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Abstract :

Analytical formulae for classical reflection from pellets and
plane targets under normal incidence are presented and the maxi-
mum electric field increase in smooth density profiles is deter-
mined. Density profile distortions due to light pressure and their
influence on pellet compression are discussed in a steady state

model.
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A. Introduction

This report treats the classical optics of laser plasmas in spherical and

plane geometry.It has mainly been written for the experimentalist. In pro-

jecting or evaluating an experiment often basic formulae for simple geometries

are needed. And not so seldom one discovers that such formulaedo not yet
exist. This is true for reflection coefficients and the increase of the
electric field near the critical point. Therefore, in section D, analytical
reflection coefficients will be presented for four different electron den-

sity profiles.

When the thresholds for parametric instabilities or local light pressure
effects have to be estimated the knowledge of the maximum electric field
amplitude is of particular interest. For this we have found a general for-
mula which is very simple. In order to show the range of validity of these
formulae in sections B and C the approximations made in the wave equation
and its solution are discussed.The critical region is treated by approxi-
mating the dielectric constant by a linear function and by solving the
corresponding wave equation in terms of Airy functions. With particular
emphasis the limits of validity of the WKB approximation are discussed.
From the numerical examples given in section C it results clearly that

it has a wider range of applicability than it can be expected from the
well-known criteria. Finally, in section E we discuss the influence of
light pressure on density profile modifications. As a result we show that
its influence on compression is much less dramatic than it has been sus-

pected several times.

Laser plasma experiments indicate that oblique incidence of light may be
of particular interest under certain angles, provocating the socalled phe-
nomenon of resonance absorption. It would be of particular interest to
have reliable analytical formulae for this situation. However, only in a

later report such formulaewill be presented.

B. Laser Radiation Focused on Spherically Symetric Targets

a) The wave equation

- -y
Let us consider the Fourier components of E,B,] for a given frequency w ,
i.e. the time variation of such a component is of the form

- -t

E, B, ] ~¢ e

-
-
Assuming J'F’E for the current density with the electrical conductivity &

depending only on the frequency W, Maxwell s equations reduce to

Vx_E =~ n‘!-:"

Oflx

> (2>

- . =
VxE = 1ckB
(3>
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where K stands for T and the square of the refractive index hl is
related to & by ’

n*=1+-=— 4

Substitution of Eq.(3) in Eq.(2) yields the familiar wave equation
2
vxVxE — kn*E =0. &)

This equation admits such a varlety of solutions that a general discussion
is impossible : nearly all classical optics in vacuum, gases and condensed
matter is governed by this equation. We limit ourselves to the very special
case of focused light beams normally incident on pellets the refractive

index of which depends only on the radius

2 _ Ne(r) l
n = ] - n . - 5 (6
e 1 +iANg(r)/n,
where N, is the critical electron density at which the plasma frequency

c
OOP =(ﬂeez/£|Vne)

A is the electron-ion collision frequency normalized to W at the critical

point T} (Vle(n) =nt.)

/2 equals the incident 1ight frequency & and

an |
r=r,

It is thereby tacitly assumed that \Q;does not depend on the temperature

or that the electron temperature is constant over the whole radius owing

to thermal conduction. If}\ were taken as equal to zero, no absorption

in the pellet would take place.

By focused beams we understand electromagnetic waves wﬂere the normals

to the surfaces of equal phase, il.e. the wave vectors K are all directed

towards one point. However, it must be pointed out that this is an appro-

ximate concept the validity of which is within the framework of geometrical

optics. Diffraction phenomena at the edges or in the focus of a beam, or

strong variations of the refractive index N over one local wavelength ;\ .

though still described by Eq.(5), invalidate the concept of focused beams.

The aim in laser fusion is to illuminate a pellet uniformly from all direc-

tions so that the Poynting vector in the radial direction does not depend

on the angles q and %‘. In the time average this goal may be reached to

any desired accuracy, however, it cannot be achieved for any given time

instant. In fact, there exists a topological theorem which states that on a

sphere it is not possible to assign to each point a continuously varying

direction. L In other words
Do not try to comb a guinea pig continuously.

There will remain at least one point with undefined direction. If the elec-

tric and magnetic fields are decomposed into their tangential and radial
- - - Bk

components E=E.+E_, B ’Br"'g{» y Ei and B,
-

fields. Therefore, E*mUSt be zero at one point at least. The Poynting vector

represent such direction



e

- - w
S is determined by the sum of a tangential and a radial component, S = S +S

§~Eu§ (E +E)x(3 +B) (Ex:B+ xB,.)-o-ExB-S‘rS

and if,for example, Etis zero at one point, S',IS also zero (since infinite
magnetic fields have to be excluded).

»t

Although a constant electric field in the tangential direction cannot be
achieved, Its varlat.lon along the surFace of a sphere of radius ¥ can be kept. of
the order of [Elr . The variation of E along the radius is of the order klE\

k being the local wave vector. The curl of a vector A Are‘. +A e + Aaea
in polar coordinates 1‘,?) is given by

e . - -
er ’(‘Slﬂ% eq re&

rEPA | el e o
VXA = 1eind |or L ™MW | .

7

App]yi_rlg formula (7) twice to the wave equation (5) it follows that for such re-
gular E-fields the radial derivatives dominate those in the angular directions by
the factor kY'= 2“7‘/7\. For reallistic pellets Ky is of the order of 103 or larger.
Therefore, all but the radial derivatives may be negected, as long as one considers

"local" properties such as absorption, reflection or field maxima. But then the
wave equation reduces to

d* s
= (rE) +kn*rE =0

or, introducing y =7E

for a plane wave y

, it becomes identical with the one-dimensional equation

dr: y + k “;y =0 (8)
Since the error is of the order oF/\/ﬁl'rrlt. is immediately clear that in the focal
region A=V Eq.(8) becomes wrong, but In the case of pellets no light should reach
shells behind the critical radius V; . It could be further argued that }\., which
is the local wavelength, could become very large at ¥'=1, since A\ drops to zero there.

But our further investigations show that in realistic cases :'\, remains of the order
of the vacuum wavelength (see, for example, Fig.3).

b) An alternative polnt of view.

The discussion of section a) is unsatisfactory in so far as it does not tell us

quantitatively how the derivatives with respect to the angles T and%’ , If taken

into account, would modify Eq .(8). Following Ref. (2) or preferentially (3) we

observe that an arbitrary electromagnetic field can be regarded as co?osed of
y Is zero

two components, one for which the electric field in the Y-direction v

3




and the other one for which B =0 holds. These are two clearly distinct groups
because, according to expression (7), the radial magnetic field cannot be zero

if ET-O and vice versa. For theE field with vanishing radial component it follows
from Eq.(2) that

(Vx ﬁ)_r =

and therefore the vector Fneldio B?,Bblcan be wrlt.ten as the gradient of a potential
! which we assume as given in the form V= ck ,ar(r\P) . The radial component
B‘,is determined from Eq.(3). However, by means of Eq.(2) the electric field compo-
nents are determined from the magnetic field components, i.e. they can be expressed
as derivatives of ‘rtr Comparing the different expressions for the E and B field
components and observing that Vlzdepends only on ¥ the following scalar equation for

the so-called Debye potential lP is obtained
2 2
Ay +kn*y =0. 9

If klr' is known the five components of the electric and magnetic fields, E?,Eﬁ, B\“) Bif&
Ba. are determined by differentiation alone. Exactly the same procedure is applied
to the case for which the radial component of the magnetic field BrIS zero. The eler:—a
tric Fie]d E io E?)ES& is then determined as the gradient of a potential U=a Tkn® 'OV‘TX'
and E follows from Maxwell s equation (2). After some tedious algebra (see again

Ref.(2) or better, Ref.(3)) a scalar equation for the other Debye potential X is

obtained

x ’é‘ﬂz '3
TS

AX r‘)<+kﬂ)( O 10

from which the five field components E'., E’fr Eg-, B”Ba_are determined by diffe-
rentiation. Equation (9) is the same as the wave equation for and normal inci-
dence or for the magnetic field of s-polarized light at oblique incidence in plane
geometry, whereas Eq. (10) is the same as the wave equation of the magnetic field
for p-polarized light at oblique incidenceq. In fact, Eq. (10) may lead to reso-
nance absorption (see Ref.3, pp. 53 and 54).

Let us now look for solutions of Egs. (9) and (10) which satisfy the product ansatz
Y9, %) = Z G (% V) >
Im "
X0,4,5) = Z (n Y, (9, V).

y' are the Legendre polynominals (spherical harmonics) representing the eigenfunc-
1]

tions of the angular part x.of the Laplace operatorA‘

L’;m + 1(1*1)’11‘ %0,

Substituting for k" and x Egs. (9) and (10) lead to the equations for the radial
parts g and h

-3‘!:?"31 [n - Lu—s’q‘]"ﬂt"ob for En=0, G2

r r

-

2 +1
drtrhl-#‘ é—}.%’rhl'sz[ﬂi' u;"\ Jr'/hﬂO, fOf 'BV"=O' a4




The focused beam through a lens can be expande(‘:l in spherical harmonics. It has
been shown In Ref, (3) that for high-quality beams and low f-number lenses only
the first few polynomials 1(10 contribute appreciably to the Int.enslt.y of the
total beam. Furthermore we observe that by multiplying Eq.(11) by = Vy (T,%)

'FS"&(; ((f’%-) it transforms into the corresponding wave equat.lon

or Ea_ (E _o) . This shows that, if ¥ of the approximate

wave equat.lon (8) is identified with one of thespherical harmonics times S(r)’t’he
error In Eq.(8) is I(l ‘f'l)/k ra . This has to be compared with nz,
For pellets kT, b 10 and good beams one obtains

1(1+1) /Kr> 5107

-2
which means that for l‘n:‘l ,.- 10 the field distribution is determined by

the refractive index, The term l(l*‘l)/k r3 is the contribution of the
angular derivatives and it shifts the crltlcal point (reﬂect.ion point) from
Ve to the very near value T2 '=r - 1([ +1)/k Re (‘nz) Multiplying

Eq. (12) by%y and -S ?Q?Lit transforms into the corresponding wave equation
for the spherical harmonic component of the magnetic field B'f and B%-
respectively, which, when summed, yield

1 - 2 I(l-f -
1 olh 4 __)1
-—‘?[--rB W~ Merir o Y‘B +k{ T . }Y‘B =0 (13)
[r? " dy dr iwm kr T
It has been numerically shown in Ref. (3) that for high-quality beams, i.e. low
l-values, Eq. (13) yields the same absorption as Eq. (11). With the help of Maxwell s
= prm? e A
equation (2) the following equation for R\m =r*n Er, s is easily
derived from Eq. (13)
. Lodyt ARy, 20— J01)yo
| S w +k(n s T AR =0 ; C14)
dr? m N* dr dy r Im
—p "z
This states that the radial components of the electric field behave Ilke E‘.. lm"""l“

for ¥ tending to infinity, in contrast to the tangential FIeldsE B* whlch vary
as r-‘only.
From the treatment presented here it can be seen again that uniform illumination

is not possible becausg none among the ‘/‘m

intensity. \}“ is the only constant spherical harmonic, but its amplitude must
be zero because the total charge of the pellet vanishes.

would yield a constant radial flux

c) Light pulses

In the foregoing sections only one Fourier component of frequency ) has been con-

sidered. The amplitude of a light pulse itself varies in time

-E.(;:rt) =E(F) t)e ) €15)




which gives rise to a frequency spread Aw == 2W/t> T pulse duration).

Such an ansatz makes sense, of course, only If T > l/hl is fulfilled. One can now ask

how the wave equation (5) is changed in the case of a quasistationary pulse of the form

(15). To answer this question, we observe that

- t
- A 1wt e vt .
. v-iw)t
Xx=-————FE (t)e + — S‘E t (

Me (V2 =ivs) (t) Me(V-iw) < e ot (18
is an exact solution of the equation of motion of a single electron with collision
frequency v :

= - e & ~iwt
X +vXx = == E(t) .
(]

For clarity we indicate the amplitudes which vary slowly in time by the signfxf.e

E B)J = El B(t))](")e- .

-
The current density 3 is then deduced from expression (16)

Eelv-iwt 4 a7

Te-nex et =6k - e (v it g
= =lle

The electrical conductivity has the usual meaning for a pure Fourier component

& = ﬂ‘et
Me(V-iw)

The time-varying Maxwell s equations are

;\ A
1 )
vxB =5 ,]-igE+LE, (18)
-, - A, -~
VxE =1wB -B . 19
Combining Eqs. (17), (18), (19), we get the modified wave equation
A 2 - sk:\ vE "'V"iwt -
vaxE-kn‘E=2l?E-ec,e( )SA iV M’%{t . 200

The integral in this formula is best evaluated by integrating by parts, which essentially

yields the term

PR 0\ e
\ 1-n) — E .,
= (L) ==
WV 2
In most cases this equals "'(1‘ )a’ E because of <€ &) . Therefore, Eq.(20)

reduces to

vxUxE -K'n*E 225%‘&, (20a2)



showing that the stationary wave equatlion is alse a very good approximaition for

1ight pulses since the correction is of the order of I\/l , where l=ct is

the pulse length. Only in the case of a refractive Iindex which is nearly zero over a wide
range does the quasi-stationary state be taken into account. Physically, this means

that in such a situation the fields can grow to considerable intensity in the region

of N= 0 and they can store so much energy that the time ¥ Is not sufficient to

yield the energy input calculated from the stationary wave equation (5).

C. The Optical WKB Approximation and the Stokes Equation

An approximate solution of equation (8) is given by the WKB ansatz

T r
y =F€TL -rkindr +_%eik§;ndr_ oy

C‘/rm Is the amplitude of the incident wave and Cg/r\('ﬁ is that of the reflected
wave. This expression would represent the exact solution if the refractive index f

were of the form
fert e g (o5 -3(R)} werfend.

By differentiating y twice the reader can easilyverify this result. The WKB approxi-
mation is valid as long as VI: is small in comparison to 'YI.l , which is the case when

the gradient of the refractive index remains moderate and as long as 'ﬂa differs from
zero. In the region of ]'l‘-"'-'-'o, around the critical point, the approximation (21) breaks
down because -n'/n no longer remains small.

If one considers a collision free plasma with a smooth electron density, increasing from
zero to a high value ﬂ.»“' N ‘I'tt starts from unity, passes through zero and becomes
finally strongly negative. In both regions, where (I) ¥\ Is nearly unity as well as
where (11D “a<<° holds, the condition for the validity of formula (21) is fulfilled.

If only the wave with amplitude Cl/rfﬁ Is incident onto the plasma (:2 must
vanish In region II because it would represent there an indefinitely growing wave
(n-“-—n‘) . In region I it follows from the energy conservation that \Ca\ =lC;|,

with a phase factor between Cland C‘ . When no absorption is present the incident wave
is totally reflected in the critical region and an evanescent wave tunnels into the
overdense region. As long as absorption is not strong (e.g. collisional absorption
present only) the situation does not alter substantially. This consideration reveals
clearly that expression (21) cannot be valid in the critical region for the constants
change in passing from region I to region II. The WKB approximation represents the
superposition of an Incident and a reflected wave which do not interact. It is interes-
ting to note that one possible system of differential equations equivalent to the

wave equation is the following

Ys s B 0
& rikni-i ) Yo = gy Ya
(23)

k)

: . N n
r"'k“(l*' zkni))’z= ™ s

sk




Thereby ‘i: and Y, represent the incident and the reflected wave, the sum of them,

y = yl.p.y, , giving the total field of equation (8). If, for a first approxi-
mation, in the upper equation the reflected wave yzis ignored and in the lower
equation the incident wave is suppressed the solution of this system is exactly the

WKB approximation (21)%.

The WKB approximation does not hold In regions of large gradients of the refractive
index or when n‘ approaches zero. Furthermore the ratio Cz/C; remains undetermined.
One way to do both, i.e. to calculate the electric field in the critical region and
to determine the constants Ca,Q is the following. The refractive index “a is appro-
ximated by a linear function around the point RG("‘) =0,

2 d . d
ni(r) =q(r-r), qeL Re(n?)+i 5 [Im(n?)
and the space coordinate is conveniently substituted by the dimensionless variable

€= (Kq)"(r-n)

in order to transform the wave equation (8) into the Stokes differential equation
dy
=0 . 245
TR

The solution of this equation is given by the Airy functions AI'(EJ and Bl(g) which

as power series assume the form

ey HO  g(f)
A=y~ r(¥s)

ey o f(8) 39 (§)
Bi() 3" r(ys3) T /(1/3)

(25)

