the sum of all
contributions to the plasma radiation, i.e. bremsstrahlung,
cyclotron, line, and recombination radiation.

As can be concluded from Fig. 17 a total burn time of

T

gained from the plasma during a single pulse amounts to

= 54 s follows for this special case. The total energy

about 120 GJ. Averaged over the burn phase, this corresponds
to a total power of about 2200 MW. The average neutron wall
loading is approximately 0.35 Mw/mg, and the radiation wall
loading about 0.07 Mw/me. For our further considerations

that thermal power is of interest which has to pass the first
wall to its cooling side. Averaged over the burning phase,
this is a total of 530 MW, 335 MW being radiation power and
only 195 MW being nuclear heating inside the 1 e¢m thick first

wall.

6.1. Influence of the pulse shape on temperature variations

In a first series of calculations we wanted to find an answer
to the question to what extent the temperature variations of
the first wall are affected by simplifying assumptions about
the pulse shape. The time dependence of the real radiation
load shown in Fig. 17, for instance, suggests using a linear
increase with time. The neutron wall loading, on the other
hand, can be approximated by a linear increase during the
heating'phase up to a maximum value which is subsequently
maintained up to the end of the burn phase.

We have .evaluated the temperature variations for these two
possibilities separately and together, assuming that the
total power delivered during a single pulse equals that of
the real pulse. The results for the hot surface of the wall
are presented in Figs. 18 to 20.
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Figure 18 shows at the top the temperature variations due

to the real pulse, and at the bottom those due to the
simplified pulse, both for Jjust the nuclear heating contri-
bution. Although small in size, the temperature fluctuations
show notable differences. The real pulse produces a more
sinusoidal temperature variation than the modified one. This
is obviously due to the fact that, in the case of the
simplified pulse, power at the "maximum" level 1s produced
over a longer period of time and especially in the last few
seconds of the pulse. Since in the case of the real pulse
the maximum power is absolutely higher than in the case of
the simplified one, the amplitude of the temperature variat-
ion 1s also larger. The difference is a factor of about 2.

Figure 19 shows the results for the case that only radiation
power has to pass the wall. Because of the closer approxi-
mation of the real pulse shape by the simplifying assumption
than was the case for the nuclear heating the deviations in
the temperature response are smaller. In fact, a slightly
steeper slope towards the end of the burn phase can be de-
tected in the case of the simplified pulse.

Figure 20, finally, shows the results for simultaneous impact
of both contributions. The characteristic difference is here
the slower approach to the maximum temperature in the case

of the real pulses as compared with the steep gradlent in the
case of the simplified ones.

In Summary, it can be concluded that the assumption of simpli-
fied pulse shapes in the sense outlined above leads to slight-
ly more unfavourable results.
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6.2. Choice of program options_

For the determination of stresses and strains the program
provides a number of options (see Section H-1:): To

arrive at a reasonable combination of the different possi-
bilities for the subsequent parameter studies, we have
systematically used the different options and assessed
their usefulness with regard to those results significant
for the fatigue behaviour.

As the reference case we have assumed that the first wall 1s
constructed of a number of cylindrical modules having an
outer radius of RA = 30 cm and a wall thickness of d = 1 cm.
The cylinders are loaded by an internal pressure of

PIN = 30 bar, and the wall temperature at the coocl side

is maintained by the coolant at TO = 500 C. The nuclear
heating inside the wall corresponds to a case where the
lithium breeding zone is TB = 100 cm thick and incorporates
10 % by volume (EPS = 0.1) structure material. An in-
consistency of minor significance is that the nuclear heating
rates were derived from calculations assuming the German
type 1.4970 stainless steel, the results of the stress-strain
evaluations, however, were correlated to the fatigue life
properties of the AISI type 316 SS. For all calculations the
modified plasma pulses defined in Fig. 20 (lower half) were
used on the assumption of equality of burn time‘fﬁ and cycle
duration?iy this meaning that no down time exists between
two consecutive pulses. The results were evaluated for a time
range far from start-up, thus restricting the problem to the
purely periodic behaviour.

On the assumptions stated above, the temperature at the hot
side of the wall turns out to vary between 527.34 and 559.05 C.
This gives rise to fluctuations of the thermal strain,AE&
at this location which amount to 3.85 - 10")+ in the case that
the wall is assumed to be free of stress at the average wall
temperature. If the stress-free state is assumed to occur
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at the temperature of the cold side, the thermal strain
range increases to about 5.50 - 10'4

Assuming the elastic constants to be temperature dependent
(Is2 = 1), we varied the restrain condition (ISO), the
temperature at which absence of thermal stresses is assumed
(IS1), the kind of strength hypothesis applied (IS3), and
the procedure for deriving the reference strain (IDl1). From
the results of these calculations summarized inTables IV to
VI some interesting conclusions can be made:

If the "normal stress hypothesis" (IS3 = 0) is applied (see
Table IV), the reference stresses erv at the hot surface of
the wall turn out to be strikingly small. This is due to

the fact that compressive stresses which occur at this lo-
cation are not taken into account by this hypothesis. As a
consequence the reference strains va and the strain range
dev also prove to be very small if they are derived from
the reference stress (IDl1 = 0). This combination of options,
therefore, leads to wrong conclusions for both stresses and
strains. As far as the strains are concerned, values closer
to reality are evaluated if we follow the recommendation of

H. Neuber /14/ (see Part I of this report) in that we identify
the maximum strain component as the reference value (IDl = 1).
This procedure, however, does not touch the reference stress
calculation. Because of this inconsistency in the latter case
we conclude that this combination of options is not suitable
either to be applied to this kind of problem.

Table V shows the equivalent numbers for the case where the
"simple shear stress hypothesis" (IS3 = 1) is applied. More
realistic numbers for the reference stresses C?v are
evaluated which in either procedure for deriving the re-
ference strains lead to more representative numbers for
both strains and strain ranges. The more unfavourable re-
sults are achieved by calculating the strains by means of

a hypothesis similar to that valid for the stresses. They
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Table IV: Results of scoping studies with regard to different
program options. Case 1: Application of the normal
stress hypothesis (IS3 = 0)

ID1 0 1
1S1 0 1 0 1
IS0 0 1 0 1 0 1 0 1
G'v masx | 212- | 212. 226. | 226. |212. |212. [226. |226.
§ & itiil: 16 16.1-0.08 }0.08 | 16. | 16. |-0.08 |-0.08
E € max| 1-32|1.32 | 1.40]1.40 15.39 13.89 [10.46 }10.09
al g .. 0.1 |o0.1 0. |&0. |7.33 |6.38 | 4.95 | 4.59
‘é A€, 1.221'1.22.1 1.41 71 2.41 1B:0617:50 | 551 550
§ ® o o 1764, 1764, |1736. DL736. |1764.11764.| 1736.|1736.
S| Gy min| 1359 [1359. |1344. 1344, 11359.11359.| 1344, 11344,
a gv i 10.82 |10.82 |10.65 0.65 |10.01| 8.60| 5.14] 4.79
9| &5 min 8.34 | 8.34 | 8.24|8.24 | 7.73] 6.81| 5.13] 4.78
3| a€ 2.49 | 2.49 | 2.40|2.40 | 2.29| 1.79] 0.01} 0.01
AEV el 2.66 2.'66 2.64 | 2.64 | 8.06 7.50| 5.51] 5.50
CTF 120 1:8% 111232 b E 32 1-5.90 - 9i33] 1551 L5
(11 (11) | (1) | (11) | (6) | (6) (8)] (8)
tr, 210000 [210000{ 226500 22650? 10 16 266| 269
Qy 74200 | 74200{ 80000 80000 3.57 5.65] 93.9] 95.2
|
G},in [kﬁ/cmz] CTF = number of cycles to failure
€, 4€  in 10t 2] t;, = lifetime [a]

*¥

(n) means 10"

IEWa/mEJ

integrated wall load
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Table V: Results of scoping studies with regard to different
program options. Case 2: Application of the shear
stress hypothesis (IS3 = 1)

1Dl 0 :
IS1 0 g . :
150 o |1 0 1 5 1 5 .
6, nax | 1881. [1117. |1282. |1094. |1881. |1117. |1282. [1094.
Gy min | 920. | 416. | 626. | 436. | 920. | 416. | 626. | 436.

11.89 | 7.06 | 8.10 | 6.91 |15.54 [10.36 {10.59 | 9.31
Es win | 513 |2459 | 3.90+): 2.7 | T4 W 412 -} 5.06 | 379
A€ | 6.16 | 4.46 | 4.20 | 4.20| 8.10 | 6.24 | 5.53 | 5.52

Hot surface
m
<
=
)
>

§ 6‘V max | 182%4. |1824. ]1766. |1766. | 1824, |1824. |1766. [1766.
r‘g 6, .1 | 1405. |1405. |1374. |1374. |1405. [1405. [1374. [1374.
2 1€ oae [11.19 |11.19 10.84 |10.84 |13.50 |13.17 |12.02 |11.94
S 1€y min | 8-62 | 8.62 | 8.43 | 8.43 [10.40 [10.19 | 9.62 | 9.5
S|l a€, | 2.57 | 2.57 | 2.40 | 2.40 | 3.10 | 2.98 | 2.40 | 2.40

AEV e 6.16 | 4.46 | 4.20 | 4.20 | 8.10 | 6.24 | 5.53 | 5.52

CTF 5.55 1.07 1.87 1.87 5.71 4.91 1.50 1.51
¥ @] | | 6| (| B | (8

tL 95 1833 3200 3200 Q.77 84, 257. 259.
Q, 33.6 Tt N 0 Y T G = o i T ek e 6
G}rin[kp/cmg] CTF = number of cycles to failure
£,,4€  1n 0% [-] t; = lifetime [a]
Qw = integrated wall load [MWa/m2]

