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Abstract

The essential formulas for the asymptotic analysis of Stellarators
developed at Princeton are assembled to facilitate studies of limitations
on beta in Stellarators. Analogy with Tokamak studies is demonstrated.
The connection between low-f Stellarator and high-8 Scyllac work is

shown.




I. Introduction

There are two possible ways to make analytical progress on
Stellerator MHD studies. (1) Expansion in terms of the distance
from the magnetic axis was first used by Mercier and his collaborators,
and has been exploited recently by Shafranov and his colleagues and
by Lortz and Nihrenberg. This approach offers the only known way to
analyze systems such as a Figure-Fight Stellarator where the magnetic
axis has torsion. Its difficulty is in the imposition of the proper
boundary conditions at the edge of the plasma. (2) The approach used
by the Princeton group is to restrict consideration to systems that
are periodic over a short period compared to the length of the
magnetic axis and to use asymptotic expansion techniques to reduce
the problem to one analogous to what is solved in Tokamak studies.
It is the purpose of this note to comment on the essential equations
that have been developed.]*5 In this way I hope to show how current
Tokamak studies could easily be extended to apply to Stellarators as
well as to show how this low-B work is related to the high-B Scyllac
studies. It may be useful to note that the effect of ripples (imposed
on Tokamaks for 'ripple trapping' when using perpendicular neutral
injection) can be studied with the same formalism. In the next

section I develop the equilibrium problem. In the following I consider




stability. Then, finally, I make a few comments concerning work with
high-f. I have been sloppy with units so the formulae may be wrong

by factors like uo,hn, and possibly factors of 2 or 2mnR.

II.Equilibrium

We use a Stellarator expansion 1 where
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i.e., the usual small inverse aspect ratio ordering employed for

high-B8 Tokamaks with an additional helical field. Here:

ﬁ; is a uniform axial field.

E
- - iy L,h . _
By vi 1= I, () sin (26 - hz + 6, )
h %
€2,h .2-% &
TVl D= b rsin(R0-hzt, L) + ... . (hrve s 1)
h 2 22! :

The different choices of h must all fit into the circumference of the torus.
Since we assume that h >> 27R we can average over the largest of these
fields and find that the components of Eé with different values of h do not

interact. For a simple Stellarator one would only keep a single €
]
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BB =e, BB(W), where ¥ is a magnetic surface label. This implies that the

pressure is contained to lowest order entirely by the toroidal field,



just as in high-B Tokamaks where Bp ~ R/a.
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- Eoé. (r,0) is the field perpendicular to z and independent of z.
It is associated with axial currents in the plasma, both associated
with Ohmic heating and with the Pfirsch-Schliiter currents, as well as
with currents parallel to z outside the plasma, for example in Ioffe
bars. Since it is perpendicular to z and independent of z, it can be

represented by a stream function Ko’
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Then, the axial current in the plasma is, to lowest order,
J =-B V2 A, (2)
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Bdé contains that part of the second order field that varies with z

over the short period.

We introduce an expansion in el!2 for the surface label
vy =y Ly y@,
and solve the equation
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In first order,

w1 (0)
By gy Bt




or

\,}'(1)._. - |:f B dz] « vV W(O) * ;‘1) (1",9)

§

The last term is a constant of integration. The presence of this and
similar terms in the higher orders makes it possible to have asymptotic

convergence. In second order,
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Since Y is independent of z, the terms in B, and Br do not contribute.
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The terms that vary with z determine W(z)up to an arbitrary function

of r and ©0. The solvability condition, that all the terms independent
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of z vanish, is a first order equation of the form Fevy = 0,
with the solution
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Similarly, from the condition that V « J = 0, with J; = B x Vp/B-,
we have
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Note that the first term in Q is - Bg >, the magnitude of the helical field
averaged over the periodicity length, and represents an average curvature
associated with this field. The second term is the curvature arising from
toroidicity. It was shown in reference | that Q is essentially a measure

of the length di/B of a line of force over this periodicity length, so

that the criterion for a closed-line device to have equilibrium is that

Q=Q).

The equilibrium problem then consists of solving Eqs. