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Abstract

An energy principle for the dissipative two-fluid theory in Lagrangian form
is given. |t represents a necessary and sufficient condition for stability
allowing the use of test functions. It is exact for two-dimensional
disturbances but is still correct in terms of perturbation theory for long
wavelengths along the magnetic field. This may well find application in
tokamak plasmas. A discussion of the general case and its relation to the
stability of flows in hydrodynamics is given. This energy principle may be

applied for estimating the magnitude of residual tearing modes in tokamaks.




|. Introduction

An energy principle for plasmas with resistivity viscosity and gyroviscosity
has already been found by the author [1] within the framework of one-
fluid resistive viscous MHD. Hall term and compressibility had been
ignored. But at the same time it was recognized that the derivation of
a necessary and sufficient condition for stability is possible without
looking for eigenmodes for any stability equation of the form [-1] :

N + (P*MZ + QF =0 (1)
where N and M are symmetric and positive definite, Q is symmetric,
and P is antisymmetric. Then as shown in [1] , the necessary and

sufficient condition for stability is

(7.93) >0 (2)

The problem to solve, for a given physical system, is to find the proper

representation % for which the linearized equation of motion can be

put into form (1). This was possible for the one-fluid resistive viscous

i1, 2)

case and an important question is whether the method can be
used for more sophisticated physical situations. In fact, every con-
servative system can be put in nearly the same form as (1) (the only
difference being that M= 0) by using a Lagrangian representation.

This has been done, for example, for the Vlassov equation by Low [3] 3

for the two-fluid theory by Vuillemin "4] , and for the stability of

(5}

stationary equilibria by Frieman and Rotenberg




Unfortunately, to prove[]] the "necessary" part of condition (2), one
needs a positive definite operator M which would correspond to some
dissipation. Of course, most of the real systems are dissipative and
an interesting question arises: what happens to a conservative system

in Lagrangian representation if one introduces dissipative terms? The
question is rather easy to answer for fluids at rest, as demonstrated in
[6-] for dissipative gravitating plasmas, where it is proved that the
Lagrangian representation (in this case equivalent to the Eulerian)

leads, in fact, to an equation of the form (1) with [|M]| > 0.

In a laboratory plasma gravitation is, of course, negligible and an
electric current is needed for the confinement. In a two-fluid model,
this implies that one of the fluids (more likely the electron fluid) cannot
be at rest. In such a case, as we shall see, one obtains an equation of

the form:

N? +(P*’M)-‘% '*'(Q +QD‘]? = &

Introduction of dissipation in a Lagrangian system leads to a symmetric
positive definite operator M, but also to an additional operator QD

which in general is not symmetric.

An equation of the type of (3) will be derived here within the two-fluid
theory, and cases for which Qp, vanishes or can be neglected will be

discussed.




Il. Two-fluid theory in Lagrangian representation

The two-fluid theory can be represented by the following equations: {7] L YB]

Y, wm; d Vi

1
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The index i denotes one of the fluids, ions or electrons, n is the density,
m is the mass, ¥ is the velocity field, q is the charge, E and B are the
electric and magnetic fields, p is the scalar part of the pressure, Tl is the

; ; L8 . : -
viscous and gyroviscous tensor L ], and ¥ is the quotient of specific heats,

To eqgs. (4), (5) and (6) one must add the Maxwell equation for the

electromagnetic field:

éov‘g = z;‘nioh' )

VxB = Y Zniqv. + L 2 E

e s = B

To study linear stability, one linearizes egs. (4) to (8) and considers
perturbations 8\(\;, S\j.’ . gﬁ ; SE and S@ . These perturbations can be
— e : . [4]

written in terms of Lagrangian displacements. Following Vuillemin

this can be done by substituting in equations (4) to (8):

(6)




Sn; = - ¥.n: %,

Cyi = §0 + Vo.VE L 0w

$b: = -YRVY - LUp

where i; is the Lagrangian displacement expressed in Euler coordinates
of the equilibrium, and the new n. ,Y¢ , P: are those given by the
following equilibrium equations:

V-ﬂfy.' =

nw; Vo.NY: = n.‘qc(gg‘\'ii?{@o} -Ve, - v"‘}_ﬁ ‘OZZ':' n:(nive-nev)

E Eo being the eleciric and magnetic fields in stationary equilibrium.
It is worthwhile noting that there are not always solutions to egs. (13)
to (18) if one does not add sources to eq. (13), for example. We

assume here that we have solutions to these equations, with sources if

need be.

