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Abstract

The kinetic equation for electrons including Coulomb collisions

and scattering by ion sound and related spectra is reduced to a
system of equations for the energy distribution and the anisotropic
part. The energy distribution is obtained for the cases where
Coulomb collisions, runaway or turbulent heating dominates.
Resistivity, heating rate and the dispersion relation are signif-
icantly modified for the self consistent non-Maxwellian distribution.
Applications to turbulent heating by ion sound are made and other

transport effects will be considered in a companion paper.




1. Introduction

The primary motivation for the study of plasma turbulence is its

effect on transport properties. Just as in classical transport theory

one would like to arrive at a closed set of equations relating the

macroscopic variables of the plasma. In classical theory the possibi-

lity of such a description arises from the existence of an universal
relaxation process, causing any distribution function to relax to a
Maxwellian which is specified by the local fluid parameters density,
mean velocity and temperature. The fluctuation spectrum is a known
functional of the distribution functions. In a turbulent plasma on
the other hand distribution functions and wave spectrum have to be

determined from a coupled set of kinetic equations.

From carticle simulation or direct numerical solution of the
kinetic equations it is known that distribution functions as a rule
deviate strongly from a Maxwellian as particles respond to tur-
bulence and external forces. A lot of information has recently also
become available from laboratory and space plasmas. Wave growth
or decay frequently may be connected, to a large measure, to
changing particle distributions rather than any fancy nonlinear
saturation mechanism. For fully developed turbulence there is
usually no good reason other than simplicity for the customary
assumption of Maxwellian distributions. A principal aim of this

paper is to demonstrate the need for a selfconsistent determination




of the distribution functions and to show how this can be done
for a class of instabilities. One can hardly expect to obtain
a general theory of anomalous transport, and we consider one of
the most researched instabilities in this context, ion acoustic
turbulence and related spectra, which are characterized by small

phase velocity w/kve << 1 and short wavelength kve/Qe >> 1, are

sufficiently broad in the angle of k, and have not too large

fluctuation levels.

Such spectra can be generated by electron—ion drifts,
ion-ion drifts, beams, gradients and parametric effects, and thus
play an important role in laboratory and space plasmas. In the
early days of quasilinear theory it was shown that the electron
distribution changes considerably from an initial Maxwellian not
only by quasilinear flattening but also by the development of

: 1
runaway tails. ’

Turbulent heating experiments showed also
the formation of high energy ion tails and quenching of the in-
stability.3 Particle simulation of ion acoustic waves allows
a detailed study of the evolution of spectrum and distribution

functions. In previous communications we ’

briefly reported
simulation experiments specifically designed to test the numerous

nonlinear theories of stabilization which had been developed over

the years. The case of a current perpendicular to a weak magnetic




field, which corresponds to perpendicular shocks, was considered.

The magnetic field has little effect on wave dispersion but prevents
electron runaway. It was demonstrated that flattening of the electron
distribution and ion tail formation rather than any nonlinear effects
determine the evolution of the instability. Heating and anomalous
resistivity were found to be in excellent agreement with the quasi-
linear prediction if one accounts for the changes in the distribution
function from the initial Maxwellian and the anisotropy of the wave
spectrum. The electron distribution relaxes to a distribution of the

form
F(w) = n(CS/VOB) exp { - (W/VJS } (1)

with s = 3.6-4, corresponding to a reduction in the electron growth
rate, resistivity and heating rate by a factor 0.33 and an increase

in the effective temperature for wave dispersion Teff y ].6Te as
compared to a Maxwellian of the same energy, Te =m <w2/3> 3

Such flat topped distribution functions have also been observed
downstream from the earth's bow shock6. The Druyvesteyn distribution
of a weakly ionized plasma in a strong electric field corresponds to

s = 4 and quasilinear theory predicts an asymptotic solution s = 5 for
ion sound turbulence. That unmagnetized quasilinear theory describes
the wave electron interaction was most accurately confirmed by a
stochastic acceleration model5 with a prescribed turbulent spectrum

in which electrons relax from an initial Maxwellian to the selfsimilar
distribution (1) with 4.7 <'s < 5. The relaxation process was found
to be independent of the magnetic field (Qe/kve) =0 - 0.1 and the

heating rate agrees with the quasilinear prediction even for

fluctuation levels much larger than they occur in the full simulation,




(e ¢/Te)2 = 2-6. 10_2. (For the model, density is not a relevant
parameter but the parameters are easily related to the selfconsistent
problem by noting that in the latter kve/measl).The discrepancy
between the quasilinear prediction s = 5 and the observed values of

s in the selfconsistent problem is attributed to electron-electron
collisions. Although the electron distribution is essentially isotropic
a small anisotropy manifests itself already in the homogeneous

plasma if an electric field is applied. Simulation and shock wave
experiments show an asymmetry of the spectrum with respect to the
current which has been connected with a small distortion of the
distribution (1) and the particle orbits by the electric field and
speed dependent turbulent scatterings. The anisotropy plays a more
important role if the electric field is along the magnetic field7

and must of course be considered for the transport connected with
gradients such as heat conduction, as is well known from classical
transport theorya.

The ion distribution on the other hand always reflects the anisotropy
of the ion sound spectrum. The interaction is essentially with a

high energy tail in accordance with quasilinear theory. Initial

tail formation is a very complicated dynamical process however. Thus
at this stage we restrict ourselves to an important part of the
complete problem, namely to a theory of the wave electron interaction
irrespective of the generation mechanism for the spectrum. We shall
not only discuss the theory underlying the simulation of current
driven ion sound turbulence in more detail but guided by these results
extend the theory to transport phenomena in inhomogeneous plasmas.

There is already good experimental evidence that anomalous electron




heat conduction plays an important role in shocks, the laser

pellet interaction, the solar wind etc.