3 6
-3 kL 14-3 £ 1-4-3-10 R
! 3!§+"§_9! Ty F

with f(g)

ana” 1 52 {(0)

Ai(g) is evanescent in the overdense region(f(O) (see Fig.2) whereas Bi(g)

diverges there. For |§f sufficiently large Ai[g) and Bi(g) must be represented by
the asymptotic formulae of the WKB type (21), Al, Bt ~§""’e t§l§3 ;

2 ¢% 2.5 ¥ | 258 pl0
“Cr - HEC - T

#) It is not commonly known that there exists an infinite variety of systems equi-
valent to the equations (23), all giving the correct result y1 and ’1 at infinity

but differing considerably in the critical region, and no physical distinction can
be made between 'correct'" and "wrong'" solutions although they yield very different
reflection coefficients R'l’g/yd’ in that region. The explanation for this fact
is that in regions where y departs considerably from the WKB approximation the de-

finition of a unique reflection coefficient is no longer possible.




In contrast to the exact expressions (25), which are single valued, their asymptotic

expansions are multiple-valued functions of E Three different domains must be dis-

tinguished in the complex g-plane, as sketched in Fig, 1.
from each other by the "anti-Stokes lines" emanating from the origin under angles of

%; , T and{%“.

The domains are separated

overdense underdense
Re ({)<0 Re (£)>0

Fig. 1. Domains of \..ralidit.y fo.r the different asymptotic expansions of the Airy
functions Ai(§) and B{(§), The "anti Stokes lines" emanate from the

origin under angles of /3, W and 5W/3

The asymptotic expansions of Ai(§) and Bi(g) for the domains indicated in the
figure are the following, with ‘qz-;— §Slz and the normalization factor 3'1/2ﬁr-:

Ai, =9 §-=h e m/3< argf < sU/3

. =i .o
Ai, =38 {eM+ie™M} -1/3¢ arg§ < T/3
-3 . K
Bi,=94¢ *{ 2ieM+e M} /3¢ argfe T (26)
Bi,= 3 f“{ie""l +2e") r¢ong{<ST/3
-1

/ : :
Bi,= 4§ Q{fe"‘+e'”1} -r/3 <arg § ¢T/3




32
The angle of has to be taken In the following manner : ¥

32
arg § = —3{ arg §

By inserting these asymptotic solutions in the Stokes equation it is directly

seen that they can be expected to represent good approximations as socon as

[

o e e «K1
‘Y‘t/n \ 16 §3
for £=1.5 the inequality yields |nif? =01 i.e. it is well fulfilled. In
addition, a direct comparison shows that the approximation is even better. In

"

Fig.2 the Airy function Al'(g)w[t,hg real is compared with its asymptotic expan-
sion Aii(E) which is valid in the underdense region. As soon as §?/1.3 the rela-
tive error |Ai -Ai,"/lAH becomes less than 1.5%. Even in the maximum of
Ai which lies at §"l.0‘f5 the deviation is only L4%. The deviation starts
becominag exponentially large at § as low as 0.5. It is typical for the WKB
approximation in general that even the maximum E-field and its location are

approximately reproduced, as in the special case of Fig.2. *

Flg. 2. Comparison of the asymptotic expanslonAiztA’L (dashed 1ine) with the
Airy function Aj:.Ai% £ is taken real (no absorption). For |§|> 1.5
the relative error“Ai["-—[AiIFl/[A“‘ is less than 1%. The standing
wave pattern is generated by total reflection in the critical region
around §=0.

.

The asymptotic formulae are derived for example In Ref.7. In order to get our

representation it must be taken into account that between Budden’s variable §B
3z .+ 3

and ours the relations hold arﬂgnaf5§3+|r and §3 =| h. By these rules the

Stokes lines transform into our anti-Stokes lines.




If there is only one wave incident from the underdense region a standing wave pattern
is formed due to reflection in the critical region, and in the overdense region the
wave becomes purely evanescent if this region is large enough. Since BI(S) is not
bounded for \g‘( 0 the solution of the Stokes equation for our boundary conditions
is given by Ai(s) alone.

Consequently the right asymptotic solutions of Eq.(24) are /\ﬂfor the overdense region
andAi2 for the underdense region. Their accuracy becomes acceptable as soon as | gl

is larger than unity. At |§|= 1 the relative error is nearly 5%.

Let us now assume a wave of unity amplitude incident from a remote point ¥, and let the
amplitude of the reflected wave be § . Then from the requirement that the electric

field must be continuous we get at a position ¥ with the correspondlng|§l sufficiently

large
r v
-1k s _ik\ndr g . 2 4
v'r"";'e' S:'ndr +_v__;'__e S_ - C’g’if»{lem +en1}. -

In order to satisfy this relation the incident wave at the RHS must be equal to the
incident wave at the LHS, and the same must be true for the reflected wave since,
within the 1imit of the WKB approximation the two waves do not interact. By eliminating
the factor (: we obtain for the amplitude ratio §

_" e!ll{vl +‘( gnolr } .