3

(n) means 10"
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Table VI: Results of scoping studies with regard to different
program options. Case 3: Application of the octahedral
shear stress hypothesis (IS3 = 2)
=
ID1 0 1
1Sl 0 1 0 1
130 0 1 0 1 0 1 0 1
oG, ap | 1646. | 979. |1110.| 954. | 1646. | 979. |1110. | 954.
3|Gy min | B843- | 365. | 550.| 378. 843. | 365. | 550. | 378.
5 €v max | 10-%0 | 6.19 7.02] 6.03 10.40 | 6.19 | 7.02 | 6.03
= B oo 5.04 |9 .07 3,421 2.35 5.24 | 2.27 | 3.42 | 2.35
P
o1 AE 5 5.15 | 3.91 3.60| 3.68 5.15 | 3.91 | 3.60 | 3.68
§ 6, ... | 1618. [1633. |1547.] 1585. 1618. |1633. | 1547.}1585.
‘g ¢y min | 1248. |1237. |1191.} 1210. 1248. |1237. | 1191.}1210.
| K- 9.93 |10.02 9.49] 9.73 865 110,02 -1 949 | B. 15
a €y min 7-66 | 7.59 T7.30| T.43 7.66 | 7.59 | 7.30 | T.43
S| ae .| 227|243 | 2.18] 2.30 2.27 | 2.43 | 2.18 |2.30
AL, oo 5.15 | 3.91 3.60| 3.68 5.15 | 3.91 | 3.60 | 3.68
CTF 2.8 3.58 7.82] 6.36 2.85 | 3.58 | 7.82 |6.36
(8 (9) 9} (9 (8) (9) (9) | (9)
tr 489 | 6126 13400 |10890 489 | 6126 |13400 | 10890
Q, 173 | 2165 | 4735 | 3850 173 | 2165 | 4735 | 3850
GFV in[kp/cmz] CTF = number of cycles to failure
Ev,aev in 10" [-] t; = lifetime [a]
q, = integrated wall load [ Wwa/n?]
¥

(n) means 10"
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are rather close to those derived by the same procedure
(ID1 = 1), but based on the "normal stress hypothesis", as
long as the cylinder is assumed to be axially clamped. In

comparing the maximum strain ranges 4€ occurring in the

vV max
wall with the results obtained by applying the octahedral

shear stress hypothesis we see that the "simple shear stress
hypothesis", in general, yields the less favourable results.

Its application would therefore mean being on the safe side.

In spite of this fact, however, we prefer using the octahedral
shear stress hypothesis (IS3 = 2) because it 1s agreed in the
literature that it yields the more representative values for
the reference stress than does the simple one. Furthermore, no
differences become obvious in the results for the reference
strains depending on the procedure of evaluating them (see
Table VI). The two methods provided are completely equivalent,
which can be shown analytically, too. This is, in general, not
true of the "simple shear stress hypothesis".

Of the four cases considered in each series of calculations
the most unfavourable one with respect to fatigue life proves
to be that in which the cylinder is not permitted to expand
axially, and in which the temperature of the cold surface is
assumed to be that at which the cylinder is free of thermal
stress. In each case the maximum strain range AEV max, occurs
at the hot side of the wall and amounts to 5.15 - 107 in
the special case considered. Based on this result the fatigue
life properties of the type 316 SS indicate a number of

2:85- - 108 cycles allowed to the point where failure has to
be expected. With an assumed cycle duration for these cal-
culations of 54 seconds, the wall life due to fatigue would
be about 500 years. Together with the time averaged neutron
wall loading of f;nad 0.35 MW/m2 thisecorresponds to an integ-
rated wall loading of Q, &= 170 MWa/m".
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All calculations reported so far have assumed the elastic
constants to be temperature dependent as is in fact the
case. In a further series we allowed the program to use
mean values averaged over the momentary temperature profile.
The results are shown in Table VII. The remaining options
chosen are the same as those used to obtain the results in
Table VI. The comparison shows that using averaged values
leads to a slight underestimation of those strain ranges
which determine the useful 1life.

From the variety of calculations performed in this series
of parameter studies we decided to use the following
options for all subsequent calculations:

IS0 = 0 : axlial expansion of the cylinder is prevented

IS1 =0 : no thermal stresses are present at the
minimum wall temperature TO

Is2 =1 : the elastic constants are assumed to be
temperature dependent

IS3 =2 : the octahedral shear stress hypothesis is
applied to evaluate the reference stress

ID1 = 0 : the reference strain is calculated from

the reference stress

Using these options and recalculating the sample problem
specified above on the assumption of the real plasma pulses
defined by Fig. 17 instead of the modified ones, we arrive
at the results summarized in Table VIII. As already became
obvious from Fig. 20, the temperature fluctuations prove

to be slightly lower. As a consequence all reference
stresses, thermal and reference strains, as well as the
strain fluctuations decrease in magnitude, too. This
finally leads to an increase in the fatigue life by a
factor of about 2.
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Table VII: Results of scoping studies with regard to
different program options. Application of
the octahedral shear stress hypothesis,
neglecting the temperature dependence of
elastic constants (IS2 = 0; IS3 =

