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Abstract: The trapped-fluid equations of KADOMTSEV and POGUTSE (K.P.)
describing the dissipative trapped-ion instability are corrected nonlinearly to
include adiabatic, electrostatic detrapping of trapped particles and trapping
of circulating particles. In the course of this derivation a new nonlinear
effect is found, viz. variation of the effective collision frequencies of the
trapped particles owing to the electrostatic redistribution of trapped and
untrapped particles. We anticipate that the numerical solution of the new
equations might lead to a different saturation level and, hence, to a
modified anomalous transport coefficient as compared with the unaltered
K.P. equations. The new fluid equations can also serve as a device for
inserting microscopic effects, e.g. Landau damping and finite-banana-width

effects.




1. Introduction

Numerical results on anomalous diffusion induced by the dissipative
trapped-ion instability have already been obtained (SAISON and
WIMMEL, 1976; SAISON, WIMMEL, and SARDEI, 1977). There, the
trapped-fluid equations of KADOMTSEV and POGUTSE (1970, 1971)
were sp!ved numerically in two spatial dimensions as an initial-value
problem in time. On the other hand, it was realized earlier that

the K.P. equations neglect, among other things, electrostatic trapping
and detrapping by the parallel electric field of the instability, and
preliminary corrections, linear in the perturbation amplitude, had been

given (WIMMEL, 1976).

The aim of this paper is to develop nonlinear trapped-fluid equations
that include electrostatic trapping and detrapping in a quasistatic,
nonlinear fashion. These equations are obtained from a simplified
version of the drift-kinetic equation that holds in the usual slab model,
withrg = const, Contrary to KADOMTSEV and POGUTSE (1970, 1971)
and to later work by other authors, we take into account that the
boundary in velocity space between trapped particles and circulating
particles is modified by the parallel E field of the instability. An
especially interesting effect is the ensuing change of the effective
collision frequencies of trapped particles with the time-varying electric

potential.




Other microscopic effects, such as Landau damping and finite-banana-
width effect, are not considered here. However, the new fluid
equations can be used as a starting point for adding terms representing
these effects. COHEN et al. (1976) have taken such microscopic
effects into account but only on the basis of the original K.P. equations,

thus neglecting electrostatic trapping and detrapping altogether.

The case in which the unperturbed equilibrium fraction (go of trapped
particles vanishes, viz. (Fo =0 , must be excluded from consideration
throughout.  The reason for this is that the effective collision frequencies
of the trapped particles become divergent for 6\0‘3’ 0. The original

K.P. theory is subject to the same restriction.

The paper is organized as follows: Untrapped-particle densities and
quasineutrality are treated in Secs. 2 and 3. Section 4 derives the
corrected trapped-fluid equations, with the important correction terms
evaluated in Secs. 5 and 6. A necessary transformation of the equations
is carried out in Sec. 7, while the appropriate boundary conditions are
given in Sec. 8. Section 9 proves ambipolarity of the anomalous
diffusion. Section 10 deals with the equilibrium solution and the linear

dispersion equofion. Finally, Sec. 11 presents the conclusion.




2. Untrapped-Particle Densities with Electrostatic Trapping and

Detrapping Included

As in the original K.P. theory, fhe,_l‘f'lx'i?-‘motion of the untrapped
particles is neglected. This approximation should be good for mode-
irrational surfaces (where K" # 0) and for a time scale long relative
to relevant transit times of the untrapped particles. The relevant
transit times are defined with respect to the unstable mode considered

and are of the order of

tN(ZwﬁR/\‘n&’W\o)} 2.1)

where m_ is the poloidal mode number, q the safety factor, and R
the large radius of the torus. It follows that WT'<K1 is required,
where () is the mode (angular) frequency. The distribution functions
of the untrapped particles can then be assumed to be approximately

Maxwell-Boltzmann, i.e.

A _ @ - 3/2
{_} N ¥ f 'NP (%g'/h_g) } (2.2)

L . .
o gy 91T 1 =T i

Cb = electric potential, Np = equilibrium plasma density, Ta. =
temperatures (in energy units), and q,, m,, v. = particle masses,
charges, and velocities. The untrapped particle densities are then

given by
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i.e. ng is the value of }"9’“/19'! that separates trapped and untrapped

d Uleat
particles in velocity space, and (g‘o is the unperturbed equilibrium
fraction of trapped particles, é\o = no/Np' The electrostatic trapping
and detrapping effects are represented by the deviation of Cg\ from

its unperturbed value é\o .
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If the effective potential energy, q.CP + . B, with JA, = magnetic
Py

moment, does not have a maximum larger thcm)A. B , Where B
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is the maximum B-field along the magnetic line considered, ) , B
are the values of @ and B anywhere along the magnetic line, and
¢ , B are the values at the point of observation, i.e. where the
relevant fluid quantities are derived, then conservation of energy and

magnetic moment, with the assumption ¢= 0O atB= Bmcx’ yields
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with jj defined by

§, = [(1-4)/8 94 -

The assumption Cp =0atB-= Bmcxx agrees with linear, microscopic
theory (COPPI and REWOLDT, 1976). Whether this remains a good
approximation in the nonlinear regime could only be decided by
actually solving the nonlinear drift-kinetic equations together with
the condition of quasineutrality in a toroidal geometry, in order to
determine the true electric potential ¢(;<',r). This is, obviously,
impossible at present, but could become feasible when bigger and
faster computers become available. (See also the discussion at the
end of this section.)  On substituting egs. (2.5) and (2.6) in (2.3),

the integral can be performed to yield
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The normalized function N.(?a-) is plotted in Fig. 1 for several
values of go. Unlike a density proportional to a Boltzmann factor,

N, increases with @. for I not too large. Such behavior
j ncemes ity for |

(2.6)
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("anti-shielding") is also known from free particle streams in 1-D
electric fields with zero magnetic field. In linear approximation

Ni, agrees with an expression given earlier (WIMMEL, 1976).

The values of N,;" used by LAQUEY et al. (1975) and COHEN et al.

(1976), viz.
K.P.
N.

~ i
4 = NP (1 - gO) ¢ )
would be recovered from eq. (2.3) if, rather than using eq. (2.5),
the unperturbed values SQ': 50 were used, together with a Maxwell-

Boltzmann distribution. The linearized version of eq. (2.8) was

originally used by KADOMTSEV and POGUTSE (1970, 1971).

As mentioned above, to be valid eq. (2.5) requires that the effective
! S s’ with houl
otentials, Vi = q;¥ + B, wit . = magnetic moment, should
P P ' }Aé '
not have maxima larger than . B . Otherwise, additional particle
)’Lg max
reflections may occur that are not taken into account in eq. (2.5).
*
Because this condition may be violated for small (}13 B') and large
¥
(CH Cb } > () , the number of untrapped particles may be over-
estimated and that of trapped particles underestimated, especially for
%
large-amplitude perturbations Chq) > O . Again, this could only
be remedied by actually solving the complete nonlinear drift-kinetic
equations, including quasi-neutrality, for a toroidal geometry, thus

finding the true ¢(_:;<, t). It is impossible to accomplish this at the

present time. Still, we expect that, by comparing the numerical results

(2.8)




obtained from this new theory and the old K.P. theory, one obtains
an estimate of the importance of electrostatic trapping and detrapping

effects for ancmalous diffusion.




3. Quasineutrality

Knowing the untrapped-particle densities N. from eq. (2.3), one can

write down the quasi-neutrality condition, viz.

g=: m;-m, =N, -N; , (3.1)

¢
with nj = trapped-particle densities, (; = trapped-charge density
(divided by e). Because the trapped-particle densities n. are deter-
mined from trapped-fluid equations (see Sec. 4), eq. (3.1) is expected
to determine the potential Cb This is possible if the right-hand side
is a monotonic function of ¢ If not, appropriate transformations of
the fluid equations are necessary, and eq. (3.1) will determine one

of the densities n, rather than @ (see Sec. 7).

For simplicity, we consider the special case Ti = Te =T. From

eq. (2.7) one then obtains

& = 120 (d),NP,T,cQ)ng(So,NP,CS\O)) (3.2)

with

Jo

i

=Wy sign(sp)§ oxp (=1¢l) - oxp(Igl) afe (Vg
= [ (-1g1/ ) = ool /52) e/ |

(3.3)

where cr = Cfc-_: -cra . It turns out that, in general,

8((?) = §° ((FJ is non-monotonic (Fig. 2). Hence CF is not




uniquely determined from ? . Section 7 gives the transformations

of the fluid equations necessary for overcoming this situation.

In the K.P. approximation (tg' ‘:'é; ) this situation did not arise.
There j)(?} is monotonic:

Kch

oM = N (1-8.) oxplp) - wpl-9)]

for Ti = Te. Comparing egs. (3.3) and (3.4) shows that for
sufficiently small HJ{ the two expressions for 33(?) differ in sign
as well as absolute magnitude. In fact, go (19) decreases with
growing (f), unlike SK?CcF) . This behavior is connected with

the "anti-shielding" of the untrapped particle streams mentioned

in Sec. 2. It agrees with results obtained earlier (WIMMEL, 1976).

(3.4)
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4. Trapped-Fluid Equations with Electrostatic Trapping and Detrapping

Included

We derive the new trapped-fluid equations for a 2-D slab geometry
(coordinates x, y), with’lé = B2, B = const. In this case it suffices
to start with the following simplified version of the 3-D drift-kinetic

equations:

23

ICSREIR S LT )

pA

with F, = F, (t,x,W,u,5), { =i,e, W =", M.= magnetic
I R A i

moment = const, § = 5ign('\J’ll ¥, },}E: (C/B)E xv¢, the remaining

notation being standard. Magnetic drifts and drifts involving

d'U’E /olt' are omitted, and U is assumed to be small,
~ "'E

.‘\BE (( 'BJ;E\ . Because ofAB’= const, conservation of/u. is

: ; 2
equivalent to conserving U, .

The new trapped-fluid equations are obtained by integrating eq. (4.1)
over that part of velocity space occupied by trapped particles, i.e.

by applying the operator
0o g;+0
1/2
I=: g%jdwfolb (W/e)™
0 0

with | = (U'" /U‘)Z . Note that, according to eq. (2.5), CY'

depends on W, P, and go' As with the untrapped particles
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(Sec. 2), here, too, the electrostatic trapping and detrapping effects

are represented by the deviation of c% from its unperturbed value J; .

By observing the relations

i Fj =Ny

i

with nj- = trapped-particle densities, and

L % = &) 1[5 % k-4

= :—"_"_a dew )t’+

K =09

with g(x) = Dirac cY-funcfion, as well as a relation similar to

eq. (4.4), but involving VF instead of o':; ,/ £ , one obtains

the trapped-fluid equations in the form:

-3 (%) e (Ol = C (g ),

V=4

with the following definitions:

) 2%,
(%# 27~J&WUW i 5!’0:6}1 )
WM:t&wwwrmﬁj

(4.3)
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ony 29, oF
k’ét = -1 N Eh —FOF .
Like KADOMTSEV and POGUTSE (1970, 1971), we approximate ihe

collision term by a relaxation term of the form

a A
(my) = - b (m; - o)
C J) — 1 3 MJO )
A
with Va' = effective collision frequency, /njo = instantaneous
quasi-equilibrium density of trapped particles. Unlike K.P., however,
A
we evaluate ))?' and /ha'o by taking into account that c;;' deviates

from 6\@ » thus considering electrostatic trapping and detrapping of

particles.

Approximate expressions for the right-hand sides of eqs. (4.6) to (4.9)
can be obtained by assuming F, to be Maxwell-Boltzmann distributions.
It then follows that

("6?32 ot/ ’

and the remaining quantities can be expressed in closed analytic form,
to be listed in Secs. 5 and 6. The trapped-fluid equations assume

the simpler form

= ‘ r s ; = =My =R ]
Er AR O TR A R R
It is seen that the assumptions of slab geometry and Maxwell-Boltzmann

distributions together have led to a form of the fluid equations that can

(4.9)

(4.10)

(4.11)

(4.12)




be investigated in two spatial dimensions rather than three. This

will be done throughout the rest of this paper. These 2-D fluid
equations must, of course, be supplemented by the quasi-neutrality

condition, eq. (3.1), in order to obtain a closed set of equations.

