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Abstract

A complete set of anomalous electron transport equations is derived
for ion sound and related spectra.Turbulence causes a drastic
modification of magnitude and structure of the transport effects.
The self-consistent distribution function is also used to determine
wave growth. The important role of the new contributions to wave
growth, resistivity and heat conduction in experiments as well as

their description by codes are discussed.




I. Introduction

Macroscopic manifestations of turbulence are of great interest
to many problems in laboratory and space plasma physics. By now
there have been so many observations of anomalous transport effects
and of their correlation with the excitation of microinstabilities
that only very few examples can be cited here. Turbulent heating
experiments show very strong dissipation of the current that can-
not be attributed to Coulomb collisions but is well correlated
with the excitation of current driven instabilities.1 The
transition in the earth's bow shock occurs over distances for
which Coulomb collisions are negligible and (among other fluctuat-
ions) one observes low frequency electrostatic waves excited in
the region of large magnetic field gradients (currents) and re-
laxing downstream.2 In Z and theta pinches one finds broad pro-
files and rapid penetration of the magnetic field.3’ 4 Temperature
profiles and energy balance show that besides anomalous resistiv-
ity there is also anomalous heat conduction.4 Anomalous vis-—
cosity effects have also been suggested.5 Turbulent spectra have

been determined directly by laser scattering.6’

If charge
neutrality requires vanishing net current, the heat flux can be
i PO . ; ; i
the source of instabilities which in turn limit heat flux, as
: . .9 10 ; ;
observed in the solar wind” and laser plasmas. Static electric
and magnetic fields however may also be important in these

11, 12
cases.

These examples for anomalous transport suggest that an




analysis starts with a discussion of the relevant instabilities.
There are usually several instabilities that can be excited for
various plasma parameters. Some may be eliminated already on the
basis of their growth rates, in fast pinches for example. The ob-
servation * that enhanced resistivity and reduced axial heat con-
duction in the Garching theta pinch correspond to roughly the

same effective collision frequency veféar5.lo—3 w g gives strong
evidence for the dominance of ion acoustic waves during the im-
plosion phase. All other modes discussed in connection with
resistive shocks are restricted to a narrow wedge about the plane
perpendicular to the magnetic field, (k“/k)z*lo_2 , and thus cannot
affect axial heat conduction.13 Although the electron temperature
is much smaller than in the toroidal Belt pinch by 15 the condit-
ion Te >> Ti is still satisfied in the current sheath. From the

(linear) dispersion relation one also obtains important information

about the nature of particle scattering by the wave spectrum.

Particle simulation has been most successful in the next stage
of the investigation, the quasilinear and nonlinear evolution of
a particular microinstability under idealized macroscopic condit-
ions, current driven ion sound turbulence in a spatially homogeneous
plasma for example.ls‘l%he resulting theory, which, in principle
at least, could be formulated in terms of coupled kinetic equations
for particles and waves must then be applied to macroscopic trans-
port phenomena. The macroscopic plasma dyramics will be found from
anomalous transport equations, usually a numerical code. Clearly,

such a code should be the synthesis of a detailed study of all



linear and nonlinear aspects of the relevant instabilities.
Feasibility on the other hand requires considerable simplifications
and codes which incorporate a few gross features of the instabilit-
ies have been quite successful in predicting macroscopic behavior
of turbulent plasmas. The most obvious way of arriving at anomalous
transport equations is the introduction of effective collision
frequencies in the classical transport relations.B’ 18 However, the
transport relation between perturbing forces and fluxes may change
in structure as well. For example, codes that use a limitation of

3and heat fluxes 19 to critical values determined

drift velocities
by instability thresholds rather than the conventional transport
relations for resistivity and heat flux may give good or better

19, 9

agreement with some observations. These two methods can be

combined by using switch on-off conditions for anomalous transport

which are deduced from instability criteria.a’ 20

The basicproblem is that unlike collision dominated plas-—
mas the state of a turbulent plasma is not specified by the local
fluid parameters density, mean velocity, mean energy (temperature).
The wave spectrum which determines the ffective collision frequency
evolves usually in a dynamic rather than quasi-static fashion with
the macroscopic (and microscopic) plasma parameters.I6 In a
generalized sense macroscopic anomalous transport equations are
obtained if it is possible to specify particle distributions and
wave spectrum by a few parameters that will include the fluid
variables and the fluctuation level. It is far from obvious, however,

that the kinetic equations can be reduced in this manner, particu-




larly for resonant micro-instabilities for which the evolution de-
pends on details of the distribution functions and the spectrum.
Hybrid codes which combine microscopic and macroscopic description
have been used successfully. The spectrum may be determined by follow-
. , 21, 22

ing the evolution of a number of sample wave modes and such
phenomena as ion reflection in shocks have been described by

particle simulation for the ions and fluid equations for the

18, 20
electrons.

Fluid equations which have the same formal structure as in the
classical case may be obtained by taking moments of the kinetic
equation. Closure of this set of equations, however,requires in-
formation about the distribution functions. Customarily Maxwellian
distributions are assumed. Other models like bi-Maxwellian
distributions have also been used to describe anisotropies and
heat conduction.13 The parameters of these model distributions
are then specified by an extended set of momentum equations.
However, even in classical theory where Coulomb collisions main-
tain distributions close to a Maxwellian, such models as the
thirteen moment approximation have only been modestly successful,
particularly in describing heat flux. Instead one uses self-
consistent distributions determined by the Chapman-Enskog method.23
The particle distributions will usually no longer be close to a
Maxwellian if turbulent scattering dominates. Thus the need for
a self-consistent determination of the distribution functions is
even more obvious. The methods evidently depend on the nature

of the turbulent spectra.



In the examples of anomalous transport we have mentioned above
a prominent role is played by ion sound turbulence and related
spectra which are characterized by small phase velocities
(m/kve) << | and short wavelengths (kve/Q) >> 1., In a companion
paper Zf henceforth referred to as ¥’we have shown how the electron
distribution function can be determined self-consistently for these

spectra. Dominance of elastic scattering in angle, much as for

electron-ion collisions,was the basis for a reduction of the kinetic |

equation to a system of equations for the isotropic distribution

-~

F(w) and the small anisotropic part f(w). The selfconsistent solution

for F(w) was discussed. We have shown that quasilinear flattening E
of F leads to a significant modification of the dispersion relation
and the momentum and energy transfer rates by the time turbulent
heating raises the electron temperature by a few percent. In this
paper we determine the anisotropic distribution ?(E) as a functional
of F and show that the transition to a non-Maxwellian F(w) changes
magnitude and structure of the gradient related transport effects

as well. The Onsager relations for the transport coefficients are

no longer satisfied and there are now transport terms directly
connected with the density gradient. For the same effective
collision frequency the numerical coefficient in the heat conduct-
ivity is reduced considerably for a flat topped distribution F which

has weaker tails than the Maxwellian. The magnetic field dependence

of the transport coefficients is also altered. We demonstrate
these features in Section II by evaluating the transport coefficients

for distribution functions of the form

PGy = n(cs/vo3)exp =@/ )% (1)



and nearly isotropic turbulence.25 This facilitates the comparison
with classical transport theory for which s = 2. If as usual turbulent
heating dominates a selfsimilar distribution, s = 5, is approached
rapidly I. An application of the resulting transport equations to
"collisional" damping of a test wave in an isotropic turbulent

spectrum has also been reported.

Turbulent spectra are hardly ever isotropic. The solution of
the kinetic equation in this case is much more difficult. As is
characteristic of an anisotropic medium, transport processes of
different tensorial character are coupled by the anisotropic spectrum.
The problem is simplified considerably if gradients and drifts are
either predominantly along the magnetic field (axial symmetry) or
across a sufficiently strong magnetic field, conditions which are
usually satisfied. Approximations for other cases will also be
discussed in Section III and Appendix C. The resulting transport
equations depend on a few characteristics of the turbulent spectrum
which could be found for example by following the evolution of a

few sample wave modes.

The solution for the anisotropic part of the distribution
function is also used in Section IV to determine important contri-
butions to the dielectric constant and to complete the kinetic
equation for the selfconsistent determination of F(w). Growth rates
are significantly increased by temperature and density gradients.
Their angle dependence is also rotated with respect to the drift
velocity. The important role of this modification of wave growth,
heat conduction and other experimental results as well as their
description by codes are discussed in Section V which also summarizes$

the conclusions from this work.