ID1 O or 1
IS1 1
IS0 0 1 0 1
0 G, Lax 1657, 986. 1116. 957.
§ & ik 844 . 365. 551 5 378.
3 & ¥ b 10.26 6:11 6.92 553
G E\rnun B2l 2.25 3.40 2.33
:g AE o 05 3.86 3.52 3.60
§ G'V o 1621, 1635. 1547, 1586.
o erV‘min 1249, 1295 1191, 1711 .
> 5vmax 10.05 10.14 9.59 9.83
o €. in 7.70 7.63 s 7.47
2 Aev 2.34 2:51 2.24 2.36
AEV nax 5.05 3.86 3.52 3.60
CTF 3.47(8) 4.12(9)| 9.49(9) | 7.73(9)
tL 595 7050 16 250 13 250
Qy 210 2500 5 750 4 680

For notation see

Table TV.
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Table VIII:
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Results of scoping studies with regard to
different program options. Application of

the octahedral

shear stress hypothesis.

Calculations based on real plasma pulses

ID1

ISs1

IS0 0 1 0 1
@ G, max 1530. 875. 1015. 853.
S 1€y min 797. 364 . 543. 378.
% ev nax 9.65 5.52 6.40 5.38
" Ev _— 4,95 2,06 3.37 2.35
21 A€ 4.70 3.25 3.03 3.0%
0 €y max 1569. 1580. 1498, 1535.
s 6 maE 1210. 1196. 1155. 1172,
% Ev - 9.63% 9.69 9.19 9.42
o E,V min il Lo 7.34 7.09 7.19
2| A€, 2.20 2.36 2.10 2.23
&)

DE. ... 4,70 3.25 3.03 3,03

CTF 6.69(8) 1.95(10) 3.80(10)| 3.77(10)

139 1150 33 450 65 000 65 000

Q, 400 12 000 23 000 23 000

For notation see Table IV
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6.3. The influence of down time

A1l calculations done so far did not assume a down time
between successive burn pulses. In practice, however, fusion
reactor operation will necessitate a certain time period to
remove the reaction products, the impurities, and the unburnt
fuel, to clean the discharge chamber and to refill it with
fresh fuel before the next burn phase can be started. The
time which is needed to perform all these procedures depends

mainly on the performance of the vacuum system.

For the sample problem specifled in the last section we
varied the down time AT from zero up to 60 seconds, cover-
ing a range of numbers which seem to be reasonable as re-
gards the vacuum system, on the one hand, and which also
seems to be justifiable with regard to the decrease of the
average power level, on the other hand. The results are
shown in Figs. 21 to 24.
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T 60 ‘&mu:"bo
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&~ - A (x=0)
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/
20/
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0 \__.-_‘
0 10 20 30 40 50 60
Atls] —

Fig. 21 Maximum and minimum temperature difference across
the wall and amplitude'ddb of the plasma side wall
temperature as a function of the down time AT
between successive pulses.
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Figure 21 shows the maximum and the minimum temperature
differences across the wall (mmax - 4).'0 and /J:nin - 4)’0,
respectively) and the amplitude 44" = J’max - &y, Of the
temperature fluctuations at the hot surface as a functlon
of the down time 4% . It can be seen that only the minimum
temperature is affected while the maximum temperature re-
mains unchanged. As is to be expected, the amplitude

of the temperature variations increases with increasing
down time, approaching the maximum temperature differences
at values of 4%€ which are equivalent to about 4 to 5 time

constants of the wall.

2500
2000
I Oymax (x=d)
by 1500 dvmﬂx (x= 0)
E :
s N
— ~ -
15 il N
1000 S S N PR
\___ Cvmin (x=0)
500
0
0 10 20 30 40 50 60

At [s] —=

Fig. 22 Maximum and minimum reference stress 6‘& at the

hot (x = 0) and cold (x = d) surface of the wall as a
function of the down time 4T between successive pulses.
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The response of the reference stresses is shown in Fig. 22.
Again the maximum stresses remain unchanged, while the
minimum stresses decrease slightly with increasing down
time.

The more relevant quantities with respect to the fatigue
life are the strain fluctuations shown in Fig. 23. Because
of the feedback via the elastic response of the wall the

12

10

; ///"/LA::—‘;(x:o)
!
_:‘5 6 Aey(x=0)

z”faf—”r Ae,(x=d)7]

\ \\\

0 10 20 30 40 50 60
At [s] —=

Fig. 23 Thermal strain variations Aeth at the hot
surface and reference strain variations A&’V
at the hot (x = 0) and cold (x = d) surface
of the wall as functions of the down time AT
between successive pulses.
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variations of the reference strains A€, are smaller than
is the variation of the thermal strain AEth(x=O). The
reference strain variations at the hot surface, gSE‘ICx=O),
are always larger in size than those at the cold surface.

Therefore, they have to be regarded as the life limiting
ones.

If we correlate the strain ranges tSEvix=O) with the
fatigue properties we end up with the behaviour of the

lifetime tL shown in Fig. 24. Here the logarithm of tr

0 10 20 30 40 50 60
At [s] —

Fig. 24 Calculated fatigue life tIJ[aj as a function
of the down time 4T between successive pulses.

