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Abstract

A short survey of the literature on dissipative magneto-
hydrodynamic instabilities is given as introduction. A mathe-
matical technique allowing '"energy principles" is developed
and applied to toroidal equilibria and to cylindrical tokamak-
like equilibria taking into account resistivity and the full
macroscopic tensor, i.e. F.L.R. effects and viscosity. This
allows to make general statements about MHD stability in the
presence of viscosity and F.L.R., and permits, without much
computation , a qualitative and comparative study of resistive

perturbations under the influence of F.L.R. and viscosity.

Applications to tokamak observations are also sketched. Finally,

it is proved that the stability of dissipative time-dependent
force-free fields can be analyzed by a simple functional con-
taining only the perturbed vector potential. This proof is
valid even if all non-ideal effects of the two-fluid theory
are considered. The conclusion contains a discussion of the

open problems and suggestions are given for their solution.




Introduction

Dissipative instabilities in hydrodynamics have been considered
since the beginning of this century in several well-known works,
described in, for example, the book by C.C. Linfl!), Dungey (2] (1958)
is apparently the initiator of an instability mechanism due to
resistivity which seems toplay in MHD the role of viscosity in
hydrodynamics. Several papers dealing with particular resistive
instabilities appeared between 1958 and 1963. They are referred
to in the paper of Furth, Killeen, Rosenbluth [31 (1963) dealing
with the sheet pinch finite-resistivity stability. These authors
discussed qualitatively the influence of other non-ideal effects
such as viscosity and thermal conductivity on the eigenvalues, (see
also Coppi's paper[4](1963)). Several later papers based on [ 3:|
tried to introduce more sophistication in geometry and physics by
using scaling and expansion techniques. Most of the contributions
came from Coppi, Furth, Frieman, Greene, Johnson, Rosenbluth and
Rutherford, and many references canbe found in, for example, the
Book by Cap(SI. Some references are also given by Glasser, Greene
and Johnsonl6) which is a sort of culmination point of expansion
techniques and scalings involving geometry and physics.

Besides this progress in the physics of resistive instabilities,
some mathematical progress has been achieved by Barston[71(1969),
who was the first to prove for the sheet pinch a necessary and
sufficient condition similar to an energy principle. He also gave
exact estimates for the growth rates. In fact, this energy principle
was already used by Furth{8Ibut without proof (as far as the
reviewer is aware). An extension of Barston's work to two-dimensional
plasmas was done by Tassol93 (1975).

It was noticed [ 3,8 | early that gyroviscosity and viscosity
could play an important role in the tyny resistive sheath of the
modes. Gentally, non-ideal effects and realistic geometry should be
taken into account. This is too much for an eigenmode analysis, but
other methods such as energy principles, if they exist, could at
least give qualitative answers to such problems. A recent paper by
Tassoll0lghows how to obtain a quasi energy principle for realistic
geometries taking into account resistivity, gyroviscosity, and
viscosity.




This talk closely follows reference [ 10 |. It describes the
equations and the geometries for which energy pr1n01ples can be given
as well as the results and appllcatlo f which can be expected. In
addition, a sufficient condition for the stability of general
dissipative force free fields is given, and its relation to Taylor (1211
invariant is discussed.

I Stability Equation Allowing "Energy Principle"

Let us consider the following equation :
NL + (F+M){ + Q¢ = O, (1)

where T is a complex multidimensional representation vector in a functional
space, N and M are hermitic and positive operators and Q is a hermitic and F
an antihermitic operator.

It can be seen that this equation contalns several limiting cases:
If F=M=0, it is the ideal MHD casell3,] ]for static equilibria. If M = 0,
F # 0 it is the case of linearized conservative systems such as the linea-
rized Vlasov_ equation [I15), If F =0, M# 0 it is the case of a resistive
plasma in 1 74 and 2 (97 dimensional geometries.

a) Sufficient Condition for Stability:

Let us first recall the definition of the scalar product for 2 vectors
£ and n denoted by (£, n):

(E,n) = J dt é;&-n , (2)

the Hilbert space to which £ and n belong being restricted to functions
fulfilling specific boundary conditions suggested by physics.

