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ABSTRACT

A condition for general axisymmetric diffusive equilibria
which relates the outward diffusion flux with the toroidal
currert density is derived. In an approximate version it
requires that some effective diffusion velocity VD* must not
exceed the poloidal magnetic diffusion velocity V. Relevant
consequences follow in the regime of anomalous diffusion if
diffusion is caused by an anomalous parallel electron
viscosity instead of an anomalous perpendicular resistivity.
In the former case VD* equals the real diffusion velocity Vi
and an anomalous bootstrap current arises which leads to

rather low upper limits for 8 If the usual trapped ion or

p.
Bohm diffusion is assumed to be caused by an enhanced
viscosity, no stationary equilibria would be possible in a

syctem governed by the respective diffusion law.




1. INTRODUCTION

This paper deals with the relation between particle diffusion
and magnetic field diffusion in axisymmetric systems. It has
its origin in the following heuristic consideration. In a
magnetically confined MHD plasma in eguilibrium, ambipolar
diffusion results in a flow of matter perpendicularly to the
magnetic field with some velocity VD. If the plasma had zero
resistivity, the magnetic field would be taken out of the
plasma with the same velocity. In the nonideal case, finite
resistivity makes the magnetic field penetrate into the plasma
with some velocity A/ Stationary conditions can only be
achieved if Vp N Vm' i.e. if the particle diffusion velocity

is smaller than the penetration velocity of the magnetic field.

Table 1) gives roughly calculated values of VD/Vm for a small
(such as ST or PULSATOR), a medium size (such as PLT or ASDEX)

and a reactor-like tokamak plasma.

Table 1)
a R B T n_3 vD/Vm Tp
[em] [cm] [kc] [kxev] [em 71 [sec]
-2
I 10 70 40 1 2:10'3 1 A 5410
13 1 -1
II 45 120 45 2,5 510 v 5+10 v 10
13 3
IIT 400 1000 50 15 510 ay 510 N2
In all cases, g = 3 and Zeff = 2 are chosen. VD and Tp are
calculated as V., ~ D/a and T "V az/D, where D is the diffusion

D p

coefficient. In case I, pseudoclassical diffusion was assumed.



Cases TI and TII are based on trapped ion diffusion. The
values of the temperatures are in agreement with results of

present day transport codes.

Thus, for parameters expected in larger tokamaks V would
exceed Y by orders of magnitude in obvious contradiction to
the relation Vp N Vm.
In present day transport codes ¢6'57X éi terms in Ohm's law

are neglected compared with terms 7 - j"f’ [13 121 { j;'f = the
toroidal current density). As will be shown later, their

ratio is approximately VD/Vm. It is clear therefore from Table 1)
that this procedure is rather inconsistent for large tokamaks
with anomalous diffusion.

Another aspect of the relation VD'th concerns the plasma B

that can be reached in diffusive equilikria. Indeed, taking

into account \4n‘“'bé/73 » where V_ is the classical diffusion
velocity in plane geometry, the condition V} £ Vi immediately
results in a B-limiting relation: ﬁ < M/VD . This
condition, if applied to neoclassical banana diffusion

Vip~ Ve qang/ﬂ , givesﬁ s /I/GyiAa/zor /3P < A”/a_ « Thils

is the well-known bootstrap conditicn [3], indicating that the
relation l/b < Vﬁn should be related to a generalized bhoctstrap
current.

In this paper, we study these topics in the case of general
axisymmetric systems. We proceed by analogy with [4]: Starting
with the momentum equations for a hydrogen-like plasma and
Maxwell's equations (section 2) we calculate the rate equation
for the total angular momentum of the electrons in equilibrium.

This equation relates the particle flux, the Ware effect and a




generalized bootstrap current to each other. From it the
relation \/b < \4n follows in a preliminary way by some

rough arguments (section 3). A detailed discussion is per-
formed in the following chapters. First we derive the toroidal
component of Ohm's law for a general axisymmetric system in
equilibrium (section 4). We then derive a general expression
for the outward particle flux in terms of the resistivity, the
electron viscosity, the pressure gradient and the external
electric field. This relation, together with Ohm's law gives

a necessary condition for stationary diffusive equilibria
coupling diffusion with the toroidal current density (section 6).
Another form of this condition, relating the particle diffusion
and magnetic diffusion velocity, is given which replaces the
heuristic relation \/b ﬁé L4n . Some implications are studied

on the basis of current diffusion formulae (section 6).