(tL in units of years) is plotted versus the down time AT .
As can be seen from this figure, a minimum appears which
is located at down times of about 10 to 20 seconds. The
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slight increase at higher values of AZ” is due to the fact
that the decrease in the absolute number of cycles to
faillure is more than balanced by the increase in the cycle
duration ‘Z"c if AT increases, too.

In summary, we conclude from this series of calculations
that the influence of the down time upon the fatigue life
of the wall 1s of rather moderate size. A minimum lifetime
has to be expected which occurs - at least in the example
considered - at down times low compared with the values
assumed to be probable today. An increase in the down
time, however, means at the same time a decrease in the
average power output Nth' This decrease, in turn, means
that the slight increase of lifetime observed at higher
values for AT is again balanced if we look at the
integrated wall loading Qw to be achieved. As can be seen
from Fig. 25, this quantity very rapidly approaches a
minimum value.

6.4. The influence of temperature level

In our sample problem defined in Section 6.2. the temperature
at the cold surface of the wall was specified as TO = 500 C.

In this section we want to investigate to what extant the
results are affected by changes in this quantity and hence
in the entire temperature level. For this purpose we varied
TO in the range 300 to 650 C. For the down time in this
and all subsequent calculations AT = 30 s was assumed. The
results are summarized in Figs. 26 to 29.

From Fig. 26 we see that both the maximum and to a lesser
extent also the minimum temperature differences across the
wall decrease with increasing temperature. This behaviour
reflects the characteristic temperature dependence of the
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Fig. 25 Average thermal power N, ., number of cycles
to failure NF’ fatigue 1life tL’ and integrated
neutron wall loading Qw as functions of the

down time AT between successive pulses.

thermal conductivity, which for stainless steels like most
other metals increases with increasing temperature. As a
consequence the amplitude grﬂ‘of the temperature fluctuat-
ions also decreases as do the maximum reference stresses
B ias (see Fig. 27) and the amplitudes of the thermal
and reference strain variations 4 € (see Fig. 28). If

we apply the design curve for the fatigue life prediction
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Flig. 26 Maximum and minimum temperature difference across
the wall and amplitude 4 of the plasma side wall
temperature as functions of the coolant side wall
temperature o
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Fig. 27 Maximum and minimum reference stress &, at the
hot (x=d)and cold (x=d) surface of the wall
as a function of the coolant side wall
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Fig. 28  Thermal strain variations Asth at the hot
surface and reference strain variations AEV
at the hot (x=0) and cold x=d) surface of the
wall as functions of the coolant side wall
temperature J’O.

to the maximum reference strain variations, the calculat-
ions yield an increasing fatigue life with increasing
temperature level (see Fig. 29).

It is, however, not correct to take this result as a
conclusion. In fact, the design curve is a recommendation
for application in the temperature range between 538 and




- 80 -
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Fig. 29 Calculated fatigue life tI’[aJ as a function
of the coolant side wall temperature

650 C, incorporating a safety factor of 2 with respect to
experimental results at the higher temperature /11/.
Actually, the fatigue 1life should increase with decreasing
temperature. There is, however, at present not enough in-
formation available to take this temperature dependence
into account. It seems likely that the tendency indicated
by the calculational results (Fig. 29) will be just re-
versed if the actual temperature dependence is introduced.
As another interpretation of Fig. 29 we can conclude that
in the same way the predicted fatigue 1life is increased
with increasing temperature, while the safety factor is
reduced.

With regard to this inconsistency the meaning of Fig. 29
is doubtful. This is not true, however, of the other

results, especially for the maximum strain variations.




- 81 -

6.5. The_influence of wall radius

While for the reference case we fixed the wall element
radius RA arbitrarily at 30 cm, we now varied it 1in the
range between 10 and 60 cm to see the influence upon
the fatigue life.

Since the time dependence of the temperature profile in
the wall is calculated by means of a plane geometry model,
as 1s done throughout this report, a different wall radius
RA does not affect the results for the temperature
differences and the amplitudes of the fluctuatlons of
temperatures and thermal strains. The absolute size of
these quantities therefore agrees with those of the re-
ference case. A deviating behaviour, however, 1is to be
expected for the reference stresses and stralns because,
with respect to the mechanical stresses, we use the cylindri-
cal model for the stress evaluation.

Figure 30 shows the variation of the reference stresses

with the wall radius RA. As far as the cold surface (x=d)

is concerned, both maximum and minimum reference stresses
esseatially follow the increase of the mechanical stress
which is due to the decreasing ratio of wall thickness and
radius. Being tensile at this location, the thermal stresses
do not significantly contribute to the total stress. The
same is true of the minimum reference stress at the hot
surface Erv ik
thermal stresses are characteristic. In contrast to this

(x=0), of which low, but compressive

behaviour, the maximum reference stress at the hot surface
QV max (X=0) exhibits a rather flat variation with RA,
which is due to the interaction between the increasing
mechanical tensile stress and the large compressive thermal

stress.
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Fig. 30 Maximum and minimum reference stress 6';1 at the
hot (x=0) and cold (x=d) surface of the wall
as a function of the cylinder radius B