Let us now consider the scalar product of_g with the left-hand side of eq. (1)
and add to the expression its complex conjugate. The ({,F{) terms cancel
because of the anti hermiticity of F, and one obtains

3 [EwN + @)= - @) 3)

If Q is positive, i.e. (ﬁ,Qc) > 0 for all ¢ , the system is stable owing to
the positivity of N and M.

b) Necessary and Sufficient Condition for Stability:

If M# 0 and if (¢,Qz) <O for any § = n , the system is unstable.
Together with the previous result this leads to a necessary and sufficient
condition.

Proof:

The proof is done by demonstrating incompatibility of stable r and negative
values of (£,Qz). Indeed, it is then possible to choose f =1 at a particu-
lar time with (£,Qf) < O, and then, integrating eq. (3), we obtain (z,Qr)



at later times:

t L] - . L} .
(£,9¢) = - ZJ (z,Mz)dt' - (z,Ng) + (n,Qn) (4)
t
) o
From eq. (4) it follows that (z,Qz) remains negative and at least finite
for all later t>t . This excludes the possibility that § + 0 as t + . An
oscillation ofg afound a finite value at t + © is alsoijlcontradiction
with eq. (4), the integral becoming infinite because C vanishes only on a
countable set. The last p0551b111ty for a stable ¢ would be to tend to a
constant in time, but this is in contradiction with eq. (1) itself since
Q¢ cannot vanish because of eq. 4).

It is appealing to conjecture that the growth will be exponential
because any power growth is 1ncompat1ble with eq. (4) A rigorous proof of
exponential growth cannot be done in the same way[ ] as for F = 0, in
which case overstability is forbidden. Let us conclude this section by
saying that for eq. (1) with M # 0

(z,Qz) >0 (5)

is necessary and sufficient for stability.

II Simplest Model and Time Scales

Let us consider a second-order differential equation with constant
coefficients which is a particular case of eq. (1):
1 @

35+ (a+ib)ytcy-=0, (6)
with a >0. "
The solution is y = e , with
= - (atib) + 7 (@552 =2 e . (7)
and c> 0 is necessary and sufficient for stablllty
vy 52
a) If aZ4p? <<| ¢, then w = = (a*ib) + i ¢2k|(1-g§£ﬁg——-) (7a)

In the unstable case the growth rate is given byvkl as expected.

22

b) If a“+b“ >>|c |, then w = - (at+ib) + (a+ib)Q ~—°—-—)

ety

The unstable case gives a growth rate
-a ¢

Re(w) = 5 . (7b)
) a“+b
¢) If a?<<b® = |c| , then w = = (a+ib) + i ¥ b2e2e (1 - Lab
- 2
b"+2c
for b2+2c & | cl
and w *-(a+ib) + ¥ 1i2a b
2
for b"+2¢ = 0,
so that Re(w) * a . - 1 . for b +2¢c = | c| (7¢)




Re(w) * Yab for b2+2c = 0 (7¢)
d) If azzbzq:L then _
Re(w) * Vlc] . _ (7d)

This particular example shows that despite the fact that the sign of ¢
governs stability independently of the values of a and b, the growth rates
are strongly dependent on the relative magnitudes of a,b and c.

III Three-dimensional Plasmas with the Full Pressure Tensor

The macroscopic equations are of the following form:

p %% 2EixB= Vp=WI,
E+yxB=0,
p+ Vpv=0,
p=1~£@), (8)
VxB=j,
vV.B=0, N
VxE=-3 :

The pressure tensor (711 is given by

2
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X,¥,z are a local system of Cartesian coordinates, z being along the magnet-
ic field, w4 is- the ion cyclotron frequency and Ty the ion-ion collision

time.




After linearizing the system (8) around a static equilibrium and ex-
pressing all physical quantities in the perturbed velocity, we obtain (see

ref. (18] ) '
2
Vv ]
R == 4= RN +Qy=0
o atZ ot =

(10)

where Q is the MHD stability operator. In order to find out what the
properties of the operator V* I are, let us consider I in a general coordi-

nate system xl, xz, x3 , then

[y_', - g)] dr =J.v; e

=—fnmv‘ /g dx' dx® ax® +
r,n

9X

/g dxl dx2

—a—n(@v

' Hrn)dx
T

3

dx (1)

1 3

dx2 dx 3

. - . . . . n
where ,n is the covariant derivative with respect to x .
The last integral vanishes because of the boundary conditions on v, and

rn
o '

[18] g2

It turns out that the terms in o and — are

can be evaluated in the local coordinates system.

symmetric and positive

i g . . a
definite, and the terms in B are antisymmetric. The pure B terms are due to
the finite Larmor radius, the o terms to the magnetic-free viscosity, and

the %— terms to the magnetic viscosity.