I1I. Transport Equations for Isotropic Turbulence

Just as in classical transport theory it is necessary to
determine the anisotropic part of the distribution function in order
to obtain the transport coefficients which connect the perturbing
forces and gradients with the various fluxes. The reduction of the
kinetic equation to a system of equations for the isotropic part

~

F(w) and the anisotropic part f(w) as well as the selfconsistent

solution for F(w) have been discussed in I. The equation for the

anisotropic part of the electron distribution has the form

1 af

T . - U: 1 9F _ 4 = ; of Or_ o’
w o + (a*w E-L) 5 5 CF=(w=x@) o + CO%fF- <C > (2)
B - /
where a = (e/m) [:E + (u/e) x E] - du/dt is the acceleration in

frame u (usually the electron rest frame Ee)’ w=v-u,  ==(eB/mc)

~

1 .
Uik = (Bui/axk + auk/axi)/Z - aik(a/ag).3/3 , C 1is the small

anisotropic collision operator acting on F and c° the dominant collision
operator acting on %(E). Both C° and the magnetic field term tend

to isotropize the distribution function against the perturbing

factors on the left hand side of (2). In classical transport theory

an equation of the same form is obtained?® In this case F is a local
Maxwellian, C° consists of the electron-electron and the lowest order

~

" . I : ’
electron-ion collision operator and C is due to the relative e-1

drift (u - u.)/v << 1,
- —=i’"e

aF
ow

(3)

=

y r.(w) *w
ei ~e1( .. 2

I
. = - i - u.). If 1
where 1(w) vel(w) (u El) If the wave spectrum has only
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first order anisotropies then Cei and Cew may be combined to an

isotropic Lorentz collision term

v (W) C (-

9
v(w)CLf == EE I f (4)

|=
=
y

5 SO | .
with collision frequency v(w) = v . + v and C F is also of the
el ew’ ew
form (3) describing friction between electrons and waves in the wave

rest frame u s cf. I.19. Combining e-i and e-w terms gives

r(w) = Eei(w) + Eew(w) z ~5 ey (3= u ) (5)

The solution of (2) is found by expansion of F(w) in spherical
harmonics
fw) =w* £4(w) + Wi, (w) + Wt £ (W) +.. (6)
3 3 /

where HB is the symmetric 1=3 tensor W, = ww w - w2 (g l) /5 etc.
s

3
. - e o] . . .
For an isotropic collision operator C~ spherical harmonics are elgen—

functions

CCw) = -5 - v, WE ) - Wev (E,w) - ... 2T

Wiy £ o IRTRI  &)

For the pitch angle scattering term (4) which describes e-i and

isotropic e-w collisions v = v(w) but for the e-e term ¢c®f=cC (F)f+
L 1 ee ee

Cee(f)Fl the vl are integrodifferential operators in w. Only the
L = 1,2 components are needed in the transport equations to determine

the mean velocity

2
o L Jd ":% £,60) )

u
—-e



the heat flux

= | d EEE-EE f (w) (9)
4 "% 3 =

and the viscous stress

§=£-P£=fdwlmw4

The other two moments n and p = nTe = nm<w 2/3>'_are determined from
!
F(w). It is also convenient to combine the eigenfunctions of the

magnetic field term in (2),

W ot EJ = wofl,o + E.(W-lfl,l + Wlfl,l) (1)
W:f = é-w f + W . f +W £ + W .f + W.f (12)
='=2 2 02,0 —17251 17251 =222 272,=2
where, choosing orthogonal unit vectors e, = B/B, e &y,

WO = E . E-o ’ W:] = E . (E] + 1E2)’ wo = E:-eogo s W+1 =
Wie (e * iey), Wi?_ = H:i(e, *iey) (e * ie,)/2 and i = v -1,
The components of £1 and £2 are defined analogously. The solution
of (2) becomes then .
£, . == (v -ijQ)"'I[—a+(a+r) Li'I.I:*-j=o+1 (13)
1 5 1 9x - = w dw—3 °’ —
= 11 _I _]_a_F . 3 =
f2’J = (3v2 ijQ) Uj i B d O,+1, # 2 . (14)

If e-e collisions are important as in the classical case‘(l3—14)
are only formal solutions of integrodifferential equations. In the
classical case these equations have been solved by direct numerical
integration, variational methods or an expansion in orthogonal
Laguerre polynomialsz? For distributions of the form (1) this

expansion can be generalized to




N
£, = 27y 1O/ (15)
e k =o0
N-1 (7/s)-1
F
£, = 12y R (©) (16)
ve k = o

where t = (w/vo)s, reducing the integrodifferential equations to

a linear algebraic system of order N. The electron mean velocity (8)

becomes u =u+ b v , thus b =0 if as usual the electron rest
- = =-oe —0

frame u = u, is choosen. The heat flux (9) involves all bk’ k>1,

except for a Maxwellian, s = 2. The viscous stress (10) is determined

by the coefficient ¢ . We may note that the truncation of the

o
expansion at N = 1 is equivalent to a solution of (2) by the

thirteen moment method in which the simplest w dependence,

L0 =1 LI =m+ | -t 1is used.

A larger number of polynomials)usually four to six is requireq
however,for reasonable accuracyfyfarticularly for transport

connected with the temperature gradient and for intermediate magnetic
fields 2 /v*~ 10 - 100. An expansion to order N implies that the

magnetic field dependence is approximated by a rational function

of order N in (Q/G)z.

Since (2) is linear in the perturbing factors, they may be treated
separately. (Note that there may be a complicated implicit dependence
through the wave spectrum). We evaluate the transport terms as

usual in the electron rest frame u = u, in which
Vg2

al = — (17)
= nm




and the rate of momentum transfer R is determined from the

condition Idﬂ_wzf = 0, cf. (8), for each perturbing factor. The

=1
relative drift u, - u leads, using (5), (8), (13) and (17) to

__mm _ -
R, == 0 -p ) Gwgu)s ; §=0, 21 (18)

B 2 I __BE 8. . — oF
where | pu,j - Tede% (v] 1j9) v(w) ow /j.d— % ( 1i8) Cw aw)'

. . A . 0o
The collision time T 1is normalized such that R = - nm(u - u )t
e —u — ~o0o’ e

is the rate of momentum transfer for a drifting isotropic
distribution F(lz - EI) and oy describes the effect of the distortion

of £ by the speed dependence of the collision frequency v = Ty ¥ Vo,

for elastic scatteringI

v(w) = TL %)]/2 s (-‘fl) % (19)

]
I
(V%]

where the form factor a_q is normalized to unity for Maxwellian

F(w). For the heat flow connected with the drift we obtain from (9)

2 2
mw W :
. = —_— = .y = . = - = + 1
qu,J f dw 5 3 fu,J nTe “y, j (ue uo)J b 0; + (20)
_ m 4 PP a _ - 1 oF
where Ku’j = GnTeTe I dv w (\)1 ijQ) [l pu’j v(w)re_j il well
The viscosity coefficients are obtained from (14) and (16)
I, ='f d = mwaf .==-nT 1t n. U, ; =0, +1+2 (21
J = 15 2,] ee j 3 °’ ok b '
wher 2n dw wl+ (3v, - i'Q) .
=4 15nT T - 2 E (w ow
To obtain the transport connected with the gradients we set
F(x,w, t) = F(%— (22)




_]2_

thus
T 2 T
Vp 1 3 - el 3 Ay _mw ., el 3 7
[V nmwaw-—F (1+mw3w)FV1nn+ 2+(] 2T)mwaw—I
.V 1n T +-—-n—3VF . x 1) (23)
Y. =% »
v, e

Using (23) in (13) we obtain in the same manner, cf, Appendix A)as for

the drift connected transport the transport relations

n,j = P s an (24)
Tezre

qn,j = = Kn,j an (25)

RT,J == Mg VJ L (26)

q = - nTeTe e o Vool (27)

T, m T,j 1 e

j =0, + 1. The last term in (23) leads to transport connected

~

with the nonlocal change in the shape F of the distribution function.
In the classical case we have only terms propcrtional to VTe' We see
from (23) that this is the case only for a local Maxwellian. There
remains ofcourse an implicit dependence of transport on Vn through

u (diamagnetic drift). We may go from rotating coordinates to the
tensor form e.g.

nT T
e e

r =~ " [KT,O Vu Te *kp, 1 Yy T ¥ Ky feg x VT | (a8

where KT’] = KT’l. T,A




= s 7
I I-lTeTe [”020 * n],J. l=Jl * nl,f\l=Jl/\ * n?,J- 22 * n2,A EZ,A-’ (29)

R SRRSO SN A

U+ ila = Uy Loy (o) *dey) +iey + iy g, | = UL,
Up * il = U (g * igp) (g + igy) = Uada,
A RS RIS 3 :

If as discussed in I,the turbulent fluctuation level is so low that
e-e collisions are able to maintain a Maxwellian F(w), the transport
relations may be found from classical theory by an appropriate

substitution for Z
eff

a w
] -3 ,2.1/2 1nA W e - 2.1/2 InA
— == (3 [ 3z + T < > w za_, 5 ——w_ =
Tess 3 T A nTe kve e 3w zeff A e

= Zeffvee (30)
(a_3 = 1 for a Maxwellian), which also measures the relative

importance of e-e collision in COE(E). Since the turbulence must also
be isotropic the conditions for such an adaption of the classical
transport equations are rather restrictive}however. Usually turbulence
dominates not only elastic scattering , but inelastic scattering

as well. The e-e term in (2) may be neglected for Zeff>>!. Using

the speed dependence w_3 of v=v, = v

| 2‘the integrals required in




the transport coefficients (18), (20) etc. may be performed. In order
to demonstrate the dependence of the transport coefficients on F(w)
we choose (1) with s = 2, 5. Typical results are shown in Fig. 1 for
the resistivity and in Fig. 2 for heat conduction. The quasilinear
distribution s = 5 has much weaker tails than s = 2 (Lorentz gas)
which reduces the dimensionless transport coefficients and also
shifts the magnetic field dependence to larger QTe. For the use in
transport codes the exact QTe dependence obtained by numerical
integration has been approximated by rational functions of the

form (d1 + dzx)/(d3 + ddﬂ+ dsxz),x = (QTe)2 generated by the N = |
(d2 = d5 = 0) and N = 2 Laguerre expansion, but determining now

the coefficients dj by a least square approximation in a given
interval of 9t. The transverse coefficients,which vanish for

QTe + 0, were divided by Qre and then approximated in this manner.