Fig. 31 shows the resulting behaviour of the reference strain
variations AIEV, which is in qualitative agreement with the
equlvalent differences between the maximum and minimum
stresses. The steeper decrease of the strain amplitudes at

the hot surface 41£V (x=0) as compared with those at the cold
surface AEv(x=d) causes the two curves to cross. This means
that below a certain wall radius (in this case for RA = 40 cm)




- 83 -
12
10
\ Agy, (x=0)
: | =
T N
w \AEv(x=0)
J6
= N
4 T
AEv(x=d)
2
0
0 10 20 30 40 50 60
ralcm] —

Fig. 31 Thermal strain variations AEth at the hot surface
and reference strain variations.div_at the hot
(x=0) and cold (x=d) surface of the wall as
functions of the cylinder radius ro-

the strain variations at the hot surface, above thils radius,
however, those at the cold surface are the life limiting ones.

The resulting dependence of the fatigue 1life upon the wall

radius is visualized in Fig.32. As long as the hot surface
is responsible for a possible fatigue fallure a remarkable

increase in the useful life can be expected from enlarging

the wall radius. No further increase occurs if the critical
surface turns to the cold side.
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Fig. 32 Calculated fatigue life tI,[aJ as a function
of the cylinder radius ro-

6.6. The influence of pressure load

A further parameter in our calculations is the pressure load
of the wall, which was fixed in the reference case at

PIN = 30 bar. The variation of this quantity was extended
over a range from 5 to 60 bar. The results are summarized

in RFigs. 33 to 35.

As in the case of the variation of the wall radius, a change
in the pressure load has no effect on the temperature and
thermal strain fluctuations. The remaining quantities of

interest, i.e. the maximum and minimum reference stresses,




2500

2000 =

1500 2 et

d, [kp/cm?]
\
\
\
\
\
\
\I
\
\

s 7
1000 ~ sl

500 v /:/

7

P

10 20 30 40 50 60
plbar] —=

Fig. 33 Maximum and minimum reference stress Garat the
hot (x=0) and cold (x=d) surface of the wall as
a function of the internal pressure p.

the reference strain variations and the fatigue life, show,
in principle, the same behaviour with increasing pressure
as could be demonstrated for the case of varying the wall
radius. This can easily be seen by comparing the equivalent
diagrams.

In fact, this agreement 1s not surprising because in either
case the variations in the different quantities are ultimately
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Fig. 34 Thermal strain variations 41££h at the hot surface
and reference strain variations A‘Ev at the hot
(x=0) and cold (x=d) surface of the wall as
functions of the internal pressure p.

due to the variation of mechanical stresses and, as far
as the hot surface of the wall is concerned, to their
interaction with the thermal stress. Thus, Figs. 33 to
35 need not be considered further; they are interpreted
in detail like Figs. 30 to 32.
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Fig. 35 Calculated fatigue life t. [éj as a function
of the internal pressure p.

6.7. The influence of wall thickness

Varying the wall thickness d in the course of parameter
studies causes changes in a number of basic quantities
entering the stress and strain evaluations. The combined
effects of the different mechanisms for which these quantities
are responsible lead to rather complicated dependences of the
final results which need more extensive explanation than re-
quired for the studies previously reported.

Figure 36 shows the maximum and minimum temperature differences
across the wall and the amplitude of the temperature fluctuat-
ions at the hot surface as dependent on the wall thickness d.




- 88 -

100

80 Imax-Jo /

60 /A«‘}(xw)—

L

Adlc] —

40 /
20 // %min—'ao
U //
0 0.5 1.0 15 20

dlcm] —

Fig. 36 Maximum and minimum temperature difference across
the wall and amplitude 44 of the plasma side wall
temperature as functions of the wall thickness d.

As was to be expected, the maximum temperature difference
J;mx -AT; which builds up during the burn phase increases
nearly linearly with d. At larger values of d, however, a
clear deviation from linearity can be detected. This deviation
1s the combined result of three effects. The first reason is
the increase of the time constant‘Z:’d with increasing wall
thickness, which prevents the temperature profile from attain-
ing the asymptotic shape defined by the equivalent steady-state
temperature profile. The second reason is the slightly de-

creasing space-averaged nuclear power density in the wall
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with increasing wall thickness, which 1s a consequence

of the continuous neutron flux attenuation in the wall.

The third reason is the temperature dependence of the
thermal conductivity of the wall material, which works

in the same direction. It seems probable that the first

of these effects is the most significant one. The time
constant Q:d is also responsible for the behaviour of the
minimum temperature difference 47;un -.17;. The shorter

the time constant the larger 1is the temperature drop

during the down phase. At small wall thicknesses QTd is

so small that the temperature is able to decrease just

to the minimum value 4’;. Not before ira reaches about
one-fifth to one-fourth of the down time 4% can an in-
crease of the minimum temperature above Qr; be observed.

As a consequence of these two effects, the amplitude of

the temperature fluctuations A’J’shows the typical behaviour
depicted in Fig. 36. After an increase corresponding to
that of the maximum temperature difference.Q?%aX '“J,o it
turns to a nearly constant value at larger wall thicknesses.
The slight decrease at the end of the parameter range con-
sidered may again be due to the effects of decreasing power

density and increasing thermal conductivity.