S= (28)
The reflection coeFflcient'R for the intensity is given by
Y.
-4 s odr
R=gsgr=¢ h' k&“'d } 29)

(n;:lm(ﬁ')’ n.og Ilm(n)l) . The position ¥ is somewhat arbitrary. On one hand V-
must not be too small for the validity of the WKB approximation; on the other hand

it should not be too large in order to keep the difference between Vﬁand its linear
approximation small. This latter deviation can be evaluated by taking into account
the quadratic term in the expansion of n1 . The coefficient § would be independent of

Y if expression (21) were an exact solution; if the approximation is good the quantity
I% ;fldr has to be small with respect to unity. A straightforward calculation yields

ds s sfa )
Ealar <t gl 4] /0P R 2] oo

<

The inequality (30) is certainly fulfilled if

| 4'/(kq*)*") «l.

holds

Critical remark on the reflection formula (29)

!
If ﬂq from the expression (22) is added to a given I the resulting refractive index




profile becomes non-reflecting because the incident wave of expression (21) alone
represents an exact solution in the whole interval, In Ref, (8) It has been shown

for an Epstein layer of ﬂﬂ\thlckness thatfﬁ can be as small as 2x10—3. Such consi=
derations show that in calculating reflection one has to be careful Iin general., On the
other hand one could deduce from this example that small corrections of the refrac-
tive Index profile could alter completely the value oF'R,thch would invalidate formula
(29). However, that is not the case. In the foregoing considerations we have tacitely
assumed thatff'can be approximated by a linear function in the critical region. In our
special case this means thatldfvudls very large ( or infinite) and that the quadratic
term in the Taylor series of v is small ( condition(30)).THerefore a very large lﬂ:/nzl
results ; consequently the situation of Ref. (8) is possible only in a region with

1? clearly different from zero. But there the WKB approximation holds (smoothfﬁ'profile)

and practically no local reflection Is generated.

Numerical solution of the wave equation

The numerical solution of Eq. (8) is straightforward if at one point ¥ the values of
y and its derivative y'are given, However, this is not the usual case. Normally, the
amplitude of the incident wave is known with the additional limitation that no light
is incident from the opposite side or the center, Nelther y nor y'are known in this
case.

For the solution of the wave equation with the boundary conditions from above It is
convenient to split the second order equation into two first order equations of the

following form

dy/dr +ikz =0
dz/dr +ikn'y=0.

31
It can easily be proved that system (31) follows directly from the equations (23)
by the substitution

z=n(y,—y,),

The calculation proceeds in the following manner. At the back side of the irradiated
slab or sufficient far away from the critical point the solution of Eqs.(31) is started
with 2= Ylylll and is solved in the desired interval., This boundary condition means
zero amplitude of the reflected wave y& at the starting point. After the complete
solution Y=Y1+Y, is normalized to the incident wave, This procedure is only applicable,
of course, as long as the wave equation is linear. If, e.g. the influence of light
pressure on a plasma is studied this is no longer true, forvf becomes a function of

the electric field (see section E), In Fig. 3. the numerical solutlion of the equation

y" + (€ +0.21)y =0

Is compared with the analytical result, The equation has been splitted according 31)
and integrated by the Runge-Kutta procedure., Excellent agreement is found, although
seven points only have been used per unit EP

—




Fig.
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§=§,¢0.2i
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---numerical solution
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Comparison of the numerical solution of the equation y"f(g, -l-O.ll), =0
by the Runge-Kutta procedure (dashed line ) with its exact solution.
Per unit §p seven points have been taken only. The Airy function has

been calculated according formula (25), which, with the number of terms
used, did not converge beyond gr =5,




D. Special Electron Density Profiles

a) Reflection coefficients

We shall now apply formula (29) to special profiles of the electron density n‘.
We calculate R for a linear profiles of Vig

ﬂg"“e (1— riﬁ)’

L being the length of the profile, and for an electron density distribution

ne=ne(2)

with d=1,2,3. Among these exponents the value {=2 is of particular interest because

ot

an isothermal steady-state rarefaction wave shows nearby such a dependenceg. In the

latter case the characteristic scale length L is given by

dng)”t K%

L"H’; drl,; O

2
It can always be assumed that A «l holds ; consequently, ‘r'l.l is given by
2
n AN . :
21— +iATE =a+ib,
A n
which gives for the linear profile

2_ Y- r-r \?
n =—":—‘° +IA(1-—'—L

and for the second type
2 20
= 1- () HAR)
The imaginary part of the refractive index N is determined from

Y. 12 1
ﬁ{(az_'_bt) l_a} a5 ..q_z-_ . (32)

For the correction el"'; around the critical point the expression Forgfrom section
C is needed. It is calculated to be

(kL)m r- (1+2|A)m §r(1431A) (33

for the linear profile. For the electron distribution ‘ﬂe-—u V'-“ formula (33) still
holds if the scale length is replaced by LSY;/d.. The WKB approximation is well fulfilled
for §*}13 From expression (33) it follows that the point §=1.3 is sufficiently far
away from the critical point to ensure that b/a «1l , and so the Taylor expansion on
the RHS of Eq.(32) for ) can be used. In fact, one has

bfa® = A (WW*/E,

for both kinds of profiles. Generally, ‘31/6-'.1 is much smaller than unity. If this condition
is not fulfilled, f‘.has to be increased. It is evident that condition (30) is well satis-
fied for linear electron density profiles ; for the second type of profile condition (30)
becomes identical with (kl—)—zls<<1 which holds for not too small pellets.
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The imaginary parts of the refractive indices are given by

1!
1 S —
2 ({._)la(x_l)qg X 7 (34)
and
20k
A _X o
‘n —3 2 (1 xu)lﬂ b} X = r (35)
respectively .
1. The linear profile

The integral overn‘ can be expressed in closed form to give

+L

<AL (O AL whe g u- 20, u= B (2
Erare 4004 0B, e e
The reflection coefficient is then §lh {3/1
_ "1kLAi%-2 ”-r-g--—f (36)
R.=e (kL) kL 2,
s/a

The U term can be disregarded. In the following, we choose RE(‘V')" 1 the corres-
ponding §Y‘ is then

§, = 1.31

and the reflection coefficient reduces to

2,3 4 -
R =€ -szA{ 1 "Ruw Y YL ] . (367)