(10)

(1)

(12)



I11. Perturbations and stability

The perturbed equations in the conservative case have been derived
in [4] . Here we just add to the equations of [4] the dissipative
contributions in terms of the Lagrangian displacements §; by using
relations (10) to (12). The perturbed E and B fields can be written
in terms of the perturbed potential vector, which means that the

gauge is the one for which the electrostatic potential vanishes. To
write the equations in a compact form, let us introduce a matrix

vector

o
-

> 3

%=

¢ (19)
In terms of 3 the perturbed equations obtained from (4) to (?) can be
written in the following form:
Y\;Vﬂ: o (@) ZH;N:V‘-.V +2@°% + AS:’ O nie \
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where

-V {BP. v-i')

S. and A ., are defined like in [6]
i si

QDE can be defined in terms of Z and s\;. , of V. and Ve

and of the transport coefficients. The explicit form of QD§ will,
of course, depend on the transport coefficients. For simplicity, we
are going to assume 2-d equilibria, the ions at rest and the velocity

field of the electrons Ve = 5(‘1,3) 2z , and we ignore the

viscosity and gyroviscosity of the electrons, which is plausible because



of their smaller mass. This means that in equilibrium we have among

other relations

)

en; € VP +”1€C-\f\;V\¢§_/¢ = & (22)
T

~eneBo -V, ~ gLeVe =0 (23)

In the €z direction these equations reduce to
v 3
Bz, €3 = -7 % MV (24)

which is the simplest form of Ohm’s law.

We are now able to calculate QD by collecting the appropriate terms
from eq. (4):
4.
QD}Q‘: - € gﬂQ(E-‘o g-;_ fol&e,ﬂe:__/e)
-gﬁe\_fg g(ﬂzne.} -‘E_-‘Z"Z'ne (\ig,Vi__, -‘s:_g.i?\]_e} (25)
The first set of parentheses in eq. (25) vanishes because of eq. (24).
It remains for us to calculate £ [”[“4). We know I‘-ﬂ that e ._‘_%:3’1
This fact combined with the adiabaticity relation for the electrons (6)

now allows us to state that
d (n®
(ne ) =0
atr £

N

-3 1
or also that d Y\‘ i -0
= £ =
at ( e)

which for ¥ = % leads to

a (fqne) = C (26)




From eq. (26) we can conclude that the Euler perturbation

g("lﬂe.) = - L-NpPpme) (27)

Using eqs. (27) and (18), and adding the ion confribution, we obtain

(o] %_2 g Ve - (o]
_ 28)
@7 0 -gameV o z (
o 0 0

This operator is thus, unfortunately, not symmetric, and then eq. (20)
is not of the type (1) unless Ve: VY3 =0, which implies 2-dimen-
sional perturbations. This would be the direct generalization of
reference []] to the two-fluid theory. There is no need to prove

in eq. (20) the symmetry of P and Q because of the Lagrangian [4]

representation used and the definite positivity and symmetry of M

because it is done in, for example, [9] and [6] :
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IV. Discussion of QD and conclusion

In the sense of perturbation theory QD could be neglected in the case
of long wavelength along €z. This case is quite useful because of the
direct applications to tokamak plasmas for which the wavelength in the

toroidal direction is much larger than in the poloidal one.

It seems plausible that, if the ion fluid is at rest or has a small flow,
the residual QD will not, in general, be significant. This should be
looked at more carefully by making estimates on the basis of convergent

perturbation techniques.

The fact that QD cannot be ignored in all cases is largely demonstrated

in hydrodynamics, where for large viscosity QD must have an important
stabilizing contribution. But in hydrodynamics instabilities are primarily
due to the kinetic energy in the flow. In plasma physics the instabilities
are essentially of a potential character, and so the influence of dissipation
will act primarily on the operator M but not significantly on QD . This,
as said before, should be justified with a more profound analysis. In

this sense the problem of marginal stability in the dissipative two-fluid
theory and for long wavelength and nearly parallel currents could be

considered as solved. The necessary and sufficient condition would be

(?,Q%)? 0 with the Q found in eq. (20).

The advantages of this stability analysis is that it permits us to understand

the different energy reservoirs by just using test functions in (3,Q3)
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and to make estimates of the maximum possible energy conversion from
one reservoir to another. One possible example could be an estimate
of the amplitude of a tearing deformation of the magnetic field when
the free energy corresponds to the one of drift waves or of rippling

modes,
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