Equation (10) is of the same type as eq.

(1), the finite Larmor radius

effects correspond to the operator F, and the viscosity to the operator M.
The stability is decided by the MHD operator but the growth rates can be
affected by F.L.R. effects and viscosity. Such viscous destabilization has
already been proposed by Green and Coppi[19], but not in the general form
done here. Let us make estimates of the reduction in MHD growth rates.

We know that the most dangerous MHD modes are nearly divergence - free.

This means that

Bvx v 3vz
e ¥ T = 5 Ty =7 Ta
E x B " . g
but because of v, = 5 and E = V ¢,div v, ¥ —
B
where r is the radial extent of the mode,vand R the
torus. On the other hand, one has T N 7%
dominates the F.L.R. term if
o R, 2
.
‘For an ion temperature of | kev, a magnetic field
of 10'% one has w . 1., * 5.104 .
ci ii

Very roughly, we can associate the coefficient
ion-ion term in eq. (10) by the relation

kT .. ) y

a® “2‘ - ;1 * 3,10
niHR MR

r

R 3

large radius of the

, so that the ion-ion term

of 30 kg, and a density

a of eq. (6) with the



if one takes R = 100 cm.

A full MHD growth rate ¥, =AE|is usualiy also of this order. If for
particular reasons (geometry, near marginality condition) an MHD growth rate
is not full, then a2 >>|cland eq. (7b) lead to the reduced growth rate

Re(w) = ‘g‘ .

a) Tokamak case

The m = 1, n = | mode observed [20] in Tokamaks near the magnetic axis
has a rather small growth rate C21] (resistive kink or ideal internal
kink) of the order of 10° to 106 s~! compared with typical MHD growth,
but stilltoo high to explain the experiment. Viscosity leads to a reduced

Y =I§F= 103 to 104 which agrees with observation.

b) High B, 1 = 1 stellarator
The m = 2 mode has a typical MHD growth rate and for the previous plasma
parameterswe should obtain a2* b2=|c|, so that we wauld have the case
(7d) with a small reduction in growth rate.

This mode has rarely been observed (221 in the present experiments,
this being due to the fact that w : Tii is 2 to 3 orders of magnitude
lower (Ti % 100 ev.) than calculaféd b&fore so that a2<<b2=]czf, which is
the case of eq. (7c). The F.L.R, stabilization dominates in this case.

The derivation of the pressure tensor as given by eqs. (9) is done

L s s : ‘ .
for-f— << 1 and AMFP<< L, with r, = Larmor radius, L = inhomogeneity
length, A __= mean free path. For incompressible motion the validity of

¥P ;
the pressure tensor can be extended to the domain AMFP >> L, but

Mypp << Lu

1V Two—-dimensional Plasmas with Resistivity and the Full Pressure Tensor

It is well known that resistivity leads B3 to new modes and one can
expect a much more difficult behaviour. At present only the 2-dimensional
case for straight plasmas can be solved, as we shall see.

The equilibrium is characterized[glby

Jg=e, 3,0 (12)
E =ct=e, n, ) J W),

By=e,xW, B)e, ,

V2= 3 () = - %3 :

'z is the coordinate along the straight plasma, ¥ is the meridional
magnetic flux, and n, is the resistivity.

The meridional currents are assumed to be zero in order to have a static
plasma in equilibrium, which is important for this kind of formulation but
not necessarily for the physical results. .

After linearizing the equation of motion we obtain

Pg E Vp] + vV~ I(E) -y x Eo"'lo X-EI =0, (13)



v Eg=0, (14)
él+nonVx§]+nllo-£x§_o' = 0, (15)
n,=-&°9n, a7

Apart from the pressure tensor term, these equations are the same as
in ref. [9:]. Equation (17) is valid as long as the heat conductivity is
small enough. This will be discussed later.