In Section II we discuss the kinetic equation for the electrons
including Coulomb collisions. Coulomb collisions are included not
only because they are important in certain cases but also in order
to contrast classical and anomalous transport theory. We examine

the conditions under which the energy distribution remains
approximately Maxwellian and anomalous transport coefficients can be
in

obtained by appropriate substitutions for Z (Veff) and Ti

eff ,eff

the classical transport equations. Scattering of electrons by the
turbulent spectra we consider is rather similar to electron-ion
collisions in that it has essentially the same speed dependence w_3
and is predominantly elastic. Our assumption (u/kve)2 << 1 replaces
(vi/ve)2 v (m/M) <<1 . To lowest order in these parameters the
electron-ion collision term is always the isotropic Lorentz term
whereas the electron-wave collision term is generally anisotropic.
Nevertheless also for anisotropic spectra the electron distribution
relaxes to an isotropic distribution to lowest order. We examine
this isotropization process which for the turbulent plasma plays
the same role as the relaxation to a local Maxwellian in classical
transport.

The dominance of isotrcpization allows us to reduce the kinetic
equations to much simpler equations for the energy distribution

F(w) and the small anisotropic part f(w).



In Section III we examine the relaxation of the energy distribution
F(w) under the condition that e—e collisions, turbulent
heating or runaway dominates. For other situations a numerical
solution of the equation appears feasible. Heating rate,resistivity
and electron dielectric constant are determined for a drifting
isotropic distribution corresponding to a current across a
sufficiently strong magnetic field. From the conservation laws and
the observed wave growth and ion distribution some information
about the wave ion interaction is obtained. These applicatioms to
ion sound turbulence are considered in Section IV. Conclusions

from this part of the investigation are summarized in Section V.

In a companion paper we present the solution for the anisotropic
part of the distribution and a complete set of anomalous electron
transport equations. Wave growth connected with the anisotropy of
the electron distribution and application to experimental manifesta-

tions of anomalous transport will also be discussed.9

II. Kinetic Equation for the Electrons

Transport equations are obtained from an appropriate solution

of the kinetic equation for the distribution function

— + v+ —+—=(E + LxB) r—=-

3
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where the fluctuations 8f , SE are due to particle discreteness
and collective modes. For our purposes we may separate the collision

term in the form Cf = C__f + C .f + C_f , describing short wave-
ee ei ew
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parameter, AD = ve/we) by the Landau collision integral and the

collective modes le < 1by the quasilinear collision term. Each term

takes the form
a -
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where the drag force A is due to polarization of the plasma and
Cerenkov emission by a test charge. For the Landau collision

integral the diffusion tensor becomes8

T
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where T = (1/t) [;—££/t2‘|, t = v-v'
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and Pab = (2ﬂea ey /ma) lnA. The polarization force is related to

the diffusion tensor by

W a3
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where D is the trace of D. For a set of plane waves (mk,k), wk > 0,
the unmagnetized quasilinear diffusion tensor becomes
8112e2 con
= 24 E -k . 6
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where W(k) is the energy spectrum W = <(6E)2/8w>==JdEH(§) and

k = k/k . The drag force due to Cerenkov emission is given bylo
ae 1 e2
Bop = 7 | G sk - W k @
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where E(E,wk) = 0 is the dielectric constant for wave k.
We make use of our assumptions vi/ve << 1 and m/kve << 1
to simplify the e-i and e-w collision terms. The diffusion tensor

(4) may be expanded in v'/v < 1 or v/v > 1 from which one obtains




the high and low speed limits as well as an expansion in spherical
. 11 5 . ..
harmonics. In the ion rest frame w = v - us the e-i collision

term is to lowest order in m/M and vi/v the isotropic Lorentz

collison term

Sy ra o, 2y 2 L3
v(W)C f = = [au (1) 5 * - ik (8)
with the collision frequency
Doy 2Tei ™ -3
vei(w) - i) " W , (9)

where spherical coordinates w, cos® = u,¢ have been introduced.
Inelastic scattering and anisotropies appear to second order in the
ion thermal velocity. Averaging over the angle of w we obtain

W
D .
el )

(10)

<w + D . « w> =v.(w)v.2=
- el i

where w = w/w and the superscript indicates that the spherical

average is taken in the ion rest frame. For non Maxwellian anisotropic
; ; i 5 2 2

di e = = < > - -
stributions we have defined Tb moVy = m <w /3>, w=yv W

Ll where the subscript indicates an average over fb(z).

In the high speed limit the polarization force is given by
= =
AL =-Fv o w | (1)

In the low speed limit w < v, we obtain from (4) and (5)
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and Fe(w) = <feqi)> is the isotropic part of the distribution

function. The form factors

v
a_, = (321)”2 <7e'>e (15)
F_(0)
a_, = (217\1&2)3/2 ~£%r—- (16)

are normalized to unity for a Maxwellian and are summarized in
Appendix A for distributions of the form (1). Actually the exact
speed dependence of the isotropic diffusion tensor is obtained
by using the high and low speed limit for a field particle
distribution Fb(w) which is truncated at w' W respectively.

For instance

2T

[Nb(w)w" + I dw'4nE, (w') | 17)
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where Nb(w) is the number of particles of speed w' < w. It follows
that the diffusion coefficients are monotonically decreasing with

speed.

For speeds above the phase velocity range the e-w collision
term has the same speed dependence as the e-i collision term in
the high speed limit vi/w << ] but is generally anisotropic even
to lowest order. For speeds below the phase velocity range,Cew
vanishes. If we assume that the phase velocities satisfy the
condition w/kve << 1 and the spectrum is sufficiently broad in the
angle of k then the resonant interaction (6) is possible except
for negligibly small regions of velocity space. The extent of these

regions as well as the speed dependence for w % w/k depends on




details of the spectrum. The drag force éew for thermal electrons

is due to spontaneous emission of ion sound waves and is only a small
correction to éei' For the momentum transfer from the waves to the
electrons we obtain from (3) and (6) for a drifting isotropic

distribution f(y) = F(Izjgl) (indicated by the superscript)

2
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The last relation in (19) defines the collision frequency v

ew
and the wave rest frame u . With the assumption w =(m£E- u)/kw << 1
the resonance condition H(w ) = Ile | <1 may be dropped. For the
resulting w_3 dependence y* , ¥ are related tov_, r__ by
=ew’ —ew =ew’ —ew
* 2.1/2 -3
few gew (Ve) (w) 3 . (20)
The electron heating rate is given by
mw2 ww e | oF WW_e ¥
Q° =- 3 |dw <p"">° —=— =3 nm <D__> (21)
ew = 3 ew W ow ew y
where
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is the inelastic diffusion coefficient in frame u. The corresponding

e-1 terms are from (8-11)