In agreement with our discussion of the Laguerre expansion (15-16)
and the thirteen moment method,reasonable accuracy requires
subdivision of the Qre range into several intervals. We see from (13)
that the longitudinal transport coefficients are obtained from the
perpendicular transport coefficients for QTE + 0. From (14) and

(21) it follows that n, = n](O), np, = n](ZQTe). We have already
pointed out from (23) that transport terms connected with Vn vanish
only for a Maxwellian F(w). The Onsager relation.zspT =6, also
requires F to be a Maxwellian. The symmetry relations Py = Py

u

K, B, determine the distribution (1), s = 5, as can be shown from

(13), cf, Appendix A.




For any F(w,x,t), the longitudinal transport coefficients
(or QTe + 0) are expressed by various form factors of F which we

normalize to unity for a Maxwellian. For Ot = 0 the transport
e

relations are

Va
nm 5
e - = Vn - -
R . (1-p ,O) L, =l oy o, TR py T il 5 (31)
TEZTE nT Te
. nTe Ku'o(ﬂe - Eo) L~ Kn’o Vn - KT}) VTe
2
nTe Te 1283_3 a5
+ - W ( 3—3 Vas - Va7) (32)
If o= & nTenoU . (33)

The dimensionless transport coefficients are given in Table I and the
form factors are listed in Appendix B. The transport coefficients for

(1) s = 2 correspond to a Lorentz gas Zeff -+ o,

For a weak magnetic field’QTe << 1 the perpendicular coefficients
have corrections of order (Qre)2 and the transverse coefficients are
proportional to QTe in lowest order. Expanding the exact coefficients
in Qte one obtains again expressions in the form factors (normalized
moments) of F. For the transverse thermal force and heat conduction we

have for example

DT,A = 9,844 (0.915) QTe; KT,A = 172.68 (2.98) Qte for (1), s = 2(5).

The transport coefficients for a strong magnetic fie1d30nmy be




obtained from an expansion in (I/QTE), but will be found in Section
III from a finite Larmor radius expansion which also holds for
anisotropic spectra.

For anisotropic turbulence the expansion of % in spherical
harmonics loses much of its usefulness since different harmonics
are now coupled by the collision term c®. It is then particularly
desirable to simplify the e—e collision term. Fortunately Coulomb
collisions will be important in elastic scattering only at very low
fluctuation levels where the distribution F is kept close to a
Maxwellian by inelastic e-e collisions, cf. I.30 and I.32.
Simplified e-e collision terms which have been devised for
classical and neoclassical transport should then be adequate for our

purposes. These terms are of the form

C f=v C. £ = wiw

oF
ee ee L J-EE -

- W:g

r,l 3E
W oW =

. (34)

ee w ow )

where the Lorentz collision operator (4) with the collision frequency

WW 2 . p
vee(w) = (Dee Dee)/w is the elastic part of Cee(F) f and the

restoring terms are derived from Cee(f) F by expansion of f in
spherical harmonics and Laguerre polynomials. Approximations of this

kind have been treated systematically be Hirshman and Sigmar.3]

In the simplest case take 32

Eee(w) = - vee(w) (u - Eee) ) (35)

where u is determined from momentum conservation
—ee




m | 3F - _
Ree © Idﬂ_i— [vee =4 +£ee§ﬁf-l =0 (36)

Energy conservation is satisfied automatically by (34). More
sophisticated approximations would be required for the terms
describing inelastic scattering. The inclusion of (34) in (2) presents
basic difficulty. The first term is ccmbined with the isotropic
e-i term to the collision operator (4) with the collision frequency

V + v . and the turbulent collision term CO on the r.h.s. of (2).
ee ei ew

The restoring terms represent speed dependent corrections to a and U

on the l.h.s. Note that in the expansion of CIF = (C;i + C;W)F

the 1 = 2 term is of second order in the small parameters (u/w),
(vi/w) and (w/kw), thus may be neglected, cf, Section III Jut for

anisotropic spectra the e-w term has higher (odd) 1 components.

~1 o
CF- (‘Eei+r).z

.C = wm—— kg (37)
—ew =

-
W
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I1I. Transport Equations for Anisotropic Spectra.

For the usual case, turbulent spectra with strong anisotropy,
the solution of the kinetic equation becomes more difficult. The
collision operator c® becomes now a diffusion operator in the polar
angle (8, ¢) with the diffusion coefficients dependent on these
variables. It is still possible to expand the distribution function
into spherical harmonics, but as is characteristic of an anisotropic

medium, the components £, in (6) are now coupled by c°. Expanding

 §

also the collision terms in (2) into spherical harmonics generates

an infinite system of coupled equations

Vp-R 1 3 -~
L B+ d +D) o 1 F=@x£)+¢ (D) , 69
S ~
- C) s m = @xE) + g, (D) , 39
—e L E oL@y, (O (40)

etc.,where the superscript s indicates symmetrization, e.g.

s e
L Bl e = v G By, By W By i)
and the components of the collision term are defined by
3 e ey LEE G 4
57 <y Cf> == plw) gt (8 (42)
w
15 e =g 244 (0 (43)
4 = = ow =2
2w 2
35 _ L3E
5 ¥y CF = Gy T35+ £3(0) (44)
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etc. The bracket indicates a spherical average for which one may use

the identity

WA@Y D> - <D ¢ o= A> )

<A(E) -a% 2) =

12
2 ow

- W

In general r, il,g\ are operators in w. For the quasilinear

collision term I.6 we find that the assumption & = (wka © u) /kw < 1

considerably simplifies these equations. Keeping only dominant terms

in @ we find for the L = 1 component of the collision term
3 4n292 ew
r W = -w—3J dk 23 W(k) (wE “kTudk=-yiw. ) (46)

The wave frequency has been Doppler shifted from the wave reference
frame to the drift frame u. The second relation in (46) defines the

wave rest frame u, and the collision frequency a tensor
v 3 w

ew W e e =2
vy () _”ET_E w, () (kve kk> (47)

where the average is over the spectrum of resonating waves (<l
and k = k/k. The contribution from f(w) to the L = | component of the

collision termis

N o . _ 2 ew , B
9, () = -yt £ mwop gy (48)
with
v 3 9 w . .
ew W e e
vy W =-mgee GO A kiy (49)
e e y,
where 53 is the 1 = 3 tensor constructed from k, cf£(6). For the
1l = 2 component we find that C, = 0(®2F), thus may be neglected,

=2
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b LE) = =~ I 26, — 3 we,,s £ (50)
=2 =2"=2 =24° =4 )
where

ew W Ve ’ 5 Y -~ 02 . " ol s
Yy Ep =T ar e & <—§_‘Z(EE frkfrk-2kkkk: L)
For L =3

v 3 w w, ~k-.u
ew _ W ey 1 105 "e k== _ 0 _ 35 .
E3 =7 ar v w2< T i 6‘025 Yyg WL

etc. We find that to lowest order in © all even L and all odd L
components glJrespectively)are coupled by the even L = 2, 4..components
of the spectrum and that source terms r, gL arise only for odd
components of the spectrum. Even source terms and coupling between

odd and even £1 are reduced by the small factor & << 1. If the spectrum
had only odd 1 anisotropies then to lowest order in & the transport
problem would be reduced to that of Section II for isotropic spectra.
More generally, symmetries of the spectrum will be reflected by

the transport relations.

For strong magnetic fields the equations (38-40) etc, become
effectively uncoupled for the perpendicular components of EL'
The natural small expansion parameters are (ve&H*) << | and

(I/QTe) << 1. We obtain the expansion f = F(w) + E(w,e) + %(w,6,¢)

T o) = P1s0 L Floo 22, . (52)
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where for convenience we have separated out the collisionless

solution %1’0 =w- f +W:f

o __1 Vploa
—f-l - ngx[V+ waw]F (53)
o 1 1 8F 1 -
L "geiw L At 3 U Al (54)

without implying any relative ordering between (rL/L) and (1/QTE).

