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Abstract

The drift-tearing instability for m > 2 is reexamined, using two-
fluid equations in a cylindrical tokamak plasma. Ion viscosity and a
radial plasma flow are included. The method consists of numerically
integrating the linearized equations in time. Strong deviations from
the analytic dispersion relation are found in the most interesting
regime m: > Yo for realistic values of n and wg , the growth rates
increasing with m: . For an inward radial plasma flow stabilization
of the tearing mode occurs while an outward drift further increases

the growth rate.




I. Introduction

Tearing modes, or resistive kink modes appear to play an important role in
tokamak plasmas and have therefore attracted much theoretical interest

in recent years. Stability diagrams for the m > 2 tearing modes in a
cylindrical tokamak have been given for typical current distributions ]),
and it is shown that for appropriately tailored current profiles tearing
instabilities can be completely avoided 2). Toroidal curvature and com-
pressibility may also have a strong stabilizing effect on resistive

3)4)

modes

In a hot, magnetically confined plasma diamagnetic drift-effects have to

5)

be taken into account. It has already been shown that in the most
important regime of large diamagnetic drift frequency drift-modes couple
to tearing modes and growth rates may be substantially reduced. In
addition, (ion) viscosity and (electron) thermal conduction are important
for tearing modes, as has already been noted by Furth, Killeen, and

Rosenbluth 6)

. In the present paper we have investigated the properties
of drift-tearing modes under the influence of viscosity for small
but finite values of n, as has previously been done for the purely

7)

resistive tearing instability =

In section II an appropriate set of equations is derived. In this model
only collisional magnetic viscosity explicitly contributes from the
full viscosity tensor, as shown in section III, and we discuss the

magnitude of resistivity n, viscosity u, and drift frequency w* for



typical tokamak plasmas. In section IV we give numerical results on
complex eigenfrequencies and eigenfunctions for different values of
w¥ n, u. The results differ appreciably from thosegiven in Ref. 5.

In section V we consider the effect of an average radial plasma flow.




II. Derivation of model equations

We consider a tokamak plasma in the cylindrical approximation,
surrounded by a conducting wall at r = a with an axial periodicity

length 2mR. We adopt the so-called tokamak ordering, assuming

a
e =3 << 1 and safety factor q(a) v 1, so that Be/Bzﬂae, GBZ/GBe v g,
Taking into account only lowest order terms, we take Bz = B0 = const.
We further assume helical symmetry of the perturbed plasma

f=f(r, m0 - kz), k = 1/R, restricting consideration to toroidal

mode number n = l. From Faraday's law

; L V x E
c at =
one obtains
E x Vz
1 3y _ kr _ _ 4
(1 T at Ez * m EE) En Bo Yo,

where y(r,0) is the helical flux function defined by

kr
(2) By =Vz x V) + —B Vz ,

which is conserved for ideal MHD motions.

The parallel field E, is determined by the parallel component of

Ohm's law

(3) Evw = njn -



assuming infinite parallel heat conduction, V"Te = 0, and neglecting

electron viscosity. Substitution into eq. (1) yields

cT

Y . e

3¢ ¥ Yg' VY T oMe T = Ve
(&)

cTe 1
= c:njZ _Zﬁ_'ﬁvz « (Vy x Vn),
o
. . 2

with g = ¢ E} X Vz/BO, iz = Yy o+ 2kB0/m.

The parallel plasma velocity will be neglected, v, = ¥, = 0, because
of the large coefficient of parallel viscosity, as will be discussed
in the following section. The perpendicular motion is incompressible,
because of the slow time scales involved, and also because of viscosity

effects. Hence the plasma velocity can be described by a stream function

)
(5) x=szv¢.

Taking the curl of the equation of motion,

. 9V . . _ 1. _
(6) Vz Vx(—a?+V pvv + Vp + V + 1 E‘lxg)-o

yields an equation for A =Vz * (Vv x nv), n = p/mi 5

dA

2
1 ; I
(7) 224y VA+Vz . (nxVzp)=_Vz o (W xVj) -0z VxVe

ot &

vV * nV¢ = A.
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The variation of the density is given by the continuity equation

on
(8) 5= + V nv = 0.

We have still to relate the plasma velocity v to v, in eq. (4). This

E

is done by using the quasineutrality conditions V * j = O,

(9) Vv n=v"_¢'n+%vujn

—ed
The perpendicular part of Ohms's law provides a relation between Ve

and vel_(neglectlng nj, since j, << Jz)

v =y, + v¥
-e+ -E -e ,
where
* _ _ ¢ Vz xVpg
-e en B

are the electron and ion diamagnetic drift velocities. Since
»* . . . ; ;
V + nv = 0, the diamagnetic drifts do not contribute in eq. (9).

When linearized, eq. (9) can readily be solved for v_, assuming a

E’

cylindrical equilibrium ¢o(r), jo(r), no(r) and a Fourieransatz e1me

. F P »* .
in the perturbation. Writing v = Vo + vy, V+ vy =0, and leaving
off the subscript 1 in the perturbed quantities for simplier notation,

we obtain

1 A 1
+ - Vadn e Vr + hVO

(10) Vg =¥
- o
’ Vel
i a mnmJdun
h =aT3r (x en Do
)
only v being required in the linearized version of eq. (4).

E
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It is convenient to write the equations in dimensionless form
by introducing as units the plasma radius a, a typical poloidal
Alfven velocity Vo poloidal field Beo and density .

Temperatures are measured in units of Béol4nno. We have, furthermore,

(1 n+ 28

which we continue to call n, and

| c 0o _
(12) g+m.aB__u’
pi o

which is the smallness parameter associated with diamagnetic drifts.

Linearization of eqs. (4), (7) and (8) and substitution of v

E using

eq. (10) yield the following set of equations

) . p'2 5% B
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It is worthwhile to mention that in the general nonlinear case the

assumptions of both V - Vg = 0 and V *+ v = 0 are not compatible with

the quasi-neutrality condition eq.(9). This is, because eq.(9) can be




written as

(VZ X Vn) + Vu = - % vnjn

with Vg T v =Vz x Vu ,

which implies the solvability condition
dl :
(16) j& |V_'["Il ann o,

where the integral is taken along density contours. In general eq.(16)

is not satisfied. Consequently one has to relax the incompressibility
condition imposed on either v or Vg Let us consider a somewhat different
approach of deriving equations for drift-tearing modes. Instead of using

the ion continuity equation (8) we choose the electron continuity

equation
(17) dn v * Un = 1y j (again for v, = 0)
3t E e ndn i" ?

which is completely equivalent to (8) for V - j = 0. All we need is an

equation for g+ The ion equation of motion yields Vg

Since the inertia term in eq.(6) is small we substitute Ve + Y; for v which

= g, = P i ¥s
2 vy O(m/Ql)

is a good approximation as long as the corresponding frequency w = w®

is not too large. Instead of the equations (13) - (15) omne obtains the

following set

(13a) a—¢=igw' +n V%Y - a e C¢'n-n'vy]
at r ‘o T nO - ‘0 o
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The difference between (13), (14) and (13a), (l4a) is effectively due



to a small difference in the definition of Vg In the standard derivation
of the dispersion relation, dicussed in section IV, replacing the set
(13) = (15) by (13a) - (15a) amounts to replacing m: in the second term
on the r.h.s. in eq.(24) by w. Since this term is important only in the
regime w = m: the difference is negligible. Also when using the more
accurate procedure of obtaining eigenfunctions and eigenvalues as
described in detail in section IV, the difference between both models

is small. For numerical convenience we restrict the detailed evaluations
to the model (13) - (15).

The properties of the nonlinear equations will be investigated in a

forthcoming paper.




III Ion viscosity and diamagnetic drifts

We assume that the ion stress tensor I in eq. (7) is determined by
the ion-ion collision time T and has the form as given by
Braginskiia). This is valid for mean free path smaller than parallel
wavelength, viTi/Rq < |, which is usually satisfied for present day
tokamaks. For longer mean free path ion Landau damping would replace

ion viscosity, which will not be considered in this paper.

The stress tensor contains three viscosity coefficients differing
by many orders of magnitude, 1. the nonmagnetic viscosity My
proportional to the ion collision time TS5 2. the nondissipative
magnetic viscosity or gyroviscosity ug, which is independent of T
3. the collisional magnetic viscosity Heo proportional to Ti-l. The
parallel component of the equation of motion is, assuming V * v = 0O,

aVu

(18) e

e
3t 5,
1

The magnitude of the viscosity is,using our normalization,

u_a 2 V,T:
s} o A1l
RZvy R?

A
for typical tokamak plasma (Ti = 400eV, n = 1013). Thus the 1l.h.s.

n 102

a

of (18) can be neglected, since w << 1. Outside the resistive layer eq.
(3) yields en E. = T Vun, and using eq. (14), wn " n; v, we obtain
the following estimate of v,

w* @i
2 Py ~ 102 vy,
w c o
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implying

vy << vy

aw .
s PL .. .
for realistic values of = discussed below. The uo—terms in the

perpendicular components of II vanish because of V * v, = 0. If,
howe#er, toroidal corrections are included, vy would no longer be
incompressible and instead one would have V - v, /R? = 0 because of
the ﬁt dependence of the toroidal field. In this case po-terms do
not cancel and should have a strong influence on the plasma motion
9, ]0). In the expression Vz: V x VI the iy terms cancel, too,

as can easily be shown by direct calculation, and we are thus left
with collisional magnetic viscosity only:

2
- Vz « Vx VI =yumn (V2 + 4 E——J Vz « V x v

= miucVZA,

where V2 is the two-dimensional Laplacian as before and

IH
|

—
(19) . " 70

V]

LS Tam;
i 11

The coefficient u normalized to v,a can be expressed in terms of
c

the (dimensionless) resistivity (13):

Lz T M2m /2
(20) w, =5 ﬁe(fi—) (m—e) n

1 o
[ B Poca &
2 m

e

m,
For present-day tokamaks with B slightly above 0.1Z, %.3\'E£ is
e
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somewhat smaller than 0.1, increasing above 0.1 for the next
generation of tokamaks with B 2 0.5 Z. Using these values, colli-
sional magnetic viscosity, though the weakest of the viscosity
processes, nevertheless has an appreciable effect on the structure

of the drift-tearing modes, as will be seen in section IV.

The coefficient o in eq. (13) characterizes the magnitude of the
diamagnetic drifts. The (normalized) drift frequency is given
by

Te né(r)

no(r)

* m
(21) b = @ =

Note that in egs. (13) = (15) only the density gradient appears,
but not the temperature gradient, which is eliminated by the
assumption of infinite parallel electron heat conduction in eq. (3).

Numerical values are c/w_. = IO/Jn , where n_ is in 10]3cm-3, and
pi e e

ool
B JR 5 hence
(8]
o = 2 = —L-f r present—day tokamak
3.ym a 30 OF Prese v e
(22) 5
s 10 for the next generation of tokamaks.

Numerical values of the (normalized) resistivity are

-5 R q(s) " Zeff (B in T, T, in 10%eV)

= 1.3 x 10
a s BT 3’2
0 e

3
|

10_5 - 10_6 for present-day tokamaks,

10_6 £ 10‘7 for next generation tokamaks.

b4

(23)

I



The value of n strongly depends on the radial position of the
singular surface (Te effect) and the Zeff' Typical (normalized)
tearing-mode growth rates are y v 10-3 < w¥ so that strong
modifications of the instability by drift effects are to be expected5)

for plasmasof most interest.