I =" vei(w) (Efgi) (23)
ww_e _ 2 1 (27
Lei™ = gy L L (E-Ei) ] 242
R°. = nmr ¥ (25)
ei ~el
o _ _ A0 * s D
Qei B Qie+ MMVei (E-Ei) ’ (26)
where
o] m 2. T
Qe = 3 N Vei l:Te a_, * g (27)

. . L .
is the rate of heat transfer to the ions and vei 1s related to

vei(w) as in (20). Comparing (9) and (14) it follows that for

ions of charge Z

» _ *_ . 2.1/2 1nA

Veg =2V =Zu, () a_s =3 ‘ (28)
The same e-i transfer rates are obtained from Cie in the low
speed limit, using momentum and energy conservation. Particle
conservation by the collision term implies that generally the
rate of momentum transfer Eeisindependentofthe reference frame
while energy transfer in different frames is related by

Qe ™ Ke,o o " (ETEO) @2

If, as usual for current driven instabilities u >> Vis w/k
the drift connected term (Joule heating) dominates the heating

rate .
Qe




The analogy between e-w and e-i transfer rates would be complete

if the drag force A << A . had been included in (21) as it was in
—ew —ei

(27). The e-i terms correspond to an isotropic collision frequency

Yap = Vs I. If the wave spectrum were also isotropic to lowest

order, the e-i and e-w collision terms could be combined to an

effective e-i term with Zeff and Ti,eff defined by
1 1nA W 1 Ve 3
V@) = <D+ D> == (32 5= e oy T ey ) (30)
w e D
v
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2 M Zeff (w ) UJe A (31)

; W~ k - us is now the frequency in the ion frame and

c " = ZTe/M 42 (m/k)z. The effect of isotropic turbulence u/kve << 1
on electron transport is obtained by replacing Z and Ti in the

classical transport equations8 by Z_

£f and Ti

off? provided that
3

the distribution function remains close to a Maxwellian. This will

be the case if e-e collisions still dominate inelastic scattering

that is
w 2
W o1 “k-k- u M InA
T oo O 124 “7a A , (32)
e D e

comparing (12) and (22). Usually,however, turbulence not only
dominates elastic scattering (Zeff >> 1) but inelastic scattering
as well. If the inequality opposite to (32) is satisfied the lowest

order distribution is no longer a quasistationary Maxwellian but




evolves by turbulent heating to the selfsimilar distribution (1),
s = 5. Classical transport equations with an enhanced collision

frequency have been used to describe anomalous transport. We see
that this is justified only under rather restricted circumstances

and that Z and Ti must also be modified. T. enters the electron

i,eff
transport equations only through the heat transfer (27). Zeff
determines the effective collision frequency and the relative
importance of e-e collisions through (28). As is well known an
increased Zeff allows for a greater distortion of the distribution
function by the perturbing forces and gradients.8 The numerical

coefficient in the heat conductivity k., = 3.16 nTe/m\}k for example

T

is changed from 3.16 (Z = 1) to 12.58 as Ze + o(Lorentz gas).

ff
The transfer rates (18), (21), (25) and (26) for a drifting
isotropic distribution may be used if the drift is across a
magnetic field which is sufficiently strong (W™ /Qe)<< 1 to keep the
distribution isotropic. Distortion of the distribution function is
significant even for Z = | if the current is along the magnetic
field. Recall that R: is reduced by the factor 0.52 for Z = | and
0.29 for Z + =, To obtain the total transfer rates in this case the
contribution from the anisotropic part of the distribution must be

added.

For the anisotropic part of the distribution function we must

consider scattering in angle (elastic scattering). With our assump-

tion w << 1 it follows from (6) that scattering by the waves is

predominantly in angle2
yd
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just as for e-i collisions. Whereas to zero order in(vi/v),e-i
collisions are described by the isotropic Lorentz collision term (8)
the e-w diffusion coefficients are generally angle dependent.
Nethertheless to zero order in & the electron distribution should
relax to an isotropic distribution F(w) even for an anisotropic
spectrum. The isotropization rate depends on speed and the spectrum

in the directions k *+ w % 0. Defining the quasilinear H function

H = [dg_fz(ﬂ)/Z it follows from (6) that

of of
o J dE-éE Eew '5;7- <0 (34)

oH
it |ew

Although there is no "plateau", that is a steady state SH/8t = O
coexistent with a broad wave spectrum (in k), the isotropic

distribution function F(w) represents a quasiplateau for speeds
which satisfy w << 1. If there are waves k + w & O the condition

A

§H/6t = O implies k + 9f/dw = O i.e. isotropy to zero order in w.
For a given energy distribution F(w) = <f(w)> the H function

H = JQE [:Fz + fz:l/Z assumes its minimum for vanishing anisotropy
%(E) = f(y) - F(w). The anisotropy of the spectrum leads to a
forced anisotropy % to first order in &. Weak perturbing electric
fields, drifts and gradients also lead to small anisotropies

% << F which we can determine by perturbation theory. The forced
anisotropy is established in roughly an elastic scattering time
which in the turbulent case, is much faster than the relaxation
rate of the isotropic part of the distribution. Relaxation of the

~

isotropic part of the distribution F(w) is second order in w and




the perturbing forces. Writing the kinetic equation (1) in the

drift frame u and taking a spherical average we obtain

dF _w oF 0 p 1 ) "
at T37 gy Y fE P vy oggvc@r e D P

A A

= <C>F + <C f> (35)
/
where
e u - du
Evglryzenl =g (36)

and d/dt = 3/3t + u + 3/9x , also
=———-—+——-"“""6. V'E (37)

is the shear tensor and W = ww - wzl/B. To first order in the

perturbing forces the anisotropic part of the distribution satisfies

SF o gy L2 - Bl . S L
woeos— (@ v - U)o ClF=(wx@ =+ f-<Ct> (38)

=
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using that EOF = 0 by our assumption vi/w << ] and w << 1, We also
assume that scattering is dominant v L/ve >> 1, v T> 1 where L

and T are the macroscopic length and time scales. Perpendicular to
the magnetic field gyration also isotropizes the electron distribu-
tion. For v/Q << 1 this takes place in a few gyro periods and it is

then convenient to split f by angle averaging into f = f (W, s wy) +

% (v, » Wy $), <%> = 0 and (38) into

oF

. _ 0%
s\ U tH) £+ C°f - <Cc°f> (39)
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For a strong magnetic field ¥ can be expanded further in the small
parameters v/Q << 1, Ve/QL1.<< 1 which considerably simplifies the
problem, particularly for anisotropic turbulence. In (40) it is
then required only that scattering by collisions and turbulence is
sufficiently frequent to prevent magnetic trapping in an inhomogeneous
magnetic field. In the longitudinal equation we must still require
\)L“/ve 25 1; VT 55 1 forE f << F. Because of the speed and angle
dependence of turbulent scattering Coulomb collisions may play a
role in certain regions of velocity space even for elevated turbulence
levels. Actually the conditions for dominance of scattering are much
less severe since we require our equations to be valid only in the
regions of velocity space which make the dominant contributions to
the macroscopic variables we are ultimately interested in. The e-i
and e-w collision terms must be transformed from their old reference
frames to the drift frame u. The e-e collision term is invariant
under this transformation. Correct to first order in (u - Ei)/ve
and vi/w the new e-i term consists of the isotropic collision

operator (8) and the anisotropic part

~ A
Cg P~ 2y ) ~ B

oF
ow 41)

e b

In the e-w collision term the transformation is performed simply by
Doppler shifting the frequency, w*w - k + u . Again, the drift must

be restricted to u - Ew/ve << | for w to remain small. Within this

restriction the drift frame can be chosen arbitrarily. Choosing the




electron drift frame u = u, is most convenient since we get the
anisotropic part of the distribution connected with a relative drift
and shear from the first order equation (38). In the frame u = O the
drift would be determined as a first orderquantity proportional to
the electric field and the spatial gradients. The viscous stress
would then be determined from the second order equation for %. In

the electron rest frame u = u  we obtain by taking a first moment of

(38) the solubility condition
Vp~R

al= (—)

nm 5

(42)
Since f depends on R through (38)Jj§ = / dw mw Cf must be determined
from the condition n(Ee—E) = J dw w £(w) =0 . (43)

In earlier papers on classical transport theory which attempt a

one fluid description the center of mass velocity is chosen for u.

III. Relaxation of the Energy Distribution.

Our approach resembles the derivation of the quasilinear equations
in that the anisotropic part of the distribution ; is determined

as a functional of the slowly varying isotropic distribution F(w),
linear in the perturbing forces.

Inserting % into (35) gives a closed kinetic equation for F which
includes besides local relaxation also speed dependent transport
terms. The reduction of the kinetic equation (2) to the system (35),

(38) is based upon the dominance of isotropization. The equations

apply also if Coulomb collisions dominate, but are more general.
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For Coulomb collisions scattering in angle and speed occur at the
same rate, cf. (12). Thus in a few collision times the lowest order
distribution F(w) becomes a quasistationary Maxwellian and the
anisotropic part also has only an implicit space and time dependence
through the local fluid parameters and external forces. These facts
form the basis of the Chapman - Enskog expansion scheme for a
collision dominated plasma. 8 Making use of the small mass ratio
m/M << 1 collisions between unlike particles may be neglected in the
lowest order relaxation process and one obtains separate equations
for the electrons and ions with Te # Ti’ u, i u, - The anisotropic
part of the distribution is determined from (38), using for F a
local Maxwellian. Higher order corrections are rarely considered

but for (35) could be found from the expansion scheme

B & 0 (44)

1
_ 2 1
Cee(Fo) F1 = Cee(Fl) Fo T 3t "o * LFo = & Fo (45)

]

Cee Fl

? 1 .
etc., where L represents the convection terms and C the remaining

collision terms. The implicit time dependence

1 1 a T
) _ 1 3 n ] e 1 3 3-
wh-last " 2" J g (459
e W
is obtained form the continuity equation
on
ETS + ¥ = nu, = 0 (47)




with the transport terms evaluated from (38) using FO etc. Equations
(47-48) are the solubility conditions for (45).

If on the other hand there is intense turbulent heating

% 1 (1/T ) 8T /ot »>> v, this conventional method fails. Already
H e e ee

to lowest order there is an explicit time dependence

oF oF

o 1 3 2 o _
it 2w Y Do O (49)
W
oF oF
1.1l 23 2,5 _1__ !
it w2 v Do ow LFo ’ Cee Fo ik Fo (50)

etc. If the drift is across the magnetic field as in perpendicular

shocks the dominant term D0 has a w—B dependence, cf. (22).

For t >> T, We expect then that FO becomes the selfsimilar distribution

(1), s = 5 with the time dependence given by the zero order heating
rate (21). This is immediately verified by expressing the time
dependence in (49) by (46), using (48) in zero order. Introducing
the selfsimilar velocity variable ; = w/ve it is not difficult to
show that the general diffusion term which leads to a selfsimilar

solution F = (n/v63) F(w/ve) must be of the form
D0 (x,w,t) = D (x,t)w—(sﬁz) (51)

with s > o. The selfsimilar solution is just (1). The corresponding

heating rate is

‘g—t VOS = 52 I_) (x,t) (52)
and

Ve.? T (5/s)

(-2) = iS (53)

T 3r(3/s)
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More special selfsimilar solutions are possible if D has an
explicit L /8 dependence other than through w = &ve. The quasilinear
diffusion equation has a strictly selfsimilar solution for all

w not only w > w/k if the spectrum is also selfsimilar

Wk,x,t) = ﬁ(x,t) ﬁ(kve/me). If the heating rate satisfies (B/Bt)ve3
= const a selfsimilar solution in the presence of e-e collisions

is possible. Such special cases are however of no interest to us here.

More generally (49-50) are solved by using the Green's function

for (49).

F +F = sz' Glw,w',t,t ) F_(w',t)) + IE dt! Jdﬁ’_' Gw,w',t,t )s! (W ,tr)

o}

(54)

where Sl is the r.h.s. of (50). For diffusion coefficients (51) the
Green's function is found using some Bessel function identities]3 and

the appropriate boundary conditions.