Trapped ions and electrons have been treated alike by assuming
Maxwell-Boltzmann distributions j . The Maxwell-Boltzmann
distribution may, in fact, be a good approximation for the trapped
electrons, with .C'e > () , but not necessarily for the trapped ions,
with {}L < () , if collisions are essential in order to restore the
M.-B. distribution. However, cases are known in which collision-
free particles conserve their M.-B. distribution while moving through

a static potential field. Hence we expect that the approximation

used may be fairly good for the trapped ions, too.
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Evaluation of the Instantaneous Trapping-Detrapping Terms

3.

A
By using for F, the Maxwell-Boltzmann distributions FJ [eq. (2.2)] i

eqs. (4.6) and (4.7) can be evaluated approximately. One obtains

. 9 ~f 3%
(%ﬁt*)i:’v%NP"'ajde?‘a’ S Y
0
() = 2N, <Y\ as v o5 v, 52
O s . j f ¢ '
with g] given by eq. (2.5). Evaluation of eq. (5.1) is straight-
forward and yields
N [(-83)/8] oxpl-9, /6] 284
%N ti 2 ©, (5.3)

(5] -
N [(-8)/8.] e~ g;/8) «efe (V57/4,)

Vo, :
\ 7}%;1. | AF—OT'— CfaéO,

While the evaluation of ((C)’VIJ /315]1 holds for the general case,

i.e. with VJO i 0O , and to all orders in CP , we give the

result for EE '(Vmﬂ)’l Firstly, for

for only two special cases.
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V(9°$O and for linear approximation in q) we obtain
. . A ‘ 5.4
Ve (W), = Nve V4, (5.4)
which agrees with an earlier result (WIMMEL, 1976). Secondly,
for v(SbEO the nonlinear result to all orders in CI) for (qu)i
is obtained by substituting V(f)a‘ for Bjo;/% on the r.h.s.

of eq. (5.3). Taking into account that ;\’3'5 ' V(b =0, the

final result is

/Np [(1'802)/&} fi ®p (- ¢ /&)
Ve VT e 9520,

v (Um‘)i - (5.5)

N [(1- &6, ] g < (-7 /4]
et (1547 /) YEVG/E  fv ¢ < 0.

The general, nonlinear expression for VE‘(VM-) , valid in the
case Vc&';ﬁ QO , could also be derived, but is suppressed here

for brevity. Again, l&E: (c/B) z x v¢

In the K.P. theory the terms (a'nﬂ/afji and gE‘( V/Ma')i do not
appear because it is assumed there 5j:<?0 and (tacitly) cho = 0,
That is, electrostatic trapping and detrapping effects are neglected,
as well as V(fo . Neglect of trapping/detrapping was also adopted

by LAQUEY et al. (1975) and by COHEN et al. (1976).
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6. Evaluation of the Collision Terms

We first deal with the instantaneous quasi-equilibrium densities n.
¢

These densities are defined as those in equilibrium with the

instantaneous electric potential ©® . Hence they derive from the

A
instantaneous Maxwell-Boltzmann distributions F of eq. (2.2), viz.

:_\IZ:"N Q?ﬂj‘l}\ § chg(f crg] ) 6.1)

a formula analogous to eq. (2.3). On substituting c% from eq. (2.5)

the integration can again be performed to yield

Ne do o (-4 /&), foc 9 20
Mo NP MF(‘%J uf(m) (6.2)
td wxp( ‘f’a/” “f( ) fov ¢ €0,

Note that the total instantaneous quasi-equilibrium densities of ions or

1)

electrons (= sum of trapped and untrapped densities) obey a Boltzmann
law, as they ought to:
A ~§7
0, =t Ny, =Ny 2 9
P 1°

The normalized Funchon Mao (% is plotted in Fig. 3 for several

values of S . Had one used the approximation Cg = CS\ in eq. (6.1),
o] 3 °




then the following value of M, ,

}
KB

/VLJ-.O o NP é\o -0._?4} (6.4)

would have resulted instead. This latter value, neglecting electro-
static trapping and detrapping, was used by LAQUEY et al. (1975)
and COHEN et al. (1976) in their fluid theories, while KADOMTSEV

and POGUTSE (1970, 1971) use the zeroth-order approximation

K. P
3'0 = NF go = fVLO .

A
Turning now to the effective collision frequencies )/‘é of the trapped

A
particles, we first note that the ))}n are treated as constants in the

K.P. theory. This is not a good approximation, however, because
the effective collision frequencies considerably vary with the plasma

perturbation. A more reasonable ansatz than the usual formula

A COUL- 2 coulL
)}j = ) /‘-‘S‘o ) VJ being the unperturbed
3

frequency of 90° deflections, is the following:

),;} _ <$}.COUL/A\;> ) B

~ COUL 2
where M» is the perturbed 90° collision frequency and So

3

2
has been replaced by the instantaneous quasi-equilibrium value 8 .

¢

The pointed brackets designate the average over trapped particles

in velocity space. In order to arrive at closed analytic expressions

~ COUL
for eq. (6.5), we shall neglect the energy dependence of VM

31 /




but keep its proportionality to total density. Neglecting the energy

dependence is fully justified for like-particle collision frequencies,

A couL
i.e. for U- and for U4§0UL (see below). For )J one has
CouL
instead a (i/'l}) dependence, but because ), - COUL < )JQQ

(see below) this dependence has been neglected. On approximating

the total density by eq. (6.3), we obtain the result:
A couL

Yo = ¥y (FV<1/J > (6.6)

A couL - ‘f; cQuL - "fp_/ 2
~ 8.7
up_m(vu- e 4V, = <1/§Q>, 6.7)
co UL couL
with )}ee ~ 7 V Voo according to ROSE and CLARK
2 . .
1961). The averages 0 are again evaluated with the
( ) averag <1/(5; >,\ gai wi

Maxwell-Boltzmann distributions F: of eq. (2.2). This gives

“i’a
< > Pﬁ 5(5 CFEJIJ) o

Mw@fg
Substituting S from eq. (2.5) then yields

S
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U (- ?1'/&&,) (1 *2§%)/
te f 20

[
- = J.o 6.9)
T 2

’“QA‘P( Efd/"()e‘rﬁ( /)(1+2i;) )
for g; <

A
Figures 4 and 5 show plots of the normalized functions ((F&) and

)32 (CFQ) , the latter for Ti:Te:T’ i.e. with CPe = ._.(P‘.’ = —CF'

A
The large values assumed by )J’.’ for positive values of CF} can be

understood approximately by considering the ?4 —dependence of an

average tg' (Fig. 6), defined by

¢
(CFJ = #o/(N mdf’ (6.10)

and representing the quasi-equilibrium fraction of trapped particles given

by My, . As mentioned in Sec. 2, the approximate evaluation of &

J
{eq. (2.5)} possibly provides for particle detrapping to be overestimated

to some degree. As a consequence, the quantities N, and 5 may be

q° 4
~2
underestimated, while the averages <c§3 > and the effective

A
collision frequencies ))j may be overestimated.
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7. Transformation of Equations

As shown in Sec. 3, 9((?) is, in general, non—monofoniq. Hence,
substituting the values of MJI in the quasi-neutrality condition,

eq. (3.1), does not determine @ uniquely. This can be remedied
by transforming the equations. In the new form, P and W, will be

the unknown functions, to be determined from the trapped-fluid

equations, while M, is determined from quasi-neutrality.

By forming the difference of the trapped-fluid equations, eq. (4.12),
we arrive at a differential equation for the trapped-charge density 0

Putting g: 4?0 and using the relations

o _ 9 9
% o= 2

00
Y %, 24,
vﬁo”%V‘b +3PVNP+ V'T"
where, again, we consider the special case of Ti = Te =T, VJ; = 0,

we arrive at the following transformed fluid equations:

—
™
2|%
A
g
rn.
e
Ffe=
w=]
<
|
S
3
|

(7.2)

(7.3
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[ ] - (] 2 0m) ] -
_ﬁe, (m&_mao) ) (7.4)

and at quasi-neutrality in the form

m, = MULfo ; (7.5)

with the definitions,

I, =: ?fl*;a"e* } 7.6)

3%

j% o ”a'm,) _(@q_t_) 7.7)
! 3t ), \RE/,

with f‘“ again being given by egs. (3.2), (3.3). For Ti = Te =T,

£2 is explicitly given by

/, = %PNP— {[@k?(*“fl) + exp (1)) eofe( )]

iy {exP(-ICf{/c?f) + %P(l?f/cf,}) efﬁc(W/cro)}.