IV Dispersion relation of drift-tearing modes

In the conventional theory of the tearing instability the plasma
is split into a thin layer around the resonant surface, where
nonideal effects are considered in a simple geometry, and an ideal
MHD outside region. Matching of the two solutions yields the
eigenfrequencies. Within the resistive layer egqs. (13) - (I5) are

approximated by (neglecting viscosity for simplicity)

o) 2p! 2T
% E 1 i o . r o e "
(w me) W e ) =dln =+ i ———;—;r~—-) vt o,
Beba
(24)
_ ¥, _m "
wA = ws A = wo Y.

These equations agree in essence with those given in Ref. 11. In
Ref. 5 the m:‘ in the damping term adding to n is replaced by w,

which corresponds te model (13a) - (15a), as mentioned in section III.

(25) m(m—m';)(m = w:)3 = iy,fl’, ,

Yo being the tearing-mode growth rate for w*+ 0. Limiting values of
w are (for wf = 0)
* . ¥*
w = 0.6 Wy + g s we << Yoo
(26)

¥ 213
Y3 I . T
Tue vzl GO ed> vy




The solution of (25) is plotted in Fig. | for a typical value of

7)

In a previous paper ° we demonstrated that, because of the small

YT-
fractional powers of n that determine the resistive layer thickness
for m > 2, very small values of n ( 510-7) are required to recover
the results of the conventional theory. In the case of drift-tearing
modes, where drift waves may propagate outside the resistive layer, a
rather '"'monlocal" mode structure is to be expected which may further
restrict the validity of the splitting technique mentioned above.

To determine the dispersion relation and eigenfunctions, we have
therefore used a more general numerical method similar to that used
in Ref. 7, which consists of integrating eqs. (13) - (15) in time.
After a transient period - several exponentiation times - the most
unstable mode is filtered out and its (complex) frequency can be read
off. More specifically, the differential equations are transformed

to finite difference form using a leap-frog scheme for advancing
quantities in time, ¥ at n At} n, ¢ at (n + %) At. Equation (13) is
written in implicit form for Y to avoid severe restrictions on the

time step arising from the V$ terms. Because of the large numerical
values the factor aw'zlné may assume, a careful time centering of
this term is required. Though the overall difference scheme is not
unconditionally stable, the stability condition arising from finite
poloidal Alfven speed At < r VE;T;T/N¢; is not restrictive for small
poloidal mode number m and finite density no(r). As a typical current

profile we choose the "rounded model” of Ref. 1,

2 V2sd

3/2 » s = 0.66 .
(r* + s*)
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2
The density profile is no(r) = 0.8 (1 - r?) + 0.2, and the
feaistivi : - . 5 a a 1
esistivity is no(r) nOJo(rS)/JO(r), where r_ is the singular
radius. The viscosity is assumed constant across the plasma,
M 0.1 No for most cases, a realistic number as discussed in the
213
revi ion. i = j i |
previous section Te is chosen Te(r) Te(rs)(Jo(r)/Jo(rQ»
Varying Te corresponds essentially to shifting the me* scale,

which implies that the dispersion relation is determined by aTe

(i.e. m: ) and not by a.

In Fig. 2 we have plotted the growth rate vy as a function of

m: for three values of n,e Evidently a strong deviation from the
analytical result Fig. 1, which corresponds to U, = 10_6, occurs
for w: > Yo This is due to the finite size of the singular radius.

For w*® =

Yo drift waves are localized close to s Fig. 3,
propagating away from the resistive layer, where they are damped
because of shear. This corresponds to an energy flow out of the
"unstable" region leading to a reduction of the growth rate, which
is qualitatively the same effect as the shear stabilization of

2)

. . T 1
drift-instabilities .

For largerw® drift waves propagate across the whole plasma,Fig. 4,
and boundary effects become important. In the usual case where

w*® (r) decreases for increasing radius, drift-modes are confined
to the interior of the singular surface O < r = r.. At t =0

boundary conditiors are given by the requirement of regularity,
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¢ = n =1y = 0, This implies reflection of the drift-wave leading to
a standing wave.Energy is thus transported back into the resistive
layer reinforcing the tearing instability, which explains the
increase of y. The modulation of the y curve in this regime, as
seen in Fig. 2, is due to the discrete radial wave number effects

(small number of nodes).