' - . - 8, .S
Bl &) = %ﬁ%L'(W w')(s Y Ip[}i (WW')S/Z_Jexp f= WT+“ }

(55)

t -
where 1 = jt,dt" 32 D(x,t")

and p = (3-s)/!s; is the order of the modified Bessel function. We

have included the case s < O which corresponds to runaway, s = -1
, 14 - .
for an ideal Lorentz gas. For z = (2/t) (ww') + 0 one obtains
1y X s 's
G Gnw', t,t') v = (‘:]W r(p+1) exp —(E—“f——)] (56)
4P * 5

where x = 0 for s > 0 and x = s=3 for s < 0. It follows for s > O
that F becomes selfsimilar for 1 >> veos and that this occurs most

rapidly for small w. Using the asymptotic form of Ip for z + « one




verifies that (55) becomes a delta function for t - t' and that F
remains unchanged for w > », s > 0 or w >~ 0, s < O. From (49) the

rate of change in the number of particles of speed less than w 1is

N (w) _ 2 o OF
BE = 4qw D = (57)

For s < o we obtain from (51) and (57) the runaway rate

2= = - 4aD(x,t) (]s] + 3) cC (58)
/

_(!SI +3) from (56). It is

using the asymptotic solution F = Cw
interesting to note that the heat produced in this asymptotic region
is just carried away by runaway particles. One may also show that
eventually all particles runaway. Runaway arises for an electric
field g, = % E, along the magnetic field. The anisotropic part of

the distribution is from (38) f = (a“wu/vw) 3F/3w giving rise to a

diffusion term

2
WW ay T}(W)

Da Lo 3—' (59)

in (35). For TlﬂJvdl 4" w3 the runaway term for an ideal Lorentz
gas is obtained s = -1. For a plasma this term must be compared with
the other terms in (35). Comparing (59) with the inelastic diffusion
term (22) we see that (59) becomes important in the velocity region

*

Lol if the drift uy exceeds a few times w/k cg» using ay X Vouy

Such drifts are required for current driven ion sound instability.

Experiments and simulation confirm that turbulent heating by current

along the magnetic field is necessarily connected with runaway. Due
-3 WwW . ;

to the w dependence of Dew this term should dominate at lower

speeds. We have already noted that DZ: is increased considerably
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by a drift across the magnetic field without changing the speed
dependence. The turbulent runaway problem is essentially non-—
stationary. In the classical case a nearly stationary solution is
made possible by the polarization term Aee balancing the diffusion
terms. The diffusion terms have a similar speed dependence as in the
turbulent case if for w > v the high speed limit of Cee is used,
cf. (10-11). The bulk of the distribution w < Vs however, remains
MaxwellianlS. 1f electron neutral collisons dominate, v(w) ~ w, a

strong electric field does not lead to runaway but to a steady

state distribution 16(1), s = 4. Finally we note that in the runa-
way problem the collision dominated region for which (35)and (38)

are valid must be connected to the runaway region where the
acceleration terms dominate and the distribution function is strongly

. . 14, 15
anlsotroplc

. The critical speed is determined by (e/m) E% ueffcq)w
where Vogs is the total effective collision frequency for elastic
scattering. For large enough veffthe runaway flux is formed, however,

at lower speeds where the distribution function is still nearly

isotropicls. The flux depends strongly on the shape of F(w), cf. (57).

Turbulent heating by a current across the magnetic field is described

by the diffusion term (22), s =5. The heating rate Q = 4mmD(x,t) F(0),

cf. (21}, is proporticnal te ¥(w=C,7) which nay be determined from
(56). It follows that the heating rate rapidly approaches the
asymptotic heating rate (52) for the selfsimilar distribution, even
before the higher w regions of F become selfsimilar. Fig. 1 shows
the heating rate

T 5/2 Li2 v_ 5

L8 = d e, @D =002 (60)
dt T o]
eo /2
- 3
and the form factor a4 = [:F(O,T)/F(0,0)_J (Te/Teo) 50.45 as
a function of T
t
2
- w w, ~k'u
= 1 = L w e I_C i 6]
! 5 Rl J e “e 0T kv ( kv ¥ 2 (61)
v eo eo eo ’
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for a distribution which was initially Maxwellian. A qualitatively
similar behavior is observed for the 2D stochastic acceleration

models, except that in 2D}a_ is determined by an integral of F(w ),

1

3
cf. (B 5).

We must consider the convective terms in the equation (35). In
the classical case dominance of elastic scattering implies also
dominance of local relaxation for the bulk w < 4 of the distribution
F(w). In the turbulent case inelastic scattering occurs at a rate
slow compared to elastic scattering thus the gradients must satisfy ad-
ditional restrictions for a local solution (49-50) to be valid. The
nonlocal case where gradient terms are of the same order as the
collision terms generally requires a numerical solution. In a recent
numerical treatment of runaway 1 it has been shown that a significant
reduction of the runaway rate results if the Joule heat is removed
by a speed dependent loss term. This was done in an ad hoc manner.
Within our model, that is no anomalies other than the short wave-

length fluctuations,such terms are included selfconsistently in (35).

IV. Quasilinear Theory of the Wave-Electron Interaction.

We have described the wave-electron interaction by the unmagnetized
resonant quasilinear diffusion term (6). Ample evidence from the
simulation studies has been cited to justify the validity of this

description. We briefly discuss the theoretical basis.




Magnetic field effects in the wave electron interaction term
are not important if the correlation time T between particle and
wave spectrum isshort compared to the gyro period. For modes propaga-
ting at an angle to the magnetic fields this can be accomplished
simply by phase mixing (Doppler broadening) TC“I & A(w—kuv“). If we
assume Qe/kve << 1 there Temains a small wedge k,/k << | in which
a different broadening mechanism is required. Particle diffusion across
the magnetic field due to collisions and turbulent scattering is such
a mechanism, requiring Qe3fkiD << | or a critical fluctuation levell8

W oo Dey2 Qe
nT w kv
e e e

(62)
if (30) is used. For guasilinear behavior on the other hand the
decrease in the interaction time from the linear unmagnetized
correlation time T;] % & (u-k-v) due to resonance broadening must

. 2.3 ; =3 ;
remain small, k DTC A v/kv << 1. Since v ~ v ~ resonance broadening

becomes important for low speed particles, perhaps extending the interaction

to linearly nonresonant particleslg, typically (vﬁave),however,

V() << |1 (63)

estimating v*;rom (30) and W/n'I‘e N 10_2 5 m/kve = 0(1). Comparing
(62) and (63) we see that for kve/Qe >> 1 and typical values of
(Qe/ue)z " 10_3 - 10'-2 (shocks and laser-pellet interaction) there

is a wide range of fluctuation levels big enough to wipe out magnetic
field effects yet small enough for other modifications of particle

wave resonance tc remain insignificant, thus corresponding to a

regime in which unmagnetized quasilinear theory should be valid.