2. The Ne=Nc(%/r) profile

The integral over W; is given by

X<l dx - Anil‘(l‘x)lh})

5 Ar
g’ﬂ;o‘f‘ - .
153 2 5) (1=-x)4

which, by substitution, leads to the reflection coefficient for the intensity

S 15
‘4"'1A{1"(kn)us o },

37)

R,=e

or, with §‘.a5 fixed above,

-akvA 1-—&— + —1—
R,=¢€ { (kn)¥s x } . (37
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L3
3. The ﬂg=n¢(‘!‘.‘»/r) profile (spherical rarefaction wave)

For the case X=2 one has

g" de _AWS' ' xdx -_-—A-q-_ﬁ{arcsinx -X(I-Xz)m}:-'. _,%ﬁ {_g_ —2-\[5(1-){)1’2}

-

and the reflection coe‘FFicientR;is

rr

4 i g _Sr
r o m—ma
‘R,_" & kAY;{{- -2 /3__(k1;)q‘+ =z T, } (385
r_29 .4
R;"' e-k?‘:A{ 2 (k,‘.)m+ kn } n (387

L. The mrﬂg(ﬂfﬂa profile (asymptotic spherical rarefaction wave)

In this case the integral Sn;dr is no longer expressible in closed form ; however,

it can be evaluated with the help of the gamma function :

X<£1 1
X*d *d & x'd xdx _ 3y
g" dr = g( X“)’:ﬂ = (z{x”){*ll" (:('x')xf’a 7 g(l FORC {30-x)"+

- u’-Sm Ya__8 1 B3
-;:gll xx:)m } = %?- I(213) - {& (1-9)" -z (1 %) }.

2 1
The integral from X to 1 was approximated by ;& (I‘X) [I'l'j‘(-l "X)J . Finally,
the following reflection coefficient results :

12 32
f,. 152 fr
R3=G-krA{z-—_— F (21) 4 3"’ (;m)m 73 kr, }, K33

or

2.2 2.4
—k ¢A 0. 3 s et o
R;=¢€ . { ! (ke)® kv } . (397

The reflection coefficients calculated here are equally valid, of course, for plane targets

with the same electron density profiles. This is a consequence of the wave equation (8),




which, in our approximation, has the same form i—'or plane and spherical geometries.

The corrections in the reflection formulae are of the form (gr/(kuih)" with v =1f2,
3/2 etc. They show that, although local absorption is highest in the critical

region, the WKB approximation is an acceptable method for calculating R of not

too small pellets. For larger pellets it holds that (kﬂ_r’s << 1 and the

reflection coefficients reduce to

Ro=¢€ & kLA v, linear

R‘=e =€ ¥ ) Vl,_='n,_ r)
c4od
-E -
Rome kWA, omhlA nes 1, (E)°
-033KvA  _2319kLA %
Ra =¢e =¢C 5 ‘ng(-?) -

The critical radius has thereby been replaced by the characteristic length L=V} /d
If the absorption is low, i.e. k"A is small, all four formulae give results within an
acceptable range. However, in the case of strong absorption the formulae (40) show
that the form of the density profile very much influences the result.

The parameter characterizing absorption is the product kT.A . From this expression
the wavelength dependence can easily be studied under various conditions. If, for
example, the critical radius is kept constant the absorption is independent of}\, for
a given density profile. In fact k varies as ;'\.-‘ and A=\¢:°“/w is proportional to;\
On the other hand, from formulae (40) a very strong dependence of R on the ion charge
number Zeﬁ, should be expected. Since A~ Zeff holds, under identical conditions
for the rest, the reflection coefficients for deuterium and a hlth material are

related by the power law
L R

If heat conduction plays a role this relation is drastically modiFIed.g

b) Electric field increase

As discussed in section C, the electromagnetic field may increase considerably near

the critical point. We describe the field maximum by the Factorﬂ, defined as

P Emalelasma lymux‘ﬂ

I & I\’qcuum Iy IV..-,




i.e. as the ratio between the maximum E field in the plasma and the vacuum field at
the same position. Let the incident wave have an amplitude of unity. Then at a suitable
position Y Eq. (27) holds, from which the scaling factor C is determined

u -‘l‘
o= e | 0T a2

Keeping in mind that ﬁu|E.l,‘“m,h,wmmt = lCl-lAﬂmal = O.S‘l‘lC‘ 3 for the field

increaseP the following expression results:
t.“t (41D

This formula is valid for an arbitrary electron density distribution that is smooth.
Its limitation consists only in the approximation of Eq. (8) by the Stokes equation
(24) in the critical region, the validity of which is guaranteed by condition (30).
In the case of considerable density profile distortions formula (41) fails (see the
next section). For our special density profiles we obtain for p

ﬁ- 1.90 (kl.)t,‘ RY* y L linear or L= 7. /&. 42>

The dependence of F on'R is very weak. It reflects the author”s experience that in
numerical calculations, even with considerable absorption, the field still increased
towards the critical point. In fact, when, for example, 90% of light is absorbed

(R = 0.1), reduces by a factor of nearly 2 only with respect to the non-absorbing
case. The knowledge of the F factor may be useful for calculating threshold inten-
sities of parametric instabilities or local light pressure effects.




