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Abstract

An "energy principle" for stability of two-fluid at rest in a
gravitational field and a vacuum magnetic field is given.
Viscosity, gyroviscosity, resistivity, compressibility, Hall

term and electron inertia are taken into account.



I Introduction

The stability of fluids at rest in a gravitational field and a
vacuum magnetic field was revisited by Barstonl:] :5(1970). He assumed
the simplest form of Ohm's law

E+ yxB =7}
and the viscosity in the form

APPY)-TAV - (IXYIKTY

ignoring among other effects gyroviscosity, Hall term and compressi-
bility. This was an application of stability theorems found by
Barston |.--:2-_-1(191’)9) which allow one to deal with stability equations
of the type

NY + mY teay =o
where N ,M and &\ are symmetric operators and N andM are positive.
A recent extension by Tasso E:3] (1976) of these theorems allows
one to handle equation of the type

NY + (M+P)Y +8Y =©

where N ,A , and & have the same properties as before but P can
now be any antisymmetric operator. The latter type of equation is of
course, the one most encountered in physical problems [ 3'421. What
is important here is that, if M is positive, the operator © governs
stability [:31 independently of the existence of P . This technique

has already been succesfully applied to fusion plasmas (tokamaks)

-
to study their stability with respect to resistive perturbations'- SZM



Here we demonstrate how powerful this technique is in finding
an "energy principle", i.e. a necessary and sufficient condition for
stability of a two-fluid gravitating plasma at rest with respect to
all perturbations described within the two-fluid theory. This means
that viscosity, gyroviscosity, resistivity, compressibility, Hall
term, and electron inertia are taken into account, which represents

; [1_
a significant extension of reference J.

I1 Equilibrium

The equations governing the equilibrium are

Vioy = Mo (m; V¢, = §; o) ; Vor =© &
VxBe =V, B =© (2)
IxE =V Eo =0 (3)

where Be and Eo are the magnetic and electric fields, %, denotes the
gravitational potential, ?;i is the pressure qi is the electrical charge,

Vi and rm; are the velocity and mass of the particle, and ng is the particle

density. The index L denotes the electronic or the ionic fluid .

Taking the curl of eq. (1) together with eq. (3), we obtain

Vi g v I8, =0 )

IIT Perturbations and Stability Equations

The perturbations around the static equilibrium are denoted by

small letters or indexed by 1, and the displacement vectors are called




. . L 6
The perturbed equations of motion lead to - -

Mg oM, %;:‘ -vﬂ' T MoY: (E_‘ + %;XQ-O)—V‘H& -m‘-_rrn;"tj{"'fo - T‘-t.r'rn;_\'](p’_ (5)

T Mg B Y

ome + 7. (mn, &.) =© e
2t =
¢ 7)
B = Po Vg - Qe TR, :
where ¥ is the rate of specific heats.
In a gauge ,= 0 we have
_E_l:" "'__/é.:, ¥ _81: VXﬁ; (8)
4 A (9)
Ux V% Ay -.-_'é Aom(q.;-%; —_([}..@'
=R~ o
The definition of TT L7 is
@-?.
B i i _ e
-Txx-“(r;:x+ r;%)*‘lgra‘ca*‘ 2 W /33),
-1, = [ - - (3 _
U%‘ aﬁ('l.\:%'atdy'(g 'Jl.'.la ,_{“O(LTLL J:x\,
T, 32X 22
'Tr_za"" ‘(jx - ‘f‘(r:dka” r‘;t_x,)"*" -'—"rxa. 5
Mg @xs&(%@z-\-& EZE ; (10)
2
- o L8
92 = ey =% -lya —2B [,
.= L [0 “q}'),lgtrm
h + oVt == 6




where x,ta ,3 are a local system of Cartesian coordinates,}being along
the magnetic field, W, is the particle cyclotron frequency, and T is
the particle - particle collision time. For simplicity, we have omitted

the index & .

The quantity Ezé is the total momentum transferred to the
particles of fluid { per unit volume and time by collisions with the

particles of fluid } ;

s e ik (1)
Ra=s(%-%)
From equations (5) and (9) we obtain the following system of

equations in matrix operational form

NY + (meP)Y + (8,+8,)Y =0 (12)
Ei Mo My o ©
?’EE Eﬁ 7 N= o Mo om, o
ﬁl o O £0
5.+S —S (=] f%,i—m:ﬁ;,&.x O moaf
S+ —
M= S 2 & o} : P= & &A.l‘{-mo?'l 8oX m, %
o o 0
T Mo Gy =o'y ©

(Se+As ). =vmm (13)




where S; %;_6:'3. g \} corresponds to the symmetric (antisymmetric)part
L [ 8

—
-_— i

of VEEL.
Ry o o Tu Tia o
9,5 Q R’Q o ; Q,z':-—- T " Taa (@]
g & Vuo OX VR o o o
Rc %; = vPi+mLva¢o“miq-L_E_Lj (14)
T é-:2—Vﬂé‘momim&vdV'KLQ-'J')(Vlm.,'!‘moV’).?é (15)

where FCCQ.QJ is the Green's function.