The Coulomb collision term undergoes only a weak modification20 of
the 1nA term even for strong magnetic fields Qe > w, since most of
the fluctuations are in the short wave length range 1<kAD<A. The
magnetic field still enters into processes which occur on longer
time and length scales. The magnetic field term on the left hand
side of the kinetic equation (2) remains important and for modes
kve/Qe z | propagating essentially across the magnetic field, as they
have been considered in the shock problem, the collision term

retains its magnetized form.

The same arguments about resonance broadening and the
magnetic field effects apply to the dielectric constant. The only
difference is that we must now consider the interaction between a
given wave packet (h,mk) with the particle distribution whereas before
the interaction between particles of a given velocity and the wave

spectrum was examined. It has been shown that for kve/Qe >>1 the

dielectric constant reduces to the unmagnetized form

g, G0 = A sz k- 2 (64)
either linearlymfor oblique modes or by resonance broadening for
modes propagating perpendicular to the magnetic fie1d22. Recently23
a quantitative theory of resonance broadening has been given for the
dielectric constant with Qe = 0 but arbitrary v*/kve. It has been
shown that for u*ykve N correction to the dielectric constant
remain very small, the correction to the real part being even orders
of magnitude smaller than the correction to the imaginary part

(collisional damping). For distributions which are flat in the low
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speed region, such as (1), s = 5, the resonance broadening effect

is reduced further.

For turbulent spectra which satisfy Qe/kve <1, w/kve & 14 W/nTe << 1
and are sufficiently broad in k we are thus justified in using the
standard unmagnetized quasilinear diffusion term and dielectric

constant to describe the wave electron interaction.

In the transport problem we must naturally consider a slow
space and time dependence of both spectrum and the distribution
functions. The condition for the geometrical optics (eikonal)
approximation kL >> 1,T >> T, are easily satisfied since collision
dominated transport requires the space and time scales to satisfy
L/A> 1, v T> 1, A = ve/v or ve/QeL << | across the magnetic field

and on the other hand for unmagnetized quasilinear behavior
we must have v /kve << 1, kve/Qe>> 1. In the geometrical optics
approximation the space and time dependence of the spectrum is
governed by the usual kinetic equation for wave packets24 . The
ingredients of this equation are obtained from the local dielectric
constant. Connected with the weak space and time dependence are
also adiabatic diffusion terms not included in (6). These terms
represent reversible changes associated with the linear wave motion
(sloshing) whereas the resonant interaction term describes the
secular motion of the oscillation centergsand dissipation. Since
the overwhelming majority'w/kv < l’of the electrons can take part
in the resonant interaction and since the energy in the wave motion
is small compared to the thermal energy for W/nTe << 1, adiabatic

terms are not important for the electrons. They may be important




for the colder ions however and must be included for the exact
conservation laws to be satisfiedza. Taking moments of the collision
term in (2) we obtain particle conservation d&n th = 0 and the rates

of momentum and energy transfer

=
]

: < 6E &0. > + < l—éJ. x 6B > (65)
=3 - = g T = )

=
n

s 8B o8], _ (66)

The heating rate is defined in the restframe Ej and is related to

(65-66) by (29). Maxwell's equations give the conservation laws

3 _em 3 em
= R = — — _-— e
R ZJ 58 = 1 } (67)
i
- - - D gem_ 3, gem
K-ZKJ.- =1 = S (68)

i
which are the usual momentum conservation law and Poyntings theorem

applied to the fluctuations &E, 6B, E?m = (l/c)2 §?m = (c/4m)

<6E x §B>, U™ = < sEZ + §B%> /87, e

= U™ I - <6E OE + §B 6B >/ 4r

For homogeneous electrostatic fluctuations Be = - Ei that is anomalous resi-

stivity can only be due to fluctuations in which the ions participate.
The energy extracted from the electrons by electrostatic modes is

2
delivered to the ions and the electric field -Ke = Ki+ 9<8E“/87m> /[ 3t.

On the basis of these general considerations it is immediately possible
to exclude theories which arrive at a stationary spectrum solely

by quasilinear or nonlinear modifications, such as trapping or non-
linear Landau damping, of the wave - electron interaction without

wave dissipation by the ions if such spectra, in agreement with
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observation, are connected with anomalous resistivity and heating.
Simulation of ion sound turbulence shows that stabilization is due

: ; y . A
to the resonant interaction with a hot ion tail .

The quasilinear diffusion term implies a quasilinear relation
between the fluctuating electric field and the fluctuating current
6£j . The transfer rates(65-67)are then expressed in terms of the
conductivity tensor and the spectrum. For a set of electrostatic

plane waves

E% = 2Im J dk W(k) &y (k, wk) k (69)
.= [ )y e, (
K, = 2Im [ dk W() ey (ks mk) By (70)
2

using the definition oj (k) =k Ej ¢k/4ﬂ of the dielectric constant.

Separating resonant and adiabatic terms the conservation laws may

be written as

r 3 3 r
—— — @ = - {
g GragITUK 71)
T d 3 _ _ r
Kl * ot v ox == Ke (72)

where G = g?m+G +G~ is the total momentum and U=0°"+U%+U" the total
energy associated with the wave motion, etc. The simplest of the

adiabatic terms are obtained by letting w*w + 13/9t in the transfer

rates and expanding in the weak time dependence of the spectrum
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R. =7 dk W (k) — k (73)
] — — w, —
K /
- . JWwe
U. =/ dk W (k) — (74)
] — - Bwk

and represent sloshing momentum and energy associated with the wave

motion in species j. The weak time dependence of the plasma and the

space dependence should also be considered however,24’26
For an isotropic distribution we obtain from (64)
Re ¢ (kyu) = P& gy 4n { Fw) + - = 1o 1 | 112 (75)
e — 2 o} w ow 2 =@
mk
8w332 w w
Im e (k,w) = — % F =) (76)
e mk k k .