2. BASIC EQUATIONS

We start with the equations of motion for the two particle
species of a hydrogen-like plasma, which follow quite generally

from momentum conservation and read [5]

ﬁ

(1) m¢ no“/e -7 pe - V—éﬁi)e -—en(E+%\7€><§)+R,

(2) m‘n%é -pt —V-TGT'L+ en(§+”/cl7"><§)'R ,

In (1) and (2)(:1:1Fe/L is the anisotropic part of the pressure

>

tensors of electrons and ions. R is the rate of electron-ion



momentum exchange. (The full pressure tensor can be

assumed to contain all kinds of momentum exchange resulting
from fluctuations, the other quantities appearing in the
equation being then averages.)

We consider equations (1) and (2) together with Maxwell's

equations

= _ 41 9
m VWeE=-=3s-B ,

(4) VX§ £ 2? ;:‘@“([76"\;)

C

-
s V- B = 0 |

If the plasma is in equilibrium, the force balance equation

for the total plasma must be satisfied. It results from adding

(1) and (2) and neglecting the inertial terms.

2T =L G5 T, b peer
=1/ —_—— == +

& F =|/-(p+ == 2%l , p= PP,
«—> £ e
TT=TTc+TT".

In (6)ij can be neglected compared with p in most cases. This

will be done in the following.

In (1) the inertial term is small compared with the friction

force ﬁ. We shall therefore use (1) with the left-hand side

set equal to zero [5].

Since we consider axisymmetric configurations, the magnetic

field can be expressed by

L, =FV) VY = By €,
p - 57?/ * WT?D — E;P ' éi:

Wy Wy



defining the rectangular coordinates¥, €, ¥, where 27T ¥
is the poloidal magnetic flux, € the distance in the poloidal
- -
direction and "F the large azimuth. €¢ and EP are unit
q
vectors in the ¥ and € directions respectively. Since €<p= R'V‘f’,

where R is the distance from the axis of symmetry, we have

(77 R - qu == f-(Ly)

3. GLOBAL RELATIONS

Multiplying the ¥ -component of (1) by R, we obtain the rate
equation for the toroidal angular momentum density in the

direction of the axis of symmetry:

(8) _‘Bpay(Tw R) BP at (7TP Bp )
-¢nRE, —%ﬁRVpr + R Ry

Integration of (8) over the whole plasma yields the rate

equation for the total angular momentum of the electrons.

It is IOJ X o = 27}{!\—7—‘71 ole ol - :2TTI§-§—; At d¢-

where £~ = BP/‘BPI .6 is a function of Y only. The change of
sign of Bp would mean Bp= 0 on a whole magnetic surface
Y = const. We exclude this case and assmmaBP not to change sign.

Then volume integration yields

(9) JOI‘F{FL,, +3§277d€ RHBC RncEy szrofE ReCBR‘P}:O



where r'q/: §Q]T OIE R h \/,f is the particle flux through

a magnetic surface.
Relation (9) holds, except for the condition Bp # 0, without
any restriction. The second term is essentially the Ware

effect and the last term is related to the toroidal current.

For stationary situations with no particle sinks in the plasma
[TV does not change sign as a function of Y. Hence, if the

Ware effect can be neglected, anomalous diffusion leads auto-
matically to a large value of Ry . If the concept of resistivity
is applicable, possibly with some enhanced value of it, B

can be assumed to have the form

(10)[—{-)=€n(77u?u +Ir)-1-;—:'-):

and therefore

(1) R = en(fr)“ jutf = Ty jL.J.‘F).

To draw conclusions from this, we note that experiments indicate
that in the usual low electron drift case 7)), is close to its

"ﬁ
classical value. jkL is given by the equilibrium condition

(6) as

5 xR
F.o=" ¢ \7%28

Diffusion being larger than classical Pfirsch-Schliiter

diffusion therefore requires either an enhanced perpendicular
-—’

resistivity 7)), or a large bootstrap current,'jw + If the latter

is true, roughly the following holds owing to (9) and (11)



uz [y = 27T§Ol€ Rc'n'B’O“'}"‘f
P

Oor even more roughly

C M- Hu
(13) \/, =~ 4
¥ Be

From the f -component of (4) we get for the large aspect ratio

case (r=minor radius)

4 _4m 4 _ wm Be W
Ta—k("'BP)” e Fuy = cz oy

An order of magnitude estimate gives

9 2 2
(14) L/ir o~ € e . 26 Y ’O B

4T O ~ o B2 §T P

2 2 !
Here 2 C 7, P/O!B ""Vc is the classical diffusion velocity,
but computed with 2 77” instead of 7], .

From (14) we now find

/
~ 8TP __ Ve
(15) /3 ~ Bg_ VLV

/
2
Viy
as stated in the intreaduction.
The following rigorous considerations follow essentially the
same line in deriving expressions corresponding to 12) or 13).