(7.8)

The function f?‘ ((F) is positive-definite for !Cr{ { o0 ) 0 < é‘o <1,
X

This is so because both g= e and Z = P—x P“'EL (U?) are

monotonically decreasing functions for 0<x € o0 . Hence

the expression
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E=:y6)- &y (x/d)
+2(x) = d2(x/8)

is positive for 0<% <eo / 0< Jo < 1 , which proves the
assertion.  The fact that z(x) decreases monotonically follows from
the inequality ECX) < i/U—n’—x"— (for 0¢< ¥ < ©0) and

the differential equation 2’ = 2 - i/W . From £Z >0

it follows that eq. (7.3) always uniquely determines P(‘)(f’/at .

Numerical values of f?_ (?) are shown in Fig. 7.
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8. Boundary Conditions

In earlier work (SAISON et al. 1977) appropriate boundary conditions
for the original K.P. equations were derived. In the simplest case,
the boundary conditions at x = 0 and x = a were n.=n =n
(zero perturbation locally) and they implied that \J, = O at the
boundaries x = 0 and x = a of the slab model. Consequently, plasma
loss to the walls was forbidden. Trapped particle diffusion was never-
theless allowed, the collision terms providing for sources and sinks in
the plasma volume. In the y direction one had, of course, period-

icity with a period b~ a, because y represents, essentially, the

“small angle" in a torus.

For consistency, we use the same boundary conditions here. This can
be done because these conditions satisfy the new fluid equations,
eq. (4.12) together with eq. (3.1), M, having been assumed not to

depend on the coordinate y.
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9. Ambipolarity of Anomalous Diffusion

Like the original K.P. equations (WIMMEL, 1976), the new theory
provides for ambipolarity of anomalous diffusion. This is easily
proved. The y average (y = ignorable coordinate) over the trapped
charge flux density in the x direction (x = direction of equilibrium

gradients) is given by

¢
; s D¢

O

Quasi-neutrality, eq. (3.2), provides for

%:{30(%1\!?,7‘{4‘0)::% Fo(d’,NP,T, &3) (9.2)

Then

because ¢’ and F

» are periodic in y with the period b. This

o |
result hinges on the fact that the quantities N ; ] ,ond cg\o

are independent of y. The result is also valid for Ti 7 Te'
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10. Dispersion Equation

The trapped-fluid equations, eqs. (4.12), together with quasi-neutrality,
eq. (3.1), have the equilibrium solution "VLJ = é\c NP ) fiD = O,
NJ = (1ﬂ SO) NP j U = () . Linearizing the equations with respect

to the perturbations of the equilibrium yields the equations,

%%j— - (%)1L+QE'[V%0“(VMJ)1L} - —pj (MJ "MJ'OL) /

g = : ’Vlt "‘MQ = £0L J;
with the abbreviations /Vto-:cs\o NP , ))3. = )% (%. :O))| and

the index L indicating linearization in qb . Explicitly one has Yp =

(C/B)%chb,

it = MO(i - ‘%T);

{ﬁot. = T Z.TNP ‘i‘;po—%*¢

On substituting ’B/BJE = ("LCU"FX) ) g/ay -2 A }i‘l/

the following dispersion equation is obtained:
. ¢ . . 2
(—«L{AHPJ)) + J/L (—¢OQ+J/ = A s M, —{-)/3 = O/

with the definitions

(10.1)

(10.2)

(10.3)

(10.4)

(10.5)

(10.6)

(10.7)
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V, = (Vew‘p;) (1 - %2-)/(1‘50) (10.8)
))z = —‘UL)} _ (10.9)
))3L — Ve V: /(1 _é\o) } (10.10)
T o, N Js
W, = K\é ;&BX'MP . 1—5\0 (10.11)
For small values of [KHH one obtains the approximate result
2
iy = [(1- 2)/(1-5,)] (2, + 52
"‘W/(i“%)} (10.12)

and

—Laty = - [1- ‘y)/(i J, H (o, + =2 ("’Z w) (10.13)