Expanding the log term in &=w/kw<<l generates the asymptotic expansion

for Re €q To lowest order in w/kve<<l

w
B a2 w (2 =~
Re Se (1_{‘,&}) —('Ev—) L a_2 - a__h (_kv ) *+ e _ (77)
e e /
Ime (u) =202 @2, (78)
Ce \Hat kv 2 =3 kv 5

The form factor a_, has been defined by (16) and measures the slope

3
of the reduced distribution function compared to a Maxwellian of
the same energy. The form factor a, = <( ve/w)2> determines the
: » _ _ 2 : .
effective temperature Te = Te/a_2 =, for wave dispersion. For

ion sound waves

2 Zm 1

Gly? - I

kve M l+(kv*/w)2
e e

(79)
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The form factors for distributions (1) and 2D distributions are
evaluated in the appendix. The resonant transfer rates for a drifting
isotropic distribution may be obtained by making the replacement
w=>w=-k " u in (78) and using (69-70). Theyagree with the

transfer rates obtained in Section II from the resonant diffusion

term. The energy extracted from the electrons becomes e.g.

w

k keu-w, w
—Kzr . a_3(2ﬁ)”2 ﬁ(_ bl © e} e nT w (80)
e

v kv kv nT e e
e e e

The factor Wy in the spectral average is replaced by k*u - Wy in the

heating rate (21) and by-k in the momentum transfer rate (18). The
superscript indicates again that these expressions are valid for an

isotropic distribution.

The growth rate for ion acoustic waves may be written in the

form
nN
kA, * m 1/2 a_3 l‘-E-.E'e‘f:'f—.g}\"‘
Y, = = Im e(k,w )/ (3e/dw, ) = w, 5 (=) - (81)
L4 k o daanhhr . 22 e
where »_¥= v */u and u includes the relative e-1i drift and effec-
D S e —eff

tive drifts connected with the anisotropy of the electron distribut-
ion.9 The critical drift velocity u*>w/k depends on the interaction

with the ions. We obtain

— w — — e — e
ol ks vl Rk (82)
e 1 L

assuming that the wave-electron interaction is modified according

to (77-78) while the wave-ion interaction remains linear with a




31

Maxwellian ion distribution. According to Fig. | such a situation
should be established shortly after the onset of the stability. The
linear interaction with a high energy ion tail (w/kvh)2 ~n 1 which

N

dominates at later times gives rise to an additional damping

(83)

where the tail is modeled by a Maxwellian in the half space k*v > O
of wave propagation. The tail parameters § = nh/ni, Th may be
estimated from the conservation law527 if the observation is used
that most of the energy and momentum extracted from the electrons

is delivered by resonant interaction to a strongly anisotropic tail
extending in the direction of the drift u, whereas the bulk is heated
only weakly and undergoes nearly free acceleration by the applied

electric field4. From (69-70) we obtain

3 “k i &

5 & 8§ My ko< 1/(1- .1:':'_2) > %3¢ &1, (84)
w w

3 k Mk d

ot B 6 Th N <532./(l keu ¥ ot . Te (85)

using the appropriate spectral averages obtained from the relations
between the electron transfer rates, cf. (69-70) and the comment
following (80). For a Maxwellian tail in the halfspace u*v>0 the
form factors are a = (2/3) (2/w)1/2 and B = 1. These equations are
easily solved for u = const, %!k v Te”2 or %{Eﬁﬂ = const. For

u = const and (eggyyj << 1 the number of particles in the tail is
built up as

z T, 1/2 %e—l

Zm1/2 Veo
r G0 el ) T (B8

T
e
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-

where T = Te/Teo' The temperature of the tai] varies as

- 3/2
T 1:/:2 T -1
4 o B (87)
Z e -2 22T 3/2.21/2
e Te --Te

using (79). Similar relations are obtained for (u/ve) = const.

The evolution of the total ion thermal energy 3/2 niTi and the
temperature ratio Ti/ZTe as a function of Te is obtained from (85)
if BéTh is replaced by Ti' With the tail parameters (86-87) the
growth rate is obtained from (81) and (83). Using also the heating
rate (21) the evolution of the wave energy W and the fluctuation
level W/nTe may be found. The maximum of W/n’I‘e is given by the
condition that wave growth is overtaken by heating, rather than
nonlinear saturation. The important feature of tail formation

is the increase in the number of tail particleé’27_%§ther than
tail heating at fixed nh/n which has been modeled by other
authorszg. According to (87) the temperature ratio Th/ZTe stays
relatively constant and of order unity. The tail buildup leads to
self-quenching of the instability for u _i_,u.“ﬂl(mll-i)]/4 A (typically in
mit:s 100 for the simulation), as follows from (83), (86-87).

If heating is significant the total temperature ratio Ti/ZTe
approaches a value quite independent of the initial temperature

ratio, according to (85). These scaling laws describe the later

. . : 4 i
stages of the simulation experiments quite well.
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The model could be refined by including adiabatic interaction
30 , : . £ w3 :
terms which are important in the initial phase, linear and non-

linear interaction with the bulkzg’

and representation of the
spectrum by sample wave modes. Anyway however, a more accurate
description requires the use of a kinetic equation for the ion
distribution. There have been several attempts. Selfsimilar so-
lutions of the quasilinear equations at marginal stability

have been studied32, but the simulation shows a continued tail
buildup until the instability is quenched, even if u/ve is

held constant, which is necessary for a selfsimilar solution.
The quasilinear equationsof Section II do not apply to the inter-
action of ion sound waves with the ions unless it is assumed
that the bulk is dominated by i-i collisions and the tail by
elaséic scattering from the waves which requires w/kv << I. Such
assumptions have been made by Kovrizhnykh33when considering
current driven ion sound in a homogenous plasma and B = 0. In

an earlier paper on the same problem by Rudakov and Korablev2
the resonant interaction with the ions was neglected altogether.
In these papers it was also assumed that the quasilinear effects
reduce the spectrum to a single wave number ko’ with constant
growth rate y 2 O in a conel@}< (n/2) about the drift direction.
Simulation and experiments,however,show a broad spectrum in k,
strongly anisotropic ion tails extending to about 2 cg i.e.

w/kv > 0.5 and anisotropic ion bulks.
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V. Conclusion

We have discussed the kinetic equation for the electrons in-
cluding Coulomb collisions and turbulence. It was assumed that the
turbulence is due to ion sound and related spectra which are
characterized by small phase velocities (m/kve)<< 1 and short
wave lengths (kve/Qe)>>l. Scattering by such fluctuations is
rather similar to electron-ion collisions in that it has the same
speed dependencen;gnd is predomirently elastic. For e-e collisions
which dominate in the classical case on the other hand elastic
and inelastic scattering occur at the same rate.