In addition, a general relation for fﬂy is derived which admits

some further conclusions.




e
4, OHM'S LAW FOR THE TOROIDAL DIRECTION )

Applying only the operator ( ) =3 ﬂ—§ 9}3_6 <.+ on (8)
P

instead of performing the full volume integration, we have

(16) O:—<BPS—V(W§?R2J> ——e(HR Etp)

"‘%Fty +<RR‘P>

The first term in (16) is a viscosity force due to toroidal
momentum transfer perpendicular to the magnetic surface. The
transport of momentum in theY¥ -direction is essentially
determined by the diffusion velocity. Therefore, this term is
small compared with the momentum exchange term and can be
neglected. The result is identical with setting the integrand

in (9) equal to zero. From (10) it follows that

an Ry = E”[”)..%(BP'}P +B‘fj‘f’)

+ 7, (ﬂ;y—%(BP‘?P*‘Bwﬂ)}J

Taking into account the ¥ -component of (6) withiﬁzneglected

and therefore P = P( k’f’)

P ‘ ‘
¢ R BpéTf/:}PB‘-P— ¢ Be
we can eliminate jp from (17) and find

) 2
(18) R¢=en[q7,, }‘P-f-(’?u-”h)c %QBP 35 |

+ . . . L
) The following considerations are to some extent similar to

those in [4].



From (16) with the first term neglected and (18) we now

obtain

(19 (RNEe> =4 RN Fey - L Iy

i CR2BE)P |
+ {(7.- )N 5 PDLI/>: |

which is essentially the toroidal component of Ohm's law.

Owing to the rapid transport of particles and heat within a
magnetic surface it can be assumed that all densities and
temperatures are constant on such a surface. Hence they
depend on ¥ only and are not affected by the < > operation.
The same holds for 7), and 7, if it is assumed that they are
some functions of density and temperature only. We can thus

write (19) as
200 N {R E¢) = "7,,”<R}‘f’>“%_" Fq/

e <28 n (- 5E)

-3
In the stationary case VXE =0, which implies that

-.9
E: %%'n‘k '&""[755 , where V_ is the external voltage and @
the self-consistent potential.

We than get instead of (20)

(20') N Q\/;;f <4> =,)7un<R ?‘P> - % Fq/
R Bs
+ ¢ %—5 N (”7,,"71)< B2 >
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5. DIFFUSION

In this section the particle flux will be expressed in terms
of the resistivity, the electron viscosity, the pressure
gradient and the external electric field. To do this

one more relation is necessary in addition to Ohm's law.
It can be derived from (1) by multiplying this equation by

B. This gives

(21)O=—Bp%£;—€ 27\7./%8 +€BPa—éﬁn

—g-Vﬁ: +47,,en(;fqo By + 7, Bp)

To eliminate pg and @ from (21) we again apply the operation
< >: 92 1T §%~ -+, which yields
P
(22) O—‘Cna_'/‘r <B¢> <B Vﬁ))
+ 7, en((4eBoy +{#r Bp))

= 7??
(Note that (B V ’>, contrary to (16), contains terms which
describe momentum transfer within a magnetic surface and there-
fore cannot be neglected.)

1?‘? can be expressed by means of the Y component of (§).
&
_ Va s Be X .7 TTe
(23) 0= en-ﬁ(R>—~(B V >

; 2
+'»7,,en(4;:5—{))—77,,@’7(%-5(128?}.
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The same procedure of eliminating-?v if applied to (20"')

gives

R By
(24) O== €N 37 <7> FV+°7,,€”<IBP‘P?P>
—enc3L (7,-7.) <R2 B"> n,enc L <R2>

=
From BT — )(( W) ¥ and the poloidal component of (4) it

follows that

(25) ;Pz_z;;_{_ V‘)"XVY’—ZHT)( Bp_

Hence

. B2 :
26) { 4p B2>:§_R'_B¢>> <7P E'B_Ei>

Eliminating jp by means of (26) between (24) and (23) results

in the intended expression forlzy.

o My=cn o (B yRES_ (1Y) + & S EXET)

: : 2 2
-7,cn3h ] RB") <<R8i3>}—771cn§—5<'&£;"2>

This representation holds guite generally and independently

of the specific diffusion mechanism.
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It is instructive to evaluate (27) for the Pfirsch-Schliiter

field. Using toroidal coordinates (r, £ ,%¥ ), we have

Bu=0(H) By , Bp=Bo/S, S=1+ecosd, €=k,

R=R,S, ¢ 0«1,

Retaining only lowest order term in € and 6, we obtain

a3y ]
~ n Vo ¢ 1 (B VIT)
(28) [—'}'— Bo Q”Ro @+ e 6502 <7/?!>

+7m,En 'gf’ TR/ N n'Eff’
s 2
( I_'p = F[—/A;-]T Je Ro is the flux density).
The last term describes classical diffusion, and the last
term but one Pfirsch-Schliiter diffusion in this geometry. The

first term describes a pinch effect. The second term describes

diffusion driven by the parallel electron viscosity.