E. Light Pressure Effects

By light pressure we mean the integral of Lorentz force density W , averaged over the
fast oscillation factor e,"""‘t P -
- - =
K=< (n-n)eE>+<¢]xB>. (43)

By substituting the charge and current densities in this expression from Maxwell s
-
equations and taking into account that VB=0 one obtains

K + <&, % (E" E)) =<£o{ E'(VE)-Ex(vxE) 'I‘C‘E(Vi)—(.‘ﬁl(v:‘g)} b )

By suitable transformations the RHS term of Eq.(44) can be written as the divergence
of the stress t,ensorTwith the components

T = & [EE +CBBj - 1§ (E2+ 0BY)]

- - -
and therefore the term E,EXB =E‘|' S can be interpreted as the electromagnetic
momentum density. In vaccum it is responsible for the fact that the ponderomotive
force WK vanishes, In agreement with Egq. (43). When the time averaged expressions
are used, the é‘ term can nearly always be neglected. From Poynting s theorem
it follows that this term Is(Ax/ct)" times less than the RHS expression of eq. (44),
where T is the pulse lenght and AX is the characteristic scale length of the spatial
structure; owing to interference of waves AX¥ can become as small as the local wave-
length.
In most cases the ionic component OFEI. can be omitted, which means that light pressure
a:it.s on the electrons g.nd is then transmitted to the ions by an electrostatic field
E‘ . Gene-:alh_f_: t‘h\e E_.field of Eq. (44) is the sum of the electromagnetic field
as well as E;, E=E "'E;, whi‘fh makes calculation of the correct 1ight pressure a
diFficu]E_t.ask. However, when Eg is not resonant, I.e. NF' differs sufficiently
from w, E; can be neglected in the expression for . In fact, it holds that

7 - - -
e ne-}t—_—‘ = - V'Oe -Ne€E +1.x B g (45)
m;w; -:%i = -VP; +Ne E;). C46)

Averaging in time the first equation over the fast oscillations,

cl(?) v g T R
MeNe 1o =~ Ve ~Ne€LEy +<Jex B>, (47)

it is seen by comparison with Eq. (46) that the LHS of Eq. (47) can be put equal to

e —
zero since (V.) o V.. . But then the electrostatic field produced by the ponderomotive
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force is determined by

A
> o E
‘1¢E!(Efs>’ "‘] X 15‘ - '1ee'vzs¢]5 :!1q¢f:V5:c * (4

|E./E|l= Yo «1.

In the resonant case, {pe can become very large. In the non-resonant case a Nd-glass
laser intensity of 1Q'® W/ewd' is required to produce Vose ® € . Therefore, Egcan be
neglected in (44). With the help of Eg. (2) and (3) Eq.(44) reduces to the following
simple formula for the time averaged force density produced by the 1ight wave

Eo 2
K‘T[Re(“t)"llvle\za C48)

where g is the complex amplitude of the field. The same result is obtained from single
particle motion in the oscillation center approximat[on‘ﬁ. Since Y is proportional to the
particle density, only in a homogenegyilnedlum can Y& be written as the gradient of

a light pressure PL-%’[I-RG(YI")J|E| . In an inhomogeneous medium such as

a laserproduced plasma, the force density is given by

< ~Tp- LT Re(r)

The influence of light pressure on laser plasma acceleration and plasma profile modifica-
tions has been studied by several authors L2 ha . Here we summarize only the main aspects
and point out a few consequences.

1. It has been suspected time and again that light pressure in connection with the
steepening of the electric field in the critical region should strongly accelerate the
plasma created. However, it has been shown in Ref. 15 that this predicted acceleration

is Ineffective as long as the electrostatic field can be neglected (non-resonant case)
and the pulse duration Is long in comparison to the time an ion spends in crossing

the first amplitude maximum of the light wave. In many experiments these conditions

may be satisflied.

11. The effect of profile modification due to light pressure is best studied in an
isothermal steady state model in spherical geometry16. Starting from the equations of
mass and momentum conservation - the latter one containing the force term of Eg. (48)-

the following relation is obtained for the Mach number M = v/s.

(49

M- TnM? = Mo -TnMs r2u (|E.|‘—\E\‘)+4]n.g 5

2 %
p= € /(4memiwtsr), 2pm|EM =3¢V, 5/2¢ Vo eenal

the index "0" refers to an arbitrary but fixed radius ‘n . The electric field ampli-
tude has to be obtained from the wave equation (8). Absorption can thereby be disre-
garded as long it is collisional only and/or weak.

Without ‘1ight pressure the spherical rarefaction wave Is supersonic everywhere(r4b%).

If light pressure Is taken Into account two cases have to be distinguished




a) The flow in the overdense region is supersdnlc (M°7 1) . In this case a density
plateau forms just below the critical density. Its maximum length A¥is given by

Av/v, = Myt -1,

If one increases the laser intensity further, no steady state plateau-like solution
existsta.

b) The flow In the overdense region is subsonic (H.( 1) . In this case a step-like
density solution builds up and the flow passes from M < 1 to M > 1 values very near
the maximum of the electric field amplitude. Since the width of the step Ay is
only of small extent, the term I}]nr/r,, in Eq.(49) can be disregarded as long as
only the step structure is considered (see Figs. 4 and 5 ; Ap= ;\ and /\/S re-=
spectively).This simplification corresponds to the assumption of a plane model as
used in Ref.1k4.
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0.25F

-

0 ' ez 2T

0 20 40 6.0 8.0 100 120

k(x-xq) —»

-1}
Fig. & Distribution of electron density Mg , Mach number M= V/S and gpmlEl
over X . All quantities are normalized to unity. We y M, are
the values of Wi, and M on the LHS. The laser impinges from the
RHS. .The following values hold @ W, =1.23 N, 5 M, =0.5 5
2 B2, =0.6% . The width of the density transition is
ax
approximately }\.