Classical transport equations with an enhanced effective collision
frequency have been used to describe turbulence effects. We have
shown that this is justified only in rather restricted circumstances i.e.
very low fluctuation levels (32), isotropic turbulence, and that
Zeff and Ti off in the classical transport equations must also be
modified. ZEff not only determines the effective collision frequency
but also the relative importance of electron-electron collisions.
Usually ,however turbulence not only dominates elastic scattering,
Zeff >> |, but inelastic scattering as well. Electron-electron
collisions are then no longer able to maintain the distribution
function close to a quasistationary Maxwellian and the energy
distribution must be determined self consistently. Scattering in
angle and the magnetic field keep the electron distribution
essentially isotropic, but the anisotropy must be determined for
applied electric fields along the magnetic field and transport

connected with gradients. The reduction of the kinetic equation
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to the much simpler system (35), (36) for the energy distribution
and the anisotropic part is based upon the dominance of isotropiza-
tion. This process replaces the usual relaxation to a local
Maxwellian in classical transport theory. The solution of the
equation for the energy distribution is discussed for the cases
where Coulomb collisions, runaway or turbulent heating
dominates. Numerical solution for other cases appears feasible.
Quasilinear flattening of the electron distribution leads to a
significant modification of the dispersion relation, momentum and
energy transfer rates,etc. by the time turbulent heating increases

the temperature by a few percent,cf. Fig. I.

Ample evidence from simulation studies of current driven ion
sound turbulence has been cited to justify the use of the unmagnetized
quasilinear diffusion coefficients and dielectric constant for the
electrons and the theoretical basis is briefly discussed. Momentum
and energy transfer rates and the conservation laws have been used
to construct a dynamical model for ion tail formation which is
based upon the observation that most of the energy and momentum
extracted from the electrons is delivered by resonant interaction
to a strongly anisotropic ion tail, whereas the bulk of the ions
is heated only weakly and nearly freely accelerated by the applied
electric field. Resistivity, heating rates and the dispersion
relation for non Maxwellian isotropic electron distribution and
model ion distributions are obtained.Turbulent heating by a current
across the magnetic field is described quite well by this simple

model, including self quenching of the instability.
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To describe heating by a current along the magnetic field
and transport connected with gradients the anisotropic part of the
electron distribution will be determined self-consistently in a

3
companion paper.

"This work was performed under the terms of the agreement on
association between the Max-Planck-Institut flir Plasmaphysik

and EURATOM".
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Appendix A Form Factors of the Energy Distribution.

The form factors of the distribution (l) may be expressed in terms

of the T function I'(z) = J dt e_t l:z-wl

o
< wd > =%I dw F(w)wa = 4153 T (i:3) vg
'%Idﬂw”]%§=4tgr(£§+l)vs .
Thus for s s = 2 s =5
c, = m 0.1796 0.2672
(:—:)2 = % 0.5 0.2238

The following form factors are all normalized to unity for a

Maxwellian.

s =5
. =—%h%1/2 vefdg% 0.8832
a, =1 Vezj aw w2 1/1.4492
43 ‘: (%)1/2 e3 I dy v ‘%’g 0.44563

1 4 =3 8%
W s 1 [ldg w o 0.19585

(A1)

(A2)

(A3)

(A4)

(A5)

(46)

(A7)

(A8)




The dielectric constant (73-74) becomes

We 2 i 2 . 1/2 L -
o ) = ) Lap-a, G-l o
e e 8
The effective collision frequency for resistivity and heating

1/2

X
is reduced by a_, compared to a Maxwellian v = v(Ve) (2/m) a_3/3

3
and the effective temperature in the low speed limit of the Coulomb

diffusion coefficients (12) is Tea_l/ a_q

Appendix B: Two Dimensional Diffusion

For modes in the plane perpendicular to B which also satisfy
(w/kwy ) << 1, as is the case for some loss cone flute modes and the
ion distributions or in 2D simulation of ion sound, a two dimensional

theory can be carried out. The diffusion coefficient

] 2 1
o (B1)
(1 =@

2
m

1/2 k. w

2
pti.e _ Bre jdhl wik,)
i

retains its WL-B speed dependence for & = (w/kjw;) << 1.

The selfsimilar solution for the 2D distribution F(VL) = J dw“ %% £(w)
thus has the form

2
F(w) =n(C /v ") exp [ - G /v ¥ ] (B2)

with s = 5. The Green's function can be found in the same manner

as (66) for the 3D case. For DJ"L= B/W_L3 i.e. s = 5 we have
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5 1 5
w + w _
exp [ - =—F ] (B3)
z /

t
where 1 = J‘t, dt" 25 D (t").

The form factors in the dielectric constant (B8) are modified to

ey 2 g L 3E
4-2 Ve FJ dw W) 9wy S
1/2
- 42 34 1 OoF
a_3 = ('lT) Ve nJ d‘_\T_.L —'—"‘2 BWJ_ (BS)
B

where dw, = 2rw) dw, . The collision frequency for elastic
; ; ; =3
scattering also retains 1ts w, dependence

v 3
(=) (B6)

v

2 2
) === &

1/2 %
a_3 1

) Y

where in 2D and 3D, cf. (13-20) and (78)

v *ay E¥_ (2v)1/2a_ <

3 kv 2 g )

s s = 2 s =5
C = s 1
s 2T (2/s) — = 0,3183 0.3588 (B8)
m
Ve.2 sT(4/s)
ey SSLWEL. 0.5 0.2624 (B9)
¥ r(2/s)
2
s(v /v)
- e o 1 .
425 T(2/s) 1.6905 (B10)
3
_o2 /2 e r(1-1/s) |
a_g= ) (;fz) S T2T5) 0.2815 (B11)

As expected, quasilinear effects are stronger in 2D.
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Figure Captions

Fig. 1 Electron temperature and form factor a_, versus

3

diffusion time (61), for the selfconsistent distribution

that was initially Maxwellian.
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