In Fig. 37 the reference stresses E?% are plotted as a
function of the wall thickness d. In principle, all curves
shown exhibit a similar behaviour, reflecting the well-known
interaction between mechanical and thermal stresses. With
increasing wall thickness the mechanical stresses decrease
and the thermal stresses increase with the result that a
minimum total stress occurs at an optimum value of d.

As can be concluded from this figure, the optima of the
maximum reference stresses for the two wall surfaces con-
sidered do not, however, coincide. Additionally, the stress
variations at both surfaces differ appreclably.
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Fig. 37 Maximum and minimum reference stress va at the
hot (x=0) and cold (x=d) surface of the wall as a
function of the wall thickness d.
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As a consequence, the reference strain variations shown

in Fig. 38 together with the thermal strain variations also
exhibit remarkable differences. It 1s especially worthwile
to note that there may be a range of wall thicknesses in
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Fig. 38 Thermal strain variations ‘Aékh at the hot surface
and reference strain variations AEV at the hot
(x=0) and cold (x=d) surface of the wall as
functions of the wall thickness d.

which the reference strain variations at the cold surface
exceed those at the hot surface. There is another range in
which the reference strain variations exceed even those of
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the thermal strain. Effects of such a nature cannot, in
general, be predicted if too simple methods are applied
for the stress-strain analysis.

Quoting the maximum reference strain variations against the

fatigue property,values for the useful 1life yield the results
shown 1in Fig. 39. It is interesting to note that in the range
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Fig. 39 Calculated fatigue 1life t; [a] as a function
of the wall thickness d.
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of the wall thicknesses considered the useful 1life may vary
by a couple of orders of magnitude, while the strain
variations cover only about a single decade. For complete-
ness, 1t must be repeated at this point that agaln a tem-
perature dependence of the fatigue 1life properties has

not been taken into account. Therefore, the same caution
has to be exercised in interpreting the results of Fig. 39.
Since the fatigue life has to be expected to decrease with
increasing temperature and hence with increasing wall
thickness, the real fatigue life variation with d should
result in a curve either below that plotted in Fig. 39
and/or having a steeper slope.

6.8. The_influence of wall loading_

Regardless of our having used the modified pulse shapes at
some few points of this study, we have preserved up to now
the consistency between the plasma model, the nuclear
response of the wall, and the stress-strain-analysis. In
this Section we now break this premise at one point in
that we vary the wall loading. We assume that there are
combinations of plasma parameters which yield a different
average power level but still preserve the same pulse
shapes and burn times as specified for the reference case.
Practically, we do this by changing the conversion factors
FQT and FPT (see Section 4.1.) by the same factor. While
in the reference case we have been concerned with a neutron
wall loading of about 0.23 MW/m> and a total (including
radiation) of about 0.27 MW/mz, both averaged over a cycle
duration of 84 seconds, we now intend to investigate a
range which is equivalent to neutron-wall loadings PWn
between 0.1 and 1.0 Mw/mg. The results are presented in
Figs. 40 to 43.
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the wall and amplitude A4 of the plasma side wall
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The results shown do not need much interpretation. Ail quantities
of interest, 1.e. temperature differences and amplitudes (Fig.40),
reference stresses (Fig. 41), and strain variations (Fig. 42)
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Fig. 41 Maximum and minimum reference stress erv at the
hot (x=0) and cold (x=d) surface of the wall as
functions of the average neutron wall loading PWn'

are subjected to a continuous increase with the wall loading.
Except for very low values of Pwn the reference strain
variations at the hot surface A£V(x=0) are those which limit
the useful life. The fatigue life itself is presented in

Fig. 43. As was the case for variations of the wall thickness 4,
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Fig. 42 Thermal strain variations Aé'th at the hot sur-
face and reference strain variations ASEQ at the
hot (x=0) and cold (x=d) surface of the wall as
functions of the average neutron wall loading PWn'

the useful 1life here also covers a range of a couple of
orders of magnitude down to lifetimes below 1 year above
wall loadings of about 0.4 MW/mz.
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Fig. 43 Calculated fatigue life t [a] as a function of
the average neutron wall loading PWn'

As was the case in the preceding section, again the actually
existing temperature dependence of the fatigue life has not
been taken into account. For this reason the same reservat-
ions have to be observed as outlined in Section 6.7.
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6.9. The_combined influence of wall thickness and wall loading
Based on the outcome of the previous parameter studies, a
hierarchy can be established indicating the weight of in-
fluence of the single parameters upon the fatigue life. Having
covered parameter ranges which seem reasonable from the
present-day point of view, we can state that the influence

of the down time between successive burn pulses is of minor
importance. A similar tendency is expected for the influence

of the temperature level although an increase in fatigue 1life
with increasing temperature was calculated. Since, however{
only the temperature dependence of the strain variations, and
not that of the fatigue life properties, was taken into account,
our results convey the mistaken impression of a tendency which
actually does not exist, at least not to the extent resulting
from the calculations. A significant influence upon the

fatigue life follows from variations in the coolant pressure
and in the gross geometry of the modules represented here by
the outer radius of the cylinder.