The other terms satisfy

158 o 0,l
220 (B w 1 OF  qip B2 1OF | gop
# 9d nm W ow 5 E e nm gl w ow ¥ U (33}
22 g 1 3F . oyl i (56)
g B . 12F qopl %oy
ad nm —| w 9w

etc. The solution is thus reduced to repeated integrations in ¢.
The collisionless solution ¥lojg generated by gradients and shear,
the collisional solution f!°C arises from drifts and the anisotropy

of the spectrum which also couples longitudinal and perpendicular

J

n,
perturbations. If fl’o

is used in (56) the collision terms in
(55-56) are additive,thus transport related to e-e and e-i collisions

assumes the large Qt, limit of the transport equations in Section II.

In this limit the problem of perpendicular transport is reduced
to the evaluation of collision integrals for the anisotropic turbulent
collision term. By taking moments of the unexpanded equation (I.40)

or the expanded equations for % we find, using (17), that

_ 1 o
BL-JdEE_L(CF+Cf) (57)
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evaluated to order n in (1/9Q) is equivalent to requiring <w,> = O to
order n+l. Similarly we obtain
o T
1,0 1 %4 5 e _-
3,78 e xglg 7w B 38)
- -2py. + 2} &Ij =+ 1, +2 (59)
=730 % 730 5 ¢ J =S I

where the first terms represent the collisionless heat flux and
1,0
viscosity arising from f .

l,0

4 T &

"
[NCI-e]

mw2 wz r Yp 1 8 -
v |
fd-T T LYt e T )

- _|

B

<

e l-.-— _—-' __5_
b's nT L_Kn Vln n K ﬁyln Te > V a

e e
-0 Q e , A T; g 2
where the transport coefficients are expressed by the

normalized form factors of F, cf. Table II. The collision integrals

are defined by

cq mw2

i Idﬂ-—i— wC £ (61)
o1

T = Idﬂ mﬂ C f . (62)

In I we have expressed the collision integrals R and Q(heat
transfer) in terms of the spectrum and the conductivity tensor.

Similarly, for electrostatic fluctuations

)
= _ 8m ) . . =
= = Jd}i Lt (xR gk +R g kk | . (63)

We must point oug,howeverjthat these relations become useful only



when the distribution function is known,which determines the
conductivity tensor k (k, mk).

To lowest order in (1/Q) we use F(w) in the collision integrals
and obtain transport related to anisotropy of the spectrum in the

electron drift frame u. From (57), (42) and (46)

) » ew,®

Row = Mgy = mmy (2t ny) (o6
7
where for the w_3 dependence
* . 1 3F _ 2-3 2.1/2
¥ =_deTBI(W);W'—T( ) gl(ve) (65)
etc. and using (47)
‘;Tw’* - an'/? 83 e nge <‘:<3e izk} - (66

Relations (64) and (66) are also derived from momentum conservation
and the dielectric constant as shown in I.

The corresponding heat flux is from (58), (61)

2 2
l,e  _ 1 m- 5 A 1 9F
a4 a %o * Q fdﬂ-( 2 2 Te) 3 x(w) W 3w (67)
K
_ u, A %
= nTe Q (e x17) )

Transport connected with the gradients is obtained by using the
i e . 1,0 . - 3
collisionless solution f ’ in the collision integrals.
Va

-1
Vi T, + = ) ’ (68)

= *- l_ vl —-
R nT, ¥y " e Xg o, AV M T Ppp
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™ S5 PRy "5 P Lbay TR R T Ry g YIRSy

1 B) -
o, ey Ay ,

The viscous stress to this order is

2,0 ) JX Mk
3 e & 72,5k ka2

Uk jsk=_'!'__|+2 (70)

where the components of the tensors are defined as in Section II for

rotating coordinates
L

k- 1 “
l v = — . .

Uu. =10 : i i . .
= 2,] 2,‘]1{_ 2 =2,_‘]

1
] 2
To this order the contribution from the e-i and e-e collision terms
may be added. The e—i contribution has the same form as the e-w

contribution, but the collision frequency becomes a scalar. We may

; : o e ew
combine e-1 and e~w terms, defining v, = v L™ v . I, v, =V +y ;
=] =1 el =’ =2 =2 el
I : ;
where =4 is the unit tensor of rank four etc, and also
set r = r +r . ==y J(u-u ) defining u_cf. (5). In the next order
- —ew —el =1"— —0 -0

of (1/92) classical and turbulent collision terms are coupled. Such
terms, which represent corrections to the transport terms already
given, are usually not considered. From (55) we obtain the
collisional solution connected with the anisotropy of the spectrum

in frame u. The L = | component is

1 &F

£ xg [2%- o Js 0 =y 1+ EE 7

ém
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where ED(W) is the shift of the particle gyration center with
respect to u, F + %l’c ¥ F(lw - ng), which results from the
speed dependent friction force. Using (57), (42), (48) the contribution

of (71) to momentum transfer is obtained

1,c 5 *_ Pu,A
R =-mmy - (go Xr ) 5 . (72)
Similarly, using (58) and (71) we obtain the heat flux
2,c ¥* ¥* Eu 1
g7 =T 8, XYy XY — 5 72
‘Q 4
The coefficients in (72-73)
- NP Vi 1 oF
o 1 - Lt %)
v v
1 1
= o bl EE (EEE | ) il a - Xi_) 1l 3F (75)
u, L ; = 3 2T 2 v % v %W ow

exist only for distributions F which are sufficiently flat in the

low w region if the w~3 dependence of v, is used. Divergence

1
signifies a breakdown of the expansion in (vl/Q) and thus an
asymptotic dependence different from (1/Q2). In addition of course
the w_3 dependence also breaks down at speeds below the phase
velocity range. Table II expresses the transport coefficient in
terms of the form factors of F and gives numerical values for (1),
s =2,5. The transport coefficients not listed also vanish as

QTe + o but again the expansion (55-56) holds only for a restricted

class of F(w).
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The L = 2 component of ¥ o€ is 0(&2) and the L = 3 contribution to

l;e

L qz’C can usually also be neglected since it follows from (40)

léc is orthogonal to v  except for the contribution
13
which gives an 0(v13/Q) correction to U Only in second

and (51) that £

(o]

from 93

order of le/Q one obtains a correction to r(w). Note that usually
u>>u 3 (w/k). A similar conclusion holds for the higher L con-

; : ¢¥l,c . .o
tributions to . As seen from (55) there remains an additional
term which arises from the coupling to the longitudinal perturbation

by the anisotropy and which could be determined without difficulty

once f(w,u) has been found.

As a special case the strong magnetic field limit of the trans-
port coefficients for isotropic spectra in Section II is contained
in the transport relations given above. The transverse coefficients

have the dependence
R Ny
T,f\ QT e T, N (76)

and the perpendiculat coefficients are

)< K, (77)

etc.

Truncating the expansion of f(w) into spherical harmonics after
1 = 2 and using the now uncoupled equations (38-39) with (48) and
(50) would generalize the transport equations to a system which
becomes correct in the strong magnetic field limit and retains some

effects of anisotropy for arbitrary magnetic fields. Such a system
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may be adequate for shock waves where QTE may go from large to small
values but most of the turbulent plasma lies in the large {te

limit and the perturbations are essentially perpendicular to the
magnetic field. A more accurate treatment would require an ad hoc
truncation at higher Lk or a direct solution of the partial differ-

. . A
ential equation for f(w).

We now solve directly the kinetic equation (I.40) for the lon-
gitudinal perturbation £. Coupling to the perpendicular perturbations
¥ is due to the anisotropic turbulent collision operator. This
term is of order (vew/Q), thus may be neglected in the strong mag-
netic field limit. The same situation arises in the absence of a
magnetic field for perturbations with axial symmetry. Taking this
axis or the direction of the strong magnetic field as polar axis

of a spherical coordinate system (w, cos ©® = y, @) we obtain

from (2)
vV p-R 1—3u2
'} " 1 3 oF 3 Tuw 1 2JF
uw[:vu * nm W oW B 2 Uow dw op D w oW
_ 3 Duu 3f
50 2 an (78)
W
where the bar indicates a @ average.
For weak anisotropies we can use the expansion
—uw 1 - w2 2
= X — -
D 5 wr, > p(1=u™) C2,o + ... (79)
—uu 2,=68 w2 2
D (=)D wulide= L=ty #.a0 (80)
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Coulomb collisions may be included in this manner if the model

collision term (34) is used for e-e collisions and 02 O+O for e-1

collisions, cf. (3) . The effective collision frequency for pitch

angle scattering in this case is given by

_ 2589
v(w,u) = = = vew(w,u) + vei(w) - vee(w) i (81)

w

For an anisotropic spectrum, Coulomb collisions may be important
in certain regions‘even at modest fluctuation levels. An inte-—

gration of (78) gives

= S HW
_@_f_ R Yy BP~Ry 2D’ i l 3
oy v (w,u) [ V“ B nm % W(I_UZ) JWUO) W QwilF . (82)