On the other hand, for large values of IK\JI one gets

-—{Lo+y a2 T (%‘Iwol Uz)i/Q (i'*i S'»L'JM LO,) ' (10.14)

One would expect that using the equilibrium value CSO instead
of SJ in the derivation of the fluid equations would not modify

the linearized fluid equations, but only the nonlinear terms.
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That this is, in fact, so has been confirmed for Ti = Te =T

by comparing the dispersion equations of the two cases, which
turn out to be identical. On the other hand, the nonlinear
terms differ. This is most easily seen by realizing that expanding
the new fluid equations beyond the linear approximation also
yields odd half powers of ¢ for (h £ (), contrary to the
situation with the original K.P. equations, where only integer

powers of ¢ appear.



11. Conclusion

It has been shown that adiabatic, electrostatic particle frapping and
detrapping modifies the original K.P. equations (KADOMTSEV,
POGUTSE 1970, 1971) in several respects. Firstly, the convective
trapped fluid terms are supplemented by terms representing instantaneous
redistribution of trapped and untrapped particles, as shown in Sec. 5.
Secondly, the collision terms are modified by this effect (see Sec. 6).
It is an important result that, in particular, the effective collision
frequencies are varied considerably by nonlinear electrostatic trapping
and detrapping (see Figs. 4 and 5), in addition to the variation of
the quasi-equilibrium densities Ma'o of the trapped particles. Thirdly,
the untrapped particle densities are modified considerably so as to
yield a quasi-neutral, trapped-charge density, y = fo :jo , quite
different from the K.P. expression (Secs. 2 and 3). Except for the

variation of the collision frequencies and the terms containing :\! .

the other effects already appear in linear approximation.

The equations derived are approximate in several respects. Trapping
and detrapping have been assumed to be quasi-static in view of

< (A)@ , and within this approximation detrapping is possibly over-
estimated (see Sec. 2). Stochastic versions of trapping and detrapping
by E, have not been used (see JABLON, 1972, and SMITH, 1977).

The neglect of such effects is supported by EHST (1977) who claims
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that the contribution of these stochastic effects to saturation is small.
As for further approximations employed, the use of the Maxwell-
Boltzmann distribution for the trapped ions is probably not quite
optimal (Secs. 4 and 5). Other microscopic effects, such as Landau
damping and finite-banana-width effects, have not yet been inserted
in the new fluid equations. These equations are thought, however,
to be a better medium for inserting such effects than the original

K.P. equations exclusively used in the literature hitherto.

Because several different terms of the trapped-fluid equations are

affected by electrostatic trapping and detrapping, it is difficult to

forecast the consequences of trapping-detrapping for anomalous transport.

However, the following heuristic consideration is in order. Figures 4

A
and 5 show that the collision frequencies L. , when averaged over

¢
one characteristic oscillation period, increase with growing perturbation
amplitude. On the other hand, increasing the unperturbed collision
frequencies L/ in the linear dispersion equation would lead to lower
growth ratesJ} in the case of small IK‘J‘ [see eq.(]O.H)J . These
small 'KBI modes are the ones considered most effective in anomalous
transport. Hence it does not seem implausible to expect that electro-
static trapping and detrapping furnish an additional mechanism for
saturation by nonlinear increase of the effective collision frequencies.
Of course, the only secure way of detecting the consequences of

trapping-detrapping is solving numerically the new fluid equations as an

initial=-value problem,
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Figure Captions

The normalized, circulating-particle densities Nj ((ﬁ) /NP

for three values of é\o'

The normalized, trapped-particle charge density ?(T))/ /\V’p

for three values of é\o.

The function 40,@08 IL%J‘O (?‘J} ’/NPJ for three

values of cg\o.

The normalized, effective trapped-ion collision frequency
A A 2
‘)J; ((Ft)/ [ )j{ (OJ , J\o ] for three values of (S.D'

The normalized, effective trapped-electron collision

frequency ;59_ [Crg)/ ):_)/)\Q_ (0) ' (5\02_] for three

values of 5\0 .

The function 83 (Cfﬂ) for three values of é\O'

the normalized fncrion 43 (9) / [ e, /T

for three values of Oy .
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