Restriction to two-dimensional perturbations leads to

% g xTUS-Txe UL B moe xT A=Txe h
j = - e Vz A Vxij, =-VWV 2A) X e
4 -z ! 1 =& ’

where U and A are two scalars: the stream function and the z component of
the vector potential.

Taking the curl of eq. (13), we obtain

. . . . - L 2 - 1 » =
v P, vi + e, vV x V* I(Vxe U) B *V (V°A) VXJO VA =0, (18)
A+B «VU-n V2
~o o

If V2 A is taken from eq. (19) (no # 0) and inserted in eq. (18), we

obtain the following system of equations in matrix operatorial form:

A+ Jo(Ez x V no-V U =20 2 (19)

. .. _ . ~ .
Vi 0 i (8,9 B, V) U
"o s
4 +
B v 1
0 0 A =2 s A
W Mo
e VxV I (Vxe .} 0 U
+
+
0 0 A (20)
Vn
Jo(lb)_@_o Vesz v 'VXEO'V U
+ =0
Vxj -V - v? A
o



Apart from the V * II term, eq. (20) is identical with eq. (17) of ref.
[9]. Let us investigate the operator e,-V'x V - I (Vx e,...). We know

from the previous section and from ref. [18] that v+ II (E) contains a
terms which are positive definite operators and pure B terms which are
antisymmetric, but if £ is a curl and if V - I (§) is replaced by

VxV 1 (g) the symmetry properties will not be changed, as the follow-
ing equation shows: ,

Jd‘rv_e_:z-VxV-H(Vx‘_e_zu)=ijEzv'V-£(ng__zu) dt

The symmetry properties of V. I are thus the same as e VxV'II(Vxe ...)s
Then eq. (20) has the same character as eq. (1) and the Etabiiity
condition is given by the last matrix operator of eq. (20), which is the
same as in ref. [ 9 |.
This leads to the energy principle derived in [9'1 for zero pressure
tensor and extended here to F.L.R. and ion-ion collisions:

A
SW =fd"r (- —2) (g, x W VU)
av
dJ (1)
+ Zjdr (—"&Tpg) A (e, x W VU)

+ J{dT ]VAle. ‘

A simple application to tokamaks is the instability of skin currents.
If one localizes a test function with VU finite atholdw >0 and A< 0, then
8w.< 0. This mode is similar to the rippling mode in one dimensional
geometry

Another application would be the stability of configurations with
stagnation points ( such as Doublet or for islands in tokamaks). This
necessitates numerical calculations which are not easy to do because of the
stagnation point, but eq. (21) at least allows the problem to be correctly
formulated. '

V All Perturbation with Re51st1v1ty, Viscosity, F.L.R. in the Tokamak
Scaling

The energy principle of section IV can be extended to three-dimensional
perturbations if one goes to helical coordinates for the representation
of the equilibrium and perturbatioms and in the approximation of the
tokamak scaling . Bg .
RY > ===~ £ .
B
z
The proof and calculations are given in [23]. The necessary and
sufficient criterion is given by:

dj
Sw =,[ = _E%) (gxs, * VG) (u xV Fo.' VG) dt

dj
+ 2 J ("_EI,E) (uxe *+V6)F dt (22)

- J, FLF dr ’ i



where B. = f (r) u+ux V F (r)

) o - = o

Ej = f(r,u,t) u+ux YV F(r,u,t)

E = g(r,u,t) u + u x VG (T, £)

u = l 22 Lo - hr = €

-—-- , -
]2 + h2 z

u= 1 6 - hz

A test function can always be found to make the system unstable as soon as
dj0
= # 0. This test function can be taken as:
F -0 and G concentrated on the side of the resonance (VF_ = 0) at

. . . : - : : 2 :0 ‘
which the first integrand is negative which is always possible. An estimate
of the growth rate can also be done as in section III.
This test function characterizes the rippling mode. A similar test function
was used by Furth Blin the sheet pinch geometry. The tearing mode test
function is not localized but can, in principle, be found in the same way
as in referencel8land can be affected by cylindrical geometry (particularly
the mode m =1, n = 1). The F.L.R. effects and viscosity do not stabilize
the resistive modes but can appeciably reduce the growth rates (see estimate
in section III).