The longitudinal transport terms are obtained by w integration of

the 1 = 1,2 components of f as outlined in Section II. We have

-3 La-2Ey. Yup-R lal
£1,0 = 2 L0~ T P (W)[v\\+ JE{EE—-JL+ Iy’ w}a_\ E 83

S5 aahEy o L 1 3F
f2,0 - <“(l K )m1> 3 TZ(W) U0 W oW / (84)
2w
where
g
T, (W) ='2—(_,—']:— > (85)
v (W, 1) 4

2 2

TQ(W) =_l__g_ (-—“---———*E G )> ’ (86)
v(wsu)
iy

T, <rg =%('_3_ > (87)
V(WsU) *

Coupling between odd and even )} components is negligible for

o= (mE keu)/kw << 1, as discussed above. This is seen directly

by evaluating the components of the quesilinear diffusion tensor.
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Introducing also polar coordinates (k,n = cos a,Y) for the wavevector

we obtain on integrating over the resonance in ¢-Y

= gne
b8 -
ew

2

a0 . e =T dkk ,zi'ﬁd }?d W(k ql)lﬂﬂ
2m -(1'="‘E, o lIJ n M 2Ty J o] B
0 1 m kw

O N
=

where J =\'.(n—n!) (nz_n)]IIZ n 2""3111 [(I"QZ)U_UZ)J]/Z

n
£

k = k.w/kw
g A

-sin 6 k_ = n-dp

=)
n

We have already made use of the assumption ®<< | in writing down

(78), thus to lowest significant order in & we use

J = (l—u2 - r12)”2 , N /2, 1; &N (89)

¥

2.1
$(1—
1,2 _E(1-u")

It follows that Ge$w,u), 52: are approximately even in u, thus U0

may be neglected in (83) and 52: in (84). We also note the wa3

dependence of v and D"V /w .
ew ew

If Coulomb collisions can be neglected (87) becomes jusing (88-89),

—uw
3w _ D s | S _
<r"> = E—- < -]')W (] u )> ?I = T] (U.“I <-l.1“I > ) ( (90)

which should be compared with (46). We see that (83-84) have the

same form as the longitudinal components of (13-14) except that we

now have two collision times. If we use the same normalization

(88)

/




- 20 -

/2
T

L) = @/m

(3_3/3)T;t2 (Ve/w)3 the longitudinal transport co-
efficients are the same as in the isotropic case. This is no longer
true if e-e collisions are included since the speed dependence of
11,2 depends than also on the degree of anisotropy of the turbulent
collision frequency, cf. (81). For the model e-e term (34-35) it
follows that <r,> retains the form (90) but with speed dependent
<uyg> and similarly U0 in (84) has a speed dependent correction

ee i3z ,
term 02 5 Transport coefficients may be determined as before but
2

the w integration becomes more difficult.

The collision times depend on the longitudinal component of
the fluctuating electric field (kn=nk) as expected. They must
satisfy verlleL << 1for collisional theory to apply in the longi-
tudinal direction. This amounts to requiring that f << F at least

for velocity space regions that make the dominant contribution to

transport.

IV. Effect of Anisotropy on Wave Growth and Heating

-~

We may use the solution for the anisotropic distribution f(w)
found in Sec. II and III to obtain corrections to the dielectric
constant and to complete the kinetic equation for F(w). Expanding

f(w) into spherical harmonics as in Sec. III we obtain from

(I. 62)
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2 2 w
Im e (kow) = =~ & [ gu & (wkeukew) k + =
et 2 s SR EE E Y o
m k =
(1)
3 2 1 1 1 1 =~
8n7e w w w 2 w
“m—ty, Jo=F () ) & -k *
m k
UJ' 3 - o - -~ - 3W2 o) -
GO £y ~ Tk + 30w £yiky - S-(1o507) £yikghenn ])
where w' = w-k.u & = w'/kw. The real part of the dielectric constant

is dominated by the isotropic distribution F(w). Generally the

anisotropy f, of f produces an 1 anisotropy of the k dependence

L

of Ee(h,m).The effect of even fL on Im €a and that of odd fL on
Re.ee is reduced,however}by the small factor . We see from (91)

that to lowest order in & the effect of the l=1 distortion on wave

growth is equivalent to an effective drift velocity

1 _ 1 3F
Bop e £ /rdu 2w 3] s

in the relation (I. 76)

w w-k.u
_ e 2 ml/2, ='—eff
Im ee(kw) = (k v) (2) -3 ke (93)
e e .
Using (93) and momentum conservation (I. 67) one obtains
ew¥
By = = o 7 () (o)

which should be compared with (64) and (66).
The same relation between effective drift and Be is obtained

from the collision integral (57) using (42), (48) and the w-3
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dependence of y . The effective drift velocity for wave growth

e
is thus obtained immediately from the transport relations for the
rate of momentum transfer. Since e-i collisions have the same speed

=3 _ .
dependence w and e-e collisions don't contribute to Eﬁ the re-

lation remains valid if Coulomb collisions are included in the

*

transport relations (Eéw+y u —+ u ). The effective drift velocity

1> =w =0
differs from the mean velocity u since low speed particles make a
larger contribution to resistivity and wave growth. We see from

(94) and (18) that the distortion E(E) reduces the effective drift
along the magnetic field to (l—pu Ju

»0° B

pendicular to B is rotated by the angle

and the effective drift per-

tan B8 = %ggii} (95)
u,l
from the direction of u i.e. opposite the sense of electron
gyration if pu’h? 0. Additional effective drifts due to density and
temperature gradients may be determined from (94), (24) and (26).
In the limit QTe >> 1 and anisotropic spectra the effective drift

can be read off from the relations given above for

R = E? " Bl,c " El,o '
- 2
p v Va
_ u, A ¥ e = T -1
By eff = B.L+ 5 g. &1 ==g=g x(pn,hVInn pT,ﬁ\'fln T e (96)

=3

. . . ~1 ;
The second term arises from the distortion f ' C due to the drift u

and the speed dependence of v, . The effect of gradients is obtained

.. . ~1,0 -
from the collisionless solution f ' . Transport coefficients and

thus Yore depend strongly on F(w). For collisionless Maxwellian
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electrons the effective drift due to VTe has been obtained pre-

; . . : 1
viously 33. The rotation of Yoef with respect to u was obtained ;

from perturbed orbit theory for the dielectric constant of a turbu-
lent plasma in a magnetic fie1d34. If’however,as discussed in I

the correlation between wave and particles is limited by linear and
turbulence effects to a straight line section of the orbit, Tcorr<<1’
than the turbulent or collisional shift of the gyration centers (71)

enters Im €q only through the distortion fl’C of the distribution

function in the linear, unmagnetized dielectric constant (91).

For anisotropic spectra we have L = 3,5 .... components
fL which also contribute to (91). For the longitudinal distortion
f(w,u) we obtain these contributions directly by integrating Im €e
by parts in w and over the resonance in ¢-Y¥ as for the diffusion

coefficients (88). The result is

32 T 1 u ~ =
_ 8r7e w w _ 1 2 1 n-dy 3% (97)
Ime (k) = =—— ¢+ & G ) Z.?g s Jlip—s
mk uy 1-&

1/2 5 foa2 2, -
f by = 0+ [(F6D) =) 71 /2
2Oz _

where J = [(u-u,) (“2‘“)1
Again, we need to consider only dominant terms in & = w'/kw.
For an L=1 distortion (8f/%u) = wfl o edu: (97) reduces then to

H]
(93) with the effective drift given by the longitudinal component of
(92). In general however the E dependence of Im € (& ,w) differs

k
from the cos a=n= EE law. Using (82) and (97) the angle dependent

effective drift velocity becomes
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() =uy - =— 7 d O LA D i T
Ui, eff = Y% T Flo) o WWTl(W ") {1 nm r“ w,n)] w oW '
where \/]_nZ
t (n) =1 S ! ! (99)
Y,-,2 (l-u?‘—nz)l/2 v (w,u)
W

1 n? I 20" o
T, (w,n)r (w,n) ==/ du —~ = - fu -u_(n)](100)
: 4 " o (1"1J12-1r12)”2 w(l-uz)\)(w,u) v

- ]—n

which should be compared to (85) and (90).

If e-e collisions are neglected TI(W,W) has a w3 dependence and

u&(n) is independent of w. Performing the w integration gives then

R
* [\ o
Seeff T T () g * 4y () g
2
/
£
where R“ is given by (31), Te > Ty

This relation generalizes (94) for the longitudinal component
to anisotropic spectra. Unlike (94) relation (101) no longer holds
in this simple form if e-e collisions are included because the u
averages required for Re and Im e, are different and this leads to a

different speed dependence in the case of anisotropic spectra.