In the opposite case of radially increasing w¥ the drift-modes
would be confined to the exterior region r src< 1. In this case
boundary conditions at the wall would play a crucial role. These
are strongly depending on the properties of the plasma close to
the wall which is probably at least partly absorbing. Since,
however, the case dw* /dr > 0 is of less practical interest, we

have not considered it in detail.

The dependence on the sign of dw*/dr can easily be recovered
analytically. Since this is a property of drift-wave propagation,
we neglect the n term in eq. (13). Inserting j from eq. (13)

into (15) and using V - (n°V¢) = n°¢", we obtain

(28)  ¢" - a20¢ = b ¥

E ’
nl
vith a2 = Lml ol
armn_ o
w
1 P
% | 2 . m|do
b . P TER
o s} (o]

= - ¥
Q w-w (r)
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Neglecting ¢, we find that for @ < 0,4 is oscillatory, while for
Q > 0 it is exponentially decaying. Since w = m:(rs), dw*/dr < O
corresponds to @ < 0 in O<r < r while dw¥®/dr > O corresponds

to § < 0 in r s r<l.

As w: is increased further, the radial wave number (number of nodes
in the eigenfunction) becomes smaller, which increase the radial
propagation velocity thus increasing the growth rate. For w = 0.2
the ¢ and n eigenfunction assume the longest possible wavelength

(no nodes in 0 < r < 1), so that by further increasing wz the growth rate

does not increase, in fact there is a strong reduction.

Figure 2 clearly shows that for w™ > Yo the growth rate does not
scale as Y = n for fixed w* as predicted by eq. (26), but with a
much smaller power of n. As mentioned above the reason is the
propagation of the drift-modes across the entire plasma r < .

This effect is partly due to the large parallel ion viscosity Mo
strongly suppressing parallel ion motion (in our model we assume

vy, = 0) which can be seen when instead we solve eq. (18) for B, = 0,
inserting v, into the continuity equation (14). Figure 5 gives

the eigenfunctions for this case for parameters corresponding to those
of Fig. 4. For w* 2 Y drift-modes are more localized to r = r
region, growth rates remaining smaller than for v, = 0, see the
dispersion relation for M o= 0, Fig. 6. For larger mg', eventually

the drift-mode again fills the entire region O < r ¢ r, leading to Yy
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increasing with w: . Thus parallel ion viscosity in the region
outside the resistive layer strongly changes eigenfunctions and

growth rates

The effect of the collisional magnetic viscosity M is somewhat
weaker, though it has an appreciable influence on the fine structure
of the eigenfunctions for m*“JYT, as shown in Figs. 7 and 8. For

higher values of w* the effect becomes small.

It is interesting to note the role played by the term proportional
to Vyujn in Vg, s ede (12), which in the analytic treatment Ref. 10,
is taken into account to provide spatial damping of the drift-waves,
but does not enter the dispersion relation (25). Leaving out this
term would give rise to a completely different "eigenfunction'",

Fig. 9, with a much larger'growth rate".
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V Influence of radial plasma flow

Finite resistivity gives rise to an average radial plasma flow, the
magnitude and direction depending on the distribution of particle
sources. Usually one has v, 2 0(n). Although this is generally a
small velocity comparing vo/a with the tearing mode growth rate

Yy v n3/5, it may produce a strong effect in the resistive layer,
v0/6 nv n3/5 Ay, 6 being the resistive layer width & © n2/5.

To 1include this effect, a convective term has to be added on the
left hand sides of eqs. (15) to (17). Closer inspection, however,
reveals a smaller influence of v, on the tearing instability than
expected from the argument just given. ¥ has a finite value at T,
but its derivative is quasi-regular and hence 3y/dr < ¢ /8§, while

n and ¢, which have singular derivatives, both vanish at r, and
hence the major contribution of the convective terms v03¢/8r, voan/ar

arise in a region of little influence on the instability.