By far the largest influences, however, have to be expected
from the wall thickness and the wall loading. For this reason
a further series of calculations was performed, from which
the combined influence of the two parameters upon the fatigue
life has been extracted.

Avoiding a presentation of all results, we concentrate here

on the final results, which are shown in Fig. 44, Lines of

equal fatigue life have been plotted in a coordinate system
setup by the wall thickness d and the average neutron wall
loading PWn' Although this picture is actually valid only
for a down time AT = 30 seconds, an internal pressure load
of p = 30 bar, a cylinder radius of Ty = 30 cm, and a
temperature of the cold surface of 402 = 500 C, it should
be applicable to a wider range of all of these parameters

because of the predominant influence of Jjust the parameters
varied.
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Fig. 44 Lines of constant fatigue life tL[aj as dependent
on wall thickness d and average neutron wall loading Pw

As a surprising feature we learn from this picture that the
possible parameter combinations of d and Pwn leading to a
reasonable, but finite fatigue 1life are settled within a
narrow band. This region extends from low wall loadings of
about 0.15 to 0.25 Mw/m2 at 2,0 cm wall thickness to

1 Mw/m2 at a thickness of about 0.35 to 0.55 cm. Wall
loadings in the range above 1.0 MW/m2 as proposed in current
design studies for commercial fusion reactors necessitate -
from the fatigue life point of view - very thin walls of the
order of about 0.3 cm or less. In this range a variation of

n
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wall loading can affect the fatigue life rather strongly
because of the steep slope of the curves in that range. If
for any reasons thicker wallshave to be used, the wall
loading has to be dropped appreciably. The range of wall
loadings envisaged for the experimental power reactors

assumed at about 0.2 MW/m2 offers greater flexibility of
design.

7. Conclusions

On the basis of the results of our time dependent plasma
simulation code /2/ the analysis of the mechanical per-
formance of the fusion reactor first wall was extended to
cover the problems of pulsed load conditions.

The basis of these considerations was the analytical treat-
ment of the nonstationary heat conduction problem, which
was solved for a number of different heat load conditions.
Of the various solutions elaborated the one selected for
further application was that based upon a Fourier solution
for arbitrary space functions and periodic time functions
of the internal heat sources which are due to nuclear heat-
ing. In parallel, a Fourier solution for arbitrary but
periodic time functions of an external heat flux density
was elaborated which represents the thermal load of the wall
due to plasma radiation and heat conduction. Both solutions
can be linearly superimposed to obtaln the space and time
dependent temperature response of the wall to any periodic
plasma pulse sequence. The subsequent stress and strain
analysis is performed in a quasl steady-state mode using
the methods already described in the first part of this
report.
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Although the nonstationary analysis of the heat conduction
problem was only performed for plane geometry, the results
are also representative of cylindrical and spherical
geometries as long as we think about realistic engineering
designs of the blanket and first wall. A further simplificat-
jon is the neglecting of the temperature dependence of some
physical properties which determine the time constant of the
wall. The error induced by this assumption is small compared
with other errors, e.g. those occurring in the course of the
numerical calculations.

A major source of error is introduced in the last step of

the present analysis in which the resulting strain variat-
ions are quoted against the fatigue life properties of certain
materials to achieve information about the useful 1life. Few
data have been published about this material property. Hence
we have been forced to apply a design curve which actually
does not meet the requirements adequate to the depth of the
analysis. It should, however, be no problem to switch to a
more refined version of data representation if 1t becomes
avallable.

To arrive at an operable state, the results of the analysis
were programmed for the computer using essentlally the already
existing code and extending it to cover both the steady-state
and the nonstationary case. Checking the program against the
steady state and an analytical result revealed no significant
and inexplicable differences. Thus we are convinced that a
reliable instrument for parameter studies has been provided.

A number of parameter studies has been performed the results

of which have been presented in this report. Starting from

a reference case, we have varied the most essential independent
parameters using a realistic plasma burn pulse. The purpose

of these studies was to look for the trends in the final
results which determine the fatigue life of the wall and to
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obtain some estimates about the fatigue life itself. The
latter results have to be regarded with caution, however,
for the reasons outlined above and mentioned at various
places throughout this report.

In spite of these inaccuracies, which are unavoidable in
the present state of knowledge about fatigue 1ife pro-
perties, we have detected some basic tendencies which
allow some insight into the weight by which the fatigue
life is affected owing to the variation of some parameters.
Minor significance should be attributed to the choice of
down times between the burn pulses and to the temperature
level at which the strain variations occur. A remarkable
influence was found if mechanical stresses in the wall are
changed either by variation of the pressure load or by

that of the wall radius. The biggest, almost dramatic,
influence has to be expected from variations of the wall
thickness and for the wall locading. Looking at the combined
effects of the two parameters shows that safe operation of
the first wall may be assured at wall loadings below

0.15 Mw/m2 or at wall thicknesses below 0.3 cm. In the
range above these values careful calculations are needed to
arrive at a satisfactory engineering design of the first
wall with respect to fatigue life.
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