We now use the solution for the anisotropic distribution f(w)

to complete the kinetic equation (I. 35) for the isotropic distribut-

~n

ion F(w). We begin by considering the collision term <Cf> = <C>F + <Cf>.
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The first term takes the form

1 3 2 ¢ W Ww_ 0
= =W |:<A > + <D "> a—‘;] F(w) (102)

w }

<C>F =

where the drag force <A(w)> is due mainly to e-e collisions and
the e-1i and e-w diffusion terms must be transformed to the
u frame as discussed in I. Doppler shifting the frequency from the

wave rest frame u_to u gives, cf. (I. 22)
W, WW_ W ew
> = — - . p —
<D <D 2" *+3 (u Ew) v (u-u ) (103)

where u, is defined by (46). In the anisotropic collision term

< B =

1 2
ew 2
w

%‘;w D - 2 (104)

-~

we expand f(w) into spherical harmonics, using (42-45)

W 3% w 2wd
AL T L RN Ry .. :
D= =FEE TS & iyt ! (105)
again retaining only dominant terms in & << l. We find from (55)

that E ksl does not contribute to (105) except for the term arising
from coupling to the longitudinal perturbation %. To lowest order
in (1/9 we may thus insert the collision-less solution %1’0 in
(105) for the perpendicular part. In the longitudinal part, how-

ever, we must retain all higher 1 terms and thus use the unexpanded

form of (82) and (105).
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= T, <>
—wy 1 9f = _ _ 1 U ey 9
<Dew W ou < 3 tw V“ * [aﬂ +(reiﬂ-ee)l] oW b F
=uw, 2
= % 20y or (106)

= 2: 2 ow
v (1-uT)w ;

The heating rate is

. ww_~ OF ww 9f o - \
Qew = - Jdum {<D.> o ¥ Pew Y >] Gt ¥ Bt © ‘(107)

Using thew_3 speed dependence of (103) and (64-66) we obtain the

contribution (107)

e S ;ge w RGO TRE
from F(w). We compare (105) with
2
&= d—%[£$%+il'£1+w2 Y3 ¢ £ ] (1632
and get
Q:; ==du—m) » QE‘B?)eW (110)

from the perturbation % perpendicular to B. The same relations
are obtained from (93) and the conservation laws for momentum

and energy (I. 67-68). From (106) we get by direct integrationm,
noting a = (Vv p~R)/nm and the speed dependence of the various

termsf
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il

—wul of Dy
Qew='/dﬂw<2w§§—ﬂ>= Tlq“l\)ew_3nm<‘ > (rin

if e-e collisions are neglected in f.

We can use the general relation between energy transfer in any two

frames u and u
- —0

).R (112)

. A is f th i
and find that for u = u_the term Q gongists Of the ILYEL Leim
-0 — ew

in (108) and a term due to the longitudinal perturbation f

Asil M

0
Qy = Qu + () RE) (113)

which as follows from (111) and (79-80) vanishes for isotropic

spectra.

It is evident from our earlier considerations, cf. also I, that
e-i collisions can be included as a special case of fluctuations
|
which are isotropic in the ion rest frame u;. For isotropic 1
fluctuations we need to retain only the first term in (105). The 1

A~ A

e-e collision term <Cee(f)f>cannot be approximated in this form,
however, since (105) was obtained by neglecting diffusion in w

which is appropriate only for e-i and e-w collisions. The heating

term due to e-i collisions is

m -

O
]
=

el



- 38 -

which for a Maxwellian F assumes its usual
portional to Te is due to the polarization
servation gives Qee = 0 but indirectly all

through the perturbed distribution f = f +

The kinetic equation (I. 35) for F(w)

2
w 1 9 2
B v g 4 A

28

form®,” The term pro-—

.+ B -
force 591 nergy con

scattering effects enter

f.

takes the form

N 2w
b ;1

3 2

U:f,] =<ce> (115)

Inserting the solutions for £] and £2 on the left hand side one obtains

diffusion terms in (x, w) which may be combined with the collision

term <Cf>. We split the diffusion tensors into symmetric and anti-

symmetric parts and use the identities

aDik
LR
*i *x * % i X
and VB + 2e x VB
E; & TG
v. (ﬁ- Ay == T (VxA) + . A (117)

B C

for the magnetic field terms, g, = B/B.

Using the strong magnetic field limit of (38-39) for the perpen-

dicular perturbation and (83-84) for the longitudinal part we obtain

after some algebra finally
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oF g s 2 VxB+2e xVB oF
swrtlerap i raxlary Gl =5 )
3 TBQ X
= Lo w oF
_V. —_— - — —_—— =
{E+<£|>T1 +Qx& g1'(52 x_x;)]} 3 ow Cee(F)F+
3 9 3 9
G <0Gl ¥
- /
where
(118)
wa__ww ow_ 1, 2 %o 1o
D me DN iy Jex ~ S T S (—§Xa)+3[§—x(a-£)-\=’i.
e —Uw 2 T
o 1 2 (.D'\2 2 .9 . 8 |
QX(E‘*r)]*aanTl Lﬁuu >+ T _2UO+EE(EI,I\+§22,I\)
1 4 I
G N T LN T GAtTLAN Y =o]
XX W2 X . W W
Rt = — \ = -
H 3T 3 DWW =3a,T
X X W2
gl-gga—a' e = ;;2 (e xe.,) Yy (e x gk)

The difference in the signs of the collisional terms on the left
hand side of (118) is not a misprint but comes from evaluating
(8/%w)*w vr/3, using the w_3 speed dependence. In the anisotropic

distribution we have not included e-e collisions which have a
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itted ~ =
have thus also om1t<Cee(f) f> on the right

different w dependence and
hand side. For turbulent fluctuations scattering in w is relatively
slow compared to scattering in angle, thus Cee(F) F has been in-
cluded. The noncollisional terms in the first square bracket of (118)
will be recognized as the guiding center drift averaged over a
distribution which is isotropic in frame u. For isotropic turbulence

one could of course retain the full magnetic field dependence f(w)

which gives

X W w Ul w 92 Eg
S 3 v|2 . Q2 3 Viz . Q2 Q
w

X . it i
In PE a and r are interchanged and the other terms are modified in

!

-

a similar manner. In f we have also terms which arise from coupling

of longitudinal and perpendicular perturbations by the anisotropy of
the spectrum. They have been omitted for simplicity, although there
is no basic difficulty in adding these terms. Usually, however,
either perturbations along B or across B dominate. The methods of
solving (118) have been discussed in I. For currents‘glﬁcross the
magnetic field the dominant diffusion term has a w_3 dependence and
thus leads to a selfsimilar distribution (1), s = 5. The increase

in <D""> by a longitudinal drift Up s however, is essentially canceled
by the term <(f)uw)2/_Duu). For isotropic spectra this cancellation

is complete. In addition, a current along B leads to the runaway term

a_Tt, Vv w3 discussed in I.



V. Applications and Conclusions

The relaxation of the energy distribution F(w) from a Maxwellian by
quasilinear flattening and the resulting modification of the dis-
persion relation, energy and momentum transfer rates has been

studied in a stochastic acceleration model17 and in 2D simulation of
ion sound turbulence excited by a current across the magnetic fieldlﬁ.
They are found to be in excellent quantitative agreement with the
theory presented in I. Although the magnetic field keeps the electron
distribution essentially isotropic a small shift XD(W) of the gyration
centers with respect to the drift u was also observed. According to
(71) this shift is due to the speed dependence of turbulent and colli-
sional scattering. The small anisotropy of the distribution

f(w) = F(|E = ED(w)i ) leads to a rotation with respect to u

of the effective drift velocity (96) for wave growth and momentum
transfer. The symmetry axis of the spectrum and the electric field
(e/m) E == (R e/nm) = gf (Eeff = Ew) are observed to be rotated opposite
the sense of electron gyration in excellent quantitative agreement17
with the 2D version of (96), cf. Appendices B, C. This rotation of

the spectrum, typically 20° and independent of wavenumber is also

observed in perpendicular shocks . We see from (96) that in this

case gradients in temperature and density lead to an additional term

in u which is in the same direction as the drift
—eff
cExB 2 e
- = -_— + 1
E.L Bz Ve 3§ x (Vinn v nTe)

and comparable to it. In fact, for the plasma parameters measured in
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the current sheath of the Garching Belt Pinch14 it follows that only
this latter terms make ion sound instability over prolonged times
possible. The effective drift is connected with a distortion of the
distribution functions at low speeds. It follows from the discussion
in I that for the diffusion coefficient D"'n w_3 the transport co-
efficients determining momentum transfer and effective drift should
assume their values for the flat topped distribution (1), s =5

well before there is substantial heating. The effective drift
velocity (101) for wave growth due to drifts and gradients along

the magnetic field or axis of symmetry depends on the angle of wave
propagation if the spectrum responsible for diffusion is anisotropic.
Simulation of current driven ion turbulence for B = 0 indeed

shows peaking of the spectrum off axis due to the stronger quasi-
linear effects in current directionlS. There is also a substantial
reduction of the effective drift, resistivity and heating by the
runaway distortion while the bulk of the distribution remains

fairly isotropic. These observations are in agreement with the theory
although no detailed quantitative comparison has been carried out

as in the case of a current across the magnetic field. Previous re-
sults on growth of waves (m/kve)<<l, (kve/Q)>>1 due to temperature

8y 43 can be read off immediately as special cases from

gradients
the classical transport relation for momentum transfer. Excitation
of turbulence, however, leads to a substantial modification of
this relation.