Stabilization of the tearing mode alone seems possiblelzal. To obtain
it, one has to assume a non-fluctuating resistivity and shape the current
density in a step-like form (28] 1f the plasma has to be stable to all
resistive modes (rippling included), then the current density as demonstrated
by expression (22) has to be constant up to the boundary. B.B. Kadomtsev [25]
came to this last result using Taylor's (12} invariant, which will be dis-—
cussed in the next section.

VI Stability of Force—free Fields

Resistive force-free fields have to be time dependent and have to be
restricted to the class[26]j =X B with X = ct (see also ref. [ 11_|)

YR
and B =B e Tk t.
- —o

The linearized equations of motion around such solutions are:

o E=j xB -AB xB_, (23)
- & FEER =0t w (24)

B, =V x A , il =V xVxA g (25)




The investigation is restricted to the case X = ct, n = ct consistent
with n; = O and the gauge is chosen such that E = - A. The scalar
product of equation (23) with £ yields

p &=~ Gy ~AB) * (A4 +nj)) .

Integrating over the plasma volume limited by a perfectly conducting
wall, we obtain

1 3 L2
EE [ (pogsg)"'(vxé]:vxél)_()\A

- n [ (jl}jl)_(;\jl’Bl- ] (26)
where (a,z) = fv dr a * ¢ .

Let GWR be defined as

Wp = (Vx A, VxA) - MA, 7 xA) (27)

The variation of GWR leads to the following Euler eigenvalue
equation:

VxV xA -AWxA = oA . (28)

1 1 —1

The variation of the right-hand side of equation (26) leads to

VxV x3B, -AVxB = BB ; (29)

The curl of equation (28) is identical with equation (29). This means
that any solution of equation (29) verifying n - B, = 0 at the boundary

is also a solution of equation (28) with n x é] = 0 at the boundary.

It follows that 6W_ > O implies the negativeness of the right-
hand side of equation (26). This means that GWR > 0 is sufficient

for stability with respect to MHD + resistive modes. This condition is

found necessary and sufficient if one ignores resistivity and uses

instead Taylor's hypothesis of a global invarianttlz’ 273 .

This result is somewhat to be expected if one considers Woltjer's

(281



10

proof that A = ct force-free flelds represent the state of minimal
energy in a closed system.

The important practﬁ§§} question for fusion plasmas is to know
how much one can deviate from A = ct force-free fields without
appeciably affecting the gross stability properties and without
appeciably diminishing the confinement time. This question might
require an understanding of the nonlinear problem, which would
exceed the scope of this paper.

.

'VII Discussion and Conclusion

The method pursued in this paper allows statements about
stability without going to the solution of eigenmodes. This is only
possible if the representation variable T in which the linearized
equations of motion are of the same type as eq. (1) can be found.
This depends, of course, on the pliysical equations used. Effects
such as thermal conductivity and the Hall term affect the symmetry
properties of the operators of eq. (1) and eq. (20). In fact,

Ohm's law in hot plasmas is not known; it can be affected by trapped
particlesin toroidal geometry and generally by turbulence. Even
cylindrical geometry presents difficulties: Energy principle (22)
would not have been possible without making a tokamak expansiomn,

Answers to these questions can be found as follows:

1) One can restrict the investigation to a class of resistive modes
-(essentially the "tearing'" modes) as done in, for example, references
[6] and 24] » which generally leads to Optlml‘;tlc results. But
then it remains for us to understand the meaning of the restriction
- in the stable case and to know how the growth rates are affected
- by the ignored physical terms (F.L.R., Viscosity, ete ...) in the
unstable case.

2) This dilemma may require general stablllty conditions to be found as
in, for example, ref. [:]O_J and patient searching for the represen-
tation ¢ if it exists, for which the linearized physical equations
‘become of the type of equation (1). This is demonstrated here for
some non-ideal effects and geometries.

3) The hardest way, but the nearest to real plasmas, is to develop
methods dealing with the stability of equations more general than
equation (1), particularly those for which Q is not symmetic.
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