A qualitative estimate of the growth rate can be given, considering
th v, - tem only in the ¥ - equation:

v —

. ] P_o_13
(29) Y = + H H = v or /rs ’

b
where H is some positive number which only weakly (logarithmically)

. A' ;
depends on n. Since Y, = il , the velocity necessary to make the
P T 5 Y

system marginaly stable is

(30) v = -nqA'
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Hence we expect that an inward flow L n315 may stabilize the
tearing mode while an outward flow further increases the growth

rate (In the case of a symmetric plame current sheath, 3y/8r = 0,and
a plasma flow has no influence on the tearing instability).Numerical
calculation of Y(vo) confirms this picture, Fig. 10. Here we have
normalized v, to nA'. We find that the value of vom/nA' increases
by a factor of 2.2 when decreasing n from lO-.6 to 10-7 which is
consistent with (10)2"5 ~ 2,5 predicted by eq.(30). We also confirm
that the convective terms VOB/Br inserted into eqs. (14), (1I5)

have negligible effect.

13)

It has been observed in tokamaks that magnetic mode activity is
considerably reduced during the phase of central density increase
due to gas inflow. This could be related to the stabilizing effect

of an inward plasma flow, though a quantitative comparison is

difficult.
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VI Conclusions

We have derived and solved a set of equations for the tearing
instability in a cylindrical tokamak-like plasma within the frame-
work of the two-fluid theory, including the effect of diamagnetic
drifts, ion viscosity and radial plasma flow. The method consists
in numerically integrating the equatiomsin time to obtain the
complex frequency and eigenfunctions of the strongest growing mode,
using values of n, w¥ , u corresponding to present day and next
generation tokamaks. The main results are:
a) In the regime mz > Yo growth rates differ appreciably from
those predicted analytically, being much larger. This is due to
drift-waves propagating over the entire plasma interior

rs T and feeding energy back into the resistive layer.

b) If parallel ion viscosity is neglected, parallel ion motion leads
to stronger spatial damping of the drift-waves outside the

resistive layer and hence smaller growth rates.

¢) Collisional magnetic viscosity appreciably affects the mode
structure for w® o Yos but has little effect for larger drift

frequencies.

d) An average radial plasma flow v, may stabilize or further
destabilize the tearing instability if the flow is inward or
outward, respectively. The marginal drift velocity scales

_ 3/5
v, om>"2)s

The nonlinear development of drift-tearing modes will be investigated

in a forthcoming paper.
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Figure captions

4 . . . . Lol
Fig. 1. Theoretical dispersion relation, eq. 25, for w, = 0 and

Yp = 4 x 10—3, corresponding to n, = 10_6.

Fig. 2. Numerical function y(m:) for three different values of n,e

e

. *
Here realistic values w. = l-w s U = 0.1 n_are chosen.
i 2 e c o

Fig. 3. Eigenfunctions y, ¢, n for n, = 10—7, d: =6 x 10_3
r = 0.5.
s
. ’ ’ -7 % -2
Fig. 4. Eigenfunctions y, ¢, n for no = 10 °, Y, = 1.5 x 10
r = 0.5.
s
. . . -6 * ~3
Fig. 5. Eigenfunctions for My = 0. = 10 7, w, = 7 x 10 7.
For vy, = O (uo + «), the usual case considered, ¢, n

would be similar to those of Fig. 4.

Fig. 6. Y(w:) for My = 0, the remaining parameters corresponding

to those of the B, o 10-6 case of Fig. 2.

Fig. 7. Eigenfunctions for Mo = 0.03 Ngs Ny = 10-6, m: = 1,5 x 10-2.

Fig. 8. Eigenfunctions for Mo = 0.3 N, the remaining parameters

as in Fig. 7.

Fig. 9. "Eigenfunctions" obtained when neglecting V,j. in the
quasineutrality condition eq. (9). This term gives rise

to the spatial damping of the drift-waves.

; -6 =7 *
Fig.10. Y(vo) for n, 10 7, 10 and wy 0.
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