3 __-o -
E"Os E'“EZ)

that magnetic field penetration, Joule heating (Be.g} and heat

For the shock geometry (%§-= we see from (64-69)
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flux (qx) all depend on the same effective collision frequency
(v;y)‘even for spectra which are strongly anisotropiglin agreement
with experimental findings in the Garching Belt Pincha’ IA, cf.
Appendix C. The transport coefficients for perpendicular heat flow
due to the drifts, temperature and density gradient; depend again

on lower order moments of the energy distribution,thus should rapidly
assume their asymptotic values by quasilinear flattening of F(w).

In a linear theta pinch axial heat flow is also important. The effective
collision time (85) for this process depends on the electric field
fluctuations along the magnetic field. Even if the spectrum is
excited primarily by radial gradients, axial components still can be
significant for ion sound waves, cf. Fig.4 of Ref. 15, but are
negligible for the other modes discussed in connection with
resistive shocks]3. Direct excitation of ion sound turbulence by

the axial heat flow has also been observed35. We note furthermore
that quasilinear flattening leads to a very substantial reduction

of the heat conductivity coefficients, Table I, and (inward)

heat flux due to density gradients. These considerations give strong
evidence for the dominance of ion sound turbulence during the
implosion phase of the Garching theta pinché, as mentioned in Sect.I.
For laser plasmas we conclude on comparing longitudinal and perpen-—
dicular transport that spontaneous generation of magnetic fields36
should drastically modify not only transportl] but wave growth

(Eeff) as well.

In high density, low temperature (stable) plasma regions, as

" . 0 ;
in front of the magnetic piston of a theta plnch2 ’ 37, classical
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transport may be important. The magnetic field strength O Toff

may also vary considerably throughout the plasma. We conclude from
Sects. II and III that it is not possible to simply add classical
and anomalous transport since transport coefficients depend on

the relative importance of electron-electron collisions and have

a magnetic field dependence determined by the total (turbulent and

Coulomb) effective collision time T for elastic scattering. As

eff
mentioned in Section III the complete magnetic field dependence

may be determined from a truncated expansion in spherical

harmonics if transport is predominantly across the magnetic field

and anisotropic turbulence occurs mainly in the regions of strong
magnetic field. An earlier hybrid c:ode]8 has been modified by
switching on anomalous transport relations with their proper magnetic
field dependence which correspond to the flat topped distribution (1),
s = 5, if an instability criterion based upon U fpr €QU. (96) is
satisfied. Classical transport is used elsewhere. The result is a

substantially better agreement between bhybrid code and pinch ex-

L, 14

periments, especially for the temperature profiles.

The major part of this work is restricted to a theory of the
interaction of electrons with a given wave spectrum of which
only a few integral characteristics like the effective collision
frequencies are needed. These can be determined directly from the
measured spectra as in the comparison between theory and simulation
or experiments or they must be found from a wave kinetic equation
which includes wave convection and generation. We have studied

the excitation by the electron resonance and quenching by a (model)
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high energy ion tail L which as shown by simulation and experiments
determine the evolution of ion sound in shocks and turbulent heating
experiments. Electron relaxation and initial wave growth are very
fast compared to ion tail build-up and the macroscopic time scales
in a high density pinch. This may justify a local switch on-off
condition U <uce<u, in anomalous transport codes, where U, is de-

termined by the initial (Maxwellian) ion distribution and u, by

the high energy ion tail at later times and u by the flattened

eff
electron distribution. In pinches the condition U e Uy is indeed
- . 14, 19, 38 .. .
well satisfied at later times . From heat flux limitation

; ... o9 o
in the solar wind  and laser plasmaslo one may deduce a similar

o . ; ; 15-17 ; ;
condition39Simulation experiments 3 show that ion sound is ex—

cited in a fairly wide cone (25500) about u, and reaches levels

fi

of typically (W/nTe)a:lO_z. Using effective collision frequencies

corresponding to such spectra gives optimal agreement between code

! O. Clearly, codes which follow the evolution

21, 22

and experiments
of the spectrum from the thermal level are more desirable but
as we have seen the use of self-consistent particle distributions
is at least as important. We have presented an analytic theory

for the electrons which can be used in hybrid codes. Such codes

4, 18, 20,40 have been used most successfully for such complicated
phenomena as ion reflection in shocks. The ion distribution in
present day hybrid codes however does not account for tail format-

40
8, 20 and energy transferred from the

. i 1
ion since momentum
electrons by the waves are distributed equally among the ions and

not primarily to high energy particles as required.
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In summary, the theory of the interaction between electrons
and ion sound and related spectra (w/kve)<< 1, (kve/Q e)>>1
presented in I has been extended to a complete transport theory
which includes classical transport but differs from it in a number
of important aspects. The electron fluid equations have the same
formal structure as in the classical case. The transport relations,
e.g. for momentum transfer and heat flux, which close this set of
equations,however)are drastically altered in turbulent plasmas. The
transport relations are obtained from a selfconsistent solution for
the distribution function which is necessary due to the usually
rapid transition to a non-Maxwellian distribution in plasmas that
are no longer dominated by like particle collisions. The energy
distribution F(w) is found from a kinetic equation which in
addition to turbulent heating contains nonlocal speed dependent
convection and diffusion terms. Our approach resembles quasi-linear

theory rather than the Chapman-Enskog method23’ 28 in that the

anisotropic part ;(w) of the distribution is determined as a
functional of F(w) linear in the perturbing forces and the kinetic
equation for F has been completed (Sec. IV) by inserting the so-
lution for ;(E)ﬁ For weak and strong magnetic fields the transport
coefficients are expressed by form factors (moments) of F(w) which
are normalized to unity for a Maxwellian. For anisotropic turbulent
spectra the collision frequency is replaced by tensors which are
obtained from spectral averages. The electron contribution Se(E’m)
to the dielectric constant also differs substantially from the

conventional expression for drifting Maxwellians. The effective

drift velocity for wave growth is obtained in a remarkably simple
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way from the transport relation for momentum transfer. We have dis-
cussed a number of applications to mnomalous transport problems and

their description by codes.

Some of the methods developed in this work should also be
applicable to other turbulent spectra. We may conclude that the
analysis of anomalous transport can and must go beyond an identi-
fication of relevant instabilities and perhaps some elementary
transport model. Particularly important is a consideration of
the speed and angle dependence of turbulent scattering and the

self-consistent determination of particle distributions.
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Appendix A Symmetry Relations for the Transport Coefficients

The Onsager relation Pr = Ky between the thermal force and the drift
related heat flux follows from general principles of irreversible
thermodynamics. On this basis one would expect this relation to

hold only near thermal equilibrium. We can show this more directly
from the kinetic equation. The heat conductivity (20) may be
written as

m w2 mw2 -1 Te 1 oF
K, == J dv 3 (ET; - A) (v -ijD) (1-p .—vTe)~— —— (A1)

u,] nTeTe u,] mw ow,

where A is an arbitrary constant, expressing the condition <w>= O
in the electron rest frame. Using (23) in (13) and (26) one obtains

from the collision integral

2
m \% .. -1¢ 3
= X (B~ -ij @ = -
pT,j TR J dw 3 (B vre) (v] ij Q) >
e e
mw2 Te 1 o
-_—) — — — A 2
(+op s =737 ) 3 wa]F (4 2)
e ]
. ; 3
where B is also an arbitrary constant. We choose A = 1+QT ; + 5
b |
B=1-p . and see that p, = k_follows for the Maxwellian
T U,] T u
- m% -% %§-= F. If e-e collisions are included one must make use

of the self adjointness of the collision operator to prove symmetry.
The thermal force, actually, is not determined by (A2), an identity,

but by the condition <w> = O.
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0. . = -2 ;dw‘—"i(v—i'm"‘ l—(1—ﬂ3)3313- F (a3)
T, ] TE, 23 — 2 2T’ m w Bwl )
e e
w2 -1 1 B3F

where C. = S dw e (v’ - ij Q) = e ) (A &)
The heat conductivity becomes,using (27)

m2 f 1 mw Te 1 3
K, = = dw w' (v, -ijQ) [-— -(l+p = “-—9—_‘—'E—le (A 5)
T, ()HTE?_T 1 ,i gpom @

The transport connected with the density gradient is obtained from

(23) in a similar manner

2
_ _m W Y =1
bopp,j = Te ST O -HD T (4 6)
e ] 4
2 T
. m 4o, .. -1'L ~ el 3
Kn,j N che Ty I v (vl ij @) (] pn,j) m w 8;}F‘ & 7)

Comparing (22) with (A6) we see that By = By requires

3w v (w) L s (A 8)

which for v W) v w 3 leads to (1), s = 5. For the same distribution

we also obtain K, = Ky on comparing (A7) and (20).
For distributions (1) the transport coefficients can be expressed

as a combination of integrals of the form

. 3/s
_w. -t B l+ixt .
IB(X)_ édte t —————37; T (g+1) for KLQTE > 0 (A 9)