The calculation of M,E and g as functions of the space coordinate X 1is then
straightforward, i.e.
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M
o= M= | dM
e, LI HE MO T Mg 4 2 B P w123 M S Y a2

2 kS
e Mo"‘l“Ho" ﬂe = 'no M' 'n‘ =N, __rj_g ’

ne Z(Ho-l)z g T 2

-

and \E| is determined directly from Eq. (49), H‘, N, refer to a point X, where
the electric field amplitude reduces again to zero and the flow is supersonic, M}-—
l‘l’lH:‘ H}—]“M: . By differentiating expression (50) with respect to X it can

be verified that the integral represehts the correct solution of the wave equation
(8) in plane geometry (yaE) and that the boundary conditions are fulfilled. If the
laser wavelength and one of the following five quantities are specified : the den-
sity or Mach number 1‘\., ﬂ. which is reached immediately behind the evanescent light

. ~ 1
wave (on the LHS in Figs. 4 and 5)“;‘ M‘_ or the maximum electric field \E\Ml! .-.'(Mf'- lﬂrL‘l

+z}‘|§‘:)‘u/(g}4)m the distribution of all other quantities is determined., So also

is the pressure uniquely determined in the overdense region., In a real target the
matching in this region occurs owing to a compression (shock) wave running In the
opposite direction to the outflowing plasma, In Figs. 4 and 5 two examples of step-

like solutions are reported for n'tﬂsand Me =0.008 corresponding to maximum ratios
34“«1’/2(\/{:) of 0.64 and 9.6.

1.0

0.75

0.50}

0.25F

= - .2
Fig. 5 The same case as in Fig.4%, but with laser intensity much higher :1,Al¢|“,:9'60'

Ng= 4,85 Ngy M,=0.00§ . The width of the density transition is approxi-
mately A[s . The laser impinges from RHS.

(50)




With increasing light intensity (or decreasing plasma temperature) the density step
-

becomes more and more pronounced and the maximum of ‘E\ is shifted to lower and lower

densities (see Fig.6). As is well known, with the density (conductivity) of the
plasma going to infinity, i.e. with Z)Alelz-* o© for a given temperature, a sharp
boundary builds up and the standing electric field has a node at the surface.

The total force exerted by the light in this limiting case is expected to be given
then by

21
=<

In fact,
1 ~
P = G = 32 (5 VB,

E being the electric field amplitude in the interior.
Ata sharp boundary it is connected with the outer field E by

D 2
Ep= l+n

For wl,»w the refractive index becomes M1=2 |

g@ m>

and PL reduces to | = Eg‘E

It should be pointed out that the confinement of a warm plasma by HF fields is never

perfect; however it improves with increasing field strength. If the plasma is in

equilibrium, Eqs. (45,46) reduce to
wy B
e P -
V(Pe *P‘)"' ey V‘ \ =0.
In the isothermal case this can be integrated to yield

C omP(IBR-IER)

V?e"T“o e .

ITI. For pellet or plasma compression it is interesting to know how strongly the
compression might be modified by light pressure. Two distinct aspects have to be
considered : firstly, compresssion may be altered owing to the density and velo-
city profile modifications discussed above; secondly, light presssure effects may
be involved in the absorption process and may act on the corona temperature and,

as a consequence, on the plasma pressure. This point will not be discussed here.
The hydrodynamic aspect of light pressure can be discussed as follows. In a spheri-

cal flow the combination of momentum and mass conservation equations

gurt =gewnt, quay =-SE-gqueljep

yields the relation
£ 2) L e (2, Ls? 2 (B
= (prev’) =-¢(F +ps' o ED),
or, in its integrated form,
r 1 r an
2 v 2 9|E|
E=P+QV +2$. r dr "‘,JS‘QS T;:—-Oh’ D) (52)

where 11 is a constant . When no light pressure is present,in plane geometry 1%

represents the hydrostatic pressure at a point where the flow velocity is zero. It
can be regarded as the suitable parameter characterizing compression. In the case
of r1°)'1 (formation of a plateau) 1{ is not affected by light pressure for in
Eq. (52) the upper limit of the integrals can be taken smaller than Y, ; in this

':.21

T
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region hydrodynamics is not changed because £ is zero there. The situation is diffe-
rent for Moc 1 (step formation 454 1L'). For the small extent of the step profile

plane geometry is a good approximation. Eq.(52) then reduces (assuming § =mconst) to

B =0\ rp-siu ﬁef%&dx 3

if X is a point. with zero g field. 'R, is calculated and reported as a function of
¢“>/< ihem 1 in Fig. 6. With Increasing light pressure R decreases first slightly

ZPlélgnux s

Fig. 6 Densities Ny, and N, , normalized to the critical density n,, Mach numbers Mn
and H‘ and the total pressure 'P. (plasma pressure + llght. pressure) as
functions of ?-HIEII.“, = IV >/ 24V i, 1 .In plane geometry WM, is the
maxlmum and l‘l; is the minimum denslt.y of the step at a fixed value of
2| &Y, - M, and M, are the cor'réspondtng Mach numbers. The minimum of P
is reached at lp]i‘l‘m“ =0,F. For | F,=2 is assumed and the other

Mnx
gquantities meet at the va]ue : .

(by 20%) and shows a strong increase only when 1light pressure dominates clearly, which
could be the case only if no appreciable fraction of light were absorbed and consequently

N SRIRT—




the plasma temperature were kept low. The minimum of F, is reached approximately in

2t I'4 — =2
the situation reported.in Fig.4 with 2}A|Elmax= 0.64% . Within our model Z}I‘E 'w““

values higher than unity must be considered as purely academic. Therefore,
also conclude

we can
in this case that light pressure does not directly affect the compression

of a pellet in a remarkable manner as long as the processes in the critical region

can be regarded as quasistationary. However, the indirect influence of ponderomo-
tive forces via instabilities and absorption may be Important. It is further
evident that a stability analysis of laser 1light
needed.

Induced hydrodynamic structures is
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