We conclude that rﬁy can become anomalously high owing to

an anomalously high parallel or perpendicular resistivity

or by an anomalous parallel viscosity.

6. EQUILIBRIUM CONDITIONS

Inserting (27) in the steady state version of (20), we get

(29) nav“" B”><<P\B,B;> "7,,V’<R?<f>*— [—'4/ ;




T3

with the abbreviation

R By >
Me=% <<B,>><§ VIS = m, ¢ n2b

1B (R Bw> =
{<R > (B’>} 75 ”‘E RB:B)

The left-hand side of (29) must always be positive.

This is obviously the case if the external electric field and
the poloidal magnetic field have the same sign. It now follows
from (29) that at the magnetic axis, where[jy and hence rhf
vanish, the external field and j?y have the same sign. Taking into
account the coordinate orientation and Ampere's law, it then
follows that Bp and the external field have the same sign in

the neighbourhood of the axis. Since BP should not change sign,

this then holds in the whole volume. Hence

(30) '77,,)’7([2}-:;)— —;’—FJ 20

This is a necessary condition for a diffusive plasma to be in

a stationary equilibrium. For a givenlﬂw , equation (30) imposes
lower limitations on the toroidal current and hence on the
poloidal magnetic field, thus leading to Bp limitations. Before
discussing this point further, some general features of the
condition (30) will be stated.

A comparison of (27) and (29) shows that f’; results from rﬂy
by omitting the pinching part and substituting 7, foxr Y, An

the classical part.

We are chiefly interested in the implications of (30) in the

case of anomalously high diffusion. [;rmay become
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anomalously high owing to an anomalcusly high parallel or
perpendicular resistivity or owing to a nonvanishing parallel
electron viscosity. It is easy to discuss (30) qualitatively
for various combinations of these possibilities, but for clarity
we shall confine ourselves to the case that 7), remains
essentially classic. As mentioned earlier, this is in agree-

ment with current experiments with low electron drift velocities.

Then rb may become anomalously high owing to an anomalously hicgh
parallel viscosity or to an anomalously high perpendicular
resistivity. Since 7); is no longer contained in/ﬂ$ , any

anomaly of 7, , though it may enhancefzz, does not affect fo and

hence the relation (30).

On the other hand, parallel viscosity enhances rh/and.(zfin the
same way. Especially ifr;fis anomalous chiefly owing to an
anomalous parallel viscosity, then [TP“'[;fand (30) is strongly
affected.

To give a gquantitative idea of the implications of the condition
(30), we evaluate it by an order of magnitude estimate.

With the toroidal component of (4), it follows from (30) that

Y&
(31) \/D < Vim

where V:= F(:A) éQ TTOIf R, Vm"-’.’?u C2/4.nL is again the poloidal
magnetic diffusion velocity and L is some average characteristic
length, being of the order a for typical circular cross-section
tokamaks. Equation (31) is in agreement with the introductory
considerations, apart from the fact that the real diffusion

velocity has been replaced by the effective velocity Vg.
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With the relation (for definition of Vc' see after (14))
/
(32) [3 Vm e \/c

(31) can be brought into the equivalent form

/
e 3 S_\\}/_C_*
e
2

For circular cross-sections it holds that B = Bp/qu , so that

(33) can be written as

Ve 92A?
(34) <
B s Y ITAT

Various models have been proposed for particle transport in
axisymmetric systems. In the following, we shall discuss (31)
on the basis of the most unfavourable assumption V

® . B
D 'bJD for

some of these models. We further assume’U” to be classical.

¥ g
In the Pfirsch-Schliiter-regime it hclde that Li)'“ bé ér '

giving
2
(35) /3 = /’/92 ﬁp <A

123,
In the neoclassical banana regime we have \/D'VVC? . Hence

o B % By IR




This is the well known bootstrap condition up tc a numerical
factor of the order one [3] [6].