The operator%}l appears because we are considering the perturbation

on the self-gravitational field (see Appendix)

IV Boundary Conditions and Symmetry Properties

We assume either that the perturbations decay at infinity for an infinite
plasma or that they have to vanish on a surface surrounding the plasma.
We now prove that the matrix operatorsN,NL€i1r€hLare symmetric, §y and

M are positive, and P is antisymmetric.

To obtain this result, we consider scalar products CX;IA)&), where
A is one of the matrix operators defined before. The parentheses mean the

integral over the volume of the product:

XAYi= (4 b $3)4(% ae)




The operator N , of course, is symmetric and positive definite. The

g . - : 3
operator Y,Tl; has symmetric and positive definite terms 1in ¥ and @/o(

. . . C8] ; ; :
amd antisymmetric terms in (?, ~'. The operator m,§; BeX is antisymmetric.
The operator(§ -§ e is symmetric and positive.
-9 ry o
(o) o (0]

The operator|O© o Mo %y is, of course, antisymmetrie.
A 0 Mg,

-mD%‘ _moia O

The operator YXV is symmetric. We prove in the Appendix that the
operators Tz& are also symmetric.
From eqs. (1), (7), (l14) and (16) we can write

(4R %) = - v (T4 ol g -

Mo

In the last equation the first term and the sum of the second and

third terms are symmetric. The last term is also symmetric because

from eq. (4) we can write

(i 0F; ) (Plamo . §:) = (VB . 0humo) B, B,

F &

where

E = £ - Vb,
¢ ok, |

(17)




According to [13] these properties allow us to state that the

necessary and sufficient condition for exponential stability is

(Y, (9'+94)V) >0 (18)

V Explicit Criterion

2 &
(y} (_awg‘ﬂy):—.gdv E‘E,q, [:Yfiil\?- &l +2(%. %08, -t-vPl..vﬁm.[gm_l

2
+S‘¢V (ox @) +y1G il:’ ”“;GV<%_-U"”0*MOV.EDI&V'

FE

k(g.cﬂ@.s-v""‘” me V! §;) (19)

where the last term appears because we are considering the perturbation

on the self-gravitational field (see Appendix)

a) If we neglect the self-gravitational perturbation and consider an
incompressible fluid, we find essentially that

Vi, - Vhn mo > O
is necessary and sufficient for stability as in Ref., [ l]. The Hall
effect does not affect the stability condition. So we think that the

stabilization and destabilization dite to the Hall effect reported in the

literatureL-g:]appear because infinitely conducting media have been considered.

b) The first integral of eq. (19) can be rewritten in the following way:

2 W 2
@va Eag..vzmmo(e +V&J§&;L)_&3;)_lzi=zd + ¥R, (0. ggj
izl ¢ " W, Wmme! IR, . Vhn mo

If V@L. Pbn oy 0 , we might have instabilities in the compressible
case unless

viéw bo; & e
Vién mg




which is well known from the stability of atmospheres.

c) If the plasma satisfies the conditions

m = 8 =
) constant, ?LL constant (20)

we can write

AP =- YT Em, = WINZ % (21)
d=l
Defining
. g o
2, (B)= am)¥ gd& e g

ck.n
chl—'qn-gm"é m, j dk e ('ZLA‘-.":) _%: (22)
R

L
(%&.V) =fo\a £ () b)f""ghz"“ = T Sc&] 2

j=us

Considering (24)

(27 -R) i k) =(&-B)(k- D) & Ch-be)

the condition (18) becomes

= [J
&..l&

oL :
= (D- -ho)[D ho)["q"ig“m =4 4k, g’ej] (25)




Considering the perturbation of one fluid only, we obtain the Jean's
condition for stability [ 10—|:

Ro> Mo mm ‘L”_P@ (26)
TR

AEEEHQEE

We consider here the contributions to eq. (12) from the perturbed self-
gravitational field. They are
Moo V@,

where ¢Lsatisfies the equation

AP, = -9 G = MM
P, o P & &

The solution of this equation in terms of the Green's function is

o, = Y76 = (AV' k{n,n)m;( r_\')nmi
é:l,-?..

From eq. (6) we can write

m'; (_Ql) - - (v! Mo + mov!).%i_

Therefore, we obtain

Mo 0, = 776 monn; Sy TN K (T + mew).Bi= = T
L ’ ={ h
=42 i

We can write for the operator &,

v,ay)= = (v 4T 8, =

é:‘l-?a
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c={2
Jz‘.l'?l

= YT 6 = m, o gdv (61T ma_v..ﬁ,;)géxulK(D“D‘)(E;.VUV\O

, .
+m, 7. ?é)

The last expression is symmetric under the interchange between }3

and}ﬁ ;
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