1+x2t

which have been evaluated numerically.
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Appendix B Form factors of the energy distrubution

In addition to the form factors of F(w) already listed in
IA we need the form factors listed below. They are normalized to
unity for a Maxwellian and the numerical values are for the

distribution (1), s = 5.

e, =%(%)'/2<W_V> 1.0355 (B 1)
e

i =l§ (%)”2 <(‘—;’z)3> 0.9121 (B 2)

a, = Tz < (52)4 > 0.79278 (B 3)

a = 215 %)1/2 <(‘_:;)5> 0.6609 (B 4)

a, = 3%2-(§01/2 <(§—)7> 0.4131 (B 5)

The form factor

3n 6 -5 @oF
Uop =Y J dww — (B 6)
enters EU’A'and Eu’l-equ. (74-75) and Table II. For the distribution

(1) we obtain

(a_g/a’y) = T(1+3/s) T(1-3/s) 55 23
(B 7)
= 1.982 H s =5



. . . - g .
In two dimensions the relations (92-94) and pu”\-— (3_6/a_3) |
still hold but
6
4y
B == = Jdw w > gf;. (B 8)
™ L 2 /
or for the 2D version of (1)
2 2
a_g/ay =T0+2/s) T (1=4/s) /T (1=1fs) 324 (B 9)

3.0052 ; 5 =25
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Appendix C Electron Transport in Perpendicular Shock and

Anisotropic Spectra

We may assume quasi-neutrality n Zni and neglect the displacement

1

|
N

current. In the slab geometry %; =0, EJIEZ we have then

8 aB
u_ _=u, ,j=- %F-%; = - nlel (ue - u.) (c 1)

1y .
Magnetic field penetration is governed by

e
am

1 200 S S S . 4
ot * X (uexB) X anT ( Rey ¥ X ) e 2)

using the electron equation of motion and neglecting electron
inertia. For QTeff 1 we get from (64-68) and (72)

R A Y 3 p X
- =
"Seff o Yy (e xV °E)_%£ v . (C .3)

n<

where u =-i/weL neglecting the difference between the wave and ion

rest frame’ u xl;- The last term is orthogonal to y_llgy thus

2
- EEX - Y * A " - u- zg (‘ 3lnn _ - 3ln Te)
nm  yy “eff,o ’ eff,o 2 Pyh 3x Pran T ox
(C &)

The various terms in U ff o 2T usually of the same order as
L

mentioned in Sect.V. The term due to the nonlocal change of the

form factor a_, has been omitted. The viscous term in (2) is reduced

by(rL,’L)2 << 1 from the resistive diffusion term, r, = (ve/Q),

L= (alnBlax)—! The electron heat equation takes the form
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Ao, .
where Qi is the energy transfered to the ions and waves, cf. Sect. IV.
and viscous dissipation - II : U has been neglected. The electron

heat flux is from (67), (69)

2
Q9 =nT :Lz&A [F “*iT 3 e SInn - 2ln Tey ' (¢ 6)
ex " le® ul nje] Q nA 3x 3% p

T o

where all terms are usually also of the same order,except for a Max-
wellian for which the V n terms vanish. Magnetic field penetration,
Joule heating and heat conduction depend thus on the same collision
frequency vyy’ even for strongly anisotropic spectra. The total
effective drift velocity for wave growth S is rotated with

f

respect to u by

uh Oyl
tp @ = Q v ¥ uu -(p ,/Q)vwm u;= Q \)t E €7
YY Yetf,o0 pqﬂ Uy N eff,o

Since this angle varies in the course of wave growth one expects
that L coincides only approximately with the symmetry axis of
e ;

the spectrum and that for larger v /Q the spectrum also becomes wider
; : . . 16,13
in angle about the symmetry axis. Computer simulation ‘of current
driven ion sound (ueff 5 ™ u) confirms these conclusions. The

3
spectrum and the electric field Eﬂ - Be/n{ei necessary to maintain constant
current WwWere measured. Relation (C 4) is confirmed and the
direction of _Be coincides roughly with the symmetry axis of the

spectrum and thus with u , l.e. uII ® 0 in the relations
—eff —eff
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"_[_{—3=\,*u1 X oo

nm 1 —eff 11 Zeff

1 i Pyl * 11 (C 8)
Yetf = Yeff,o T @ VIIE

IT 11 N A
Yerf - Yeff,o0 a g &

* Relation (C 7) is also confirmed
x
by varying the magnetic field.

using the principal axes of v

The transport relations used here hold for anisotropic spectra
but are restricted to Q Teff?> 1. The complete magnetic field de-
pendence has been derived only for isotropic fluctuations, cf.
Sect. II. For Q Toff << | one would expect e.g. that [ depends
no longer on the y components of the spectrum but primarily on the
X components. At the same time the x components of U sf connected
with the x gradients should become important. This behavior is re-
flected by the approximate transport relations derived from a
truncated expansion in spherical harmonics. As mentioned at the end
of Section III these equations are correct for isotropic spectra
and become correct for anisotropic spectra as & Toff 7 1. From
(38) and (48) we obtain,considering only the perpendicular components

Vp—R
- 1 3 ; i
e +D - Eﬂ F and using the principal axes of

of A = [y +

Y as coordinate system,

)
v‘ = Q AII \V AII + 0 AI

A
1 11 S S c 9)
1 e QZ 1 a X 2

M Y V11
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-~

With the transformations g

R = RL/a!/2,4 /2510

/

/2 T II
(a ""q

1/2
, @ /o '7) for g and £,

) for R and the perturbing gradients and

1/2

: * : : .
drifts, a = (v?/vII) one obtains the isotropic transport re-

; y 1 : :
lations of Sect. II with v = (v?‘u;}) /2 replacing ]/Te in the
complete magnetic field dependence. The heat flux due to temperature

gradients becomes

nT

e 2 1
- - 1 v 0
91 x e [KT,L GUn T e vl nT ep) (€10

4 KT,J'\ e, x Vlin Te)]

The same modification applies tc the other terms in q and to the

transport relation for the effective drift velocity for wave

*
growth. Note that -R = -nm V,. u still holds and that
- =]" —eff
% -* */ 2 N N Y ¥ (q.)Z
v oa=v., v /as= vipr Vi VitV ok S vyy vxy .
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Table I Longitudinal transport coefficients in terms of the

form factors of F (Appendix B) and numerical values for (1),

s = 2,5

F(w) equ. (1),s=2 equ. (1),s=5
Du,o i—(3ﬂ/32a_3a33 0.7055 0.2754
pn,o 1_'35/83 B r}n,o - pu,o
pT’O (s a5/2 a3)—1 1.5000 0.8116
Ku,o 4(35/&3)_5/2 Ku,o= pT,o 0.3984

2 —
Kn’o 128(&_3/311)[(.35 /33) = a7) 0 Kn,o"Ku,o
2

“I.o 128(a_o/3m) [(7a,/2)~(5a;"/2a,)] 13.581 1.5040
ﬂo 512 a_s 35/45ﬂ 3.6220 1.0666

Table II Transport coefficients for Qre >> | in terms of the form

factors of F and numerical values for (1), s = 2,5; where

- - 2
Kpop = KT’AIQTE, Kp = KTrLAQTe) etc.

F(w) (1),s=2 (1),s=5

0 Ca_ Jar 1 - 0.982

u, -6""-3 '
pn,A (a_lla_B)-l © pn,A=pu,A
by 1 * (a/2a3) 1.5 1.991
By (5/2)-(a_,/a_y) Ku,A=pT,A 0.5180
Kn’A (5/2) (I*aA) 0 n,A=Ku,A
KT,A (5/2) (2a&-1) 2.5 1.46392
1’]],A 2:0 2.0 2.0
- 2 -
KU,L. (a_l/a_B) (Saa_&/ha_3)+(5/2)pu’ﬁ - 2.1131
oy LO/Dama)] (1/a_g)-(5/2) 0 ik
K

T,L L?]+(a_l/é] (1/2a_,)+(5/2) 13.250 4.1569

n]’L l2a_i/5 a_q 2.4 4,7568



Figure Captions

Fig. 1 Transport coefficients for momentum transfer

Bu £ - (nndre) [(l-pu’o)gn-P (1-pu4)u£pu Aleg ¥ u)]

for Maxwellian (s = 2) and quasilinear distribution

(s = 5).

Fig. 2 Transport coefficients for heat conduction
= - V e v
S—T (nTere/m) LKT, T o T3 .LT + KT A("o X Te)|

for Maxwellian (s = 2) and quasilinear distribution

(s = 5)

Table I Longitudinal transport coefficients in terms of the form
factors of F (Appendix B) and numerical values for (1),

s = 2,5

Table II Transport coefficients for QTe >> 1 in terms of the form
factors of F and numerical values for (1) s = 2,5; where

/QT ;K ET,l!(QTe)z etc.
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