In the pseudoclassical regime we get VD l/C?A Hence

(377) Ig = ;;;jaa [3p f& /1

Next we consider the regime of trappecd ion diffusion which

should be relevant for tokamak reactors. llere we use [7]
Te T € )2
P L,
VD Aé'/z La ¢ B! .
3/2
3 J’ Mle Te
4 V2T enhetn

-1 2
Inserting 7, ~2¢€ nte/m, and Te ~ (51

directly into (31), we obtain

'3
=23
(38) 1S = 410
nBIlr A =7

2
Eliminating n with N=

BT and assuming B.‘.“B'“ Ba where Ba

is the value of B at the plasma boundary, it follows that
) 4
6 A 2 A" R
39 <-—/3L o
e T72 57

_ = e |V 5/ 2/3
oF l£2,7'402/%6L3A“Bm

(T [kev]l, Llcml, B[kGI])

Hence, our condition results in a maximal temperature that
can be attained in a stationary tokamak governed by trapped
ion diffusion. For a typical reactor-size plasma with

L, = 400 cm, Ba =50 KG; A =2, 5, = 3, B = 0,10, this

maximum temperature is Tmaxa‘ 3 kev. Even lower temperatures

would result from the more refined theory of [8]
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However, it must be taken into account that the threshol?
temperature at which the trapped ion diffusion becomes
dominant may be larger than the maximum value defined by

(39). The threshold condition reads [9] [10]

oy T> o4 B AY |75 B% 9%
(T [kev1, L [enl, B [kG1)

For the example given above the relation (40) results in a

threshold temperature of Tinr ¥ 12 keVv.

i m i \
Obviously, the larger of the values of T and Tihr 1S the
effective limit temperature that would result from the
equilibrium condition in the case of trapped ion diffusion.

Lower limitations may result from diffusion laws prevailing

in the regime T <Tthr' which will not be considered here.

The above statement, if applied to the example, implies that
a reactor-like tokamak governed by trapped ion diffusion could

not be in stationary equilibrium.

. . C ) .
In the case of Bohm diffusion V) TeeFL and we again obtain
an upper limit for the temperature:

2 .2/5

(41) T X 1.8:10 “ B (T [kevl, B [kG1),

which relation imposes an even more severe restriction.
However, the threshold temperature for Bohm diffusion is so
high that Bohm diffusion is unlikely to be dominant in a

tokamak reactor.
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Up to now nothing can be said about the assumptionl?rﬂ—raf

i.e. about the role that viscosity plays in anomalous trans-
port. But the above considerations show that these questions
may have drastic consequences on the feasibility of tokamak

reactors.

Finally, we return to the problem of Ohm's law within the
framework of transport calculation. In transport codes, for
reasons of simplicity, the so-called cylinder approximation
is applied. Equation (29), if taken in this approximation,

reads

(42) E‘P = 77:: ?‘f’“—%’- I/D* BP

(all guantities depending con r only).
In usual transport calculations Ohm's law is taken in the

form [11 [2]

@ Ey =7, Fy

Keeping in mind the considerations that lead to (31), it is
obvious that the second term in (42) can be neglected if

V;<< Vo i.e. if the system is far from the limit given by (30).

SUMMARY

Glokal angular momentum considerations are used to obtain
global relations between particle diffusion and bootstrap
currents leading in an approximate way to low B_ limits in

diffusive tokamak equilibria.
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A detailed consideration confined to magnetic surfaces results
in a necessary condition for stationary diffusive tokamak
equilibria which couples the toroidal current density with

an effective outward particle flux[}fjj1such a way that a
given Fi: defines a lower limit for the average toroidal
current density <R j:p) This condition, if evaluated by an
order of magnitude estimate, states that the effective
diffusion velocity Vg must not exceed the prolcidal magnetic

diffusion velocity.

Most severe restrictions on the equilibrium result if diffusion
is chiefly caused by electron parallel viscosity. One then has

*
,ﬂq;v [T( and an anomalous bootstrap current occurs.

For such situations the equilibrium condition is evaluated
for several current diffusion models. In the case of trapped
ion or Bohm diffusion, temperature limits exist which are
below the threshold temperature of the respective diffusion
mechanisms. Hence a system governed by trapped ion or Bohm

diffusion could not be in equilibrium.

Within the framework of our results the approximate form of
Ohm's law usually used in tokamak transport calculations can

be discussed. It is valid only in the limit Vg

<<Vm. Thus,
current transport calculations, if applied t© the anomalous
regime, are implicitly based on the very specific assumption

that viscosity plays no role in anomalous diffusion.

The considerations of this paper are essentially based on
two assumptions, namely that the momentum transfer perperdicular

tc a magnetic surface can be neglected within the momentum
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equation of the electrons, and that the electron-ion
momentum exchange is essentially proportional to the relative

electron ion velocity and hence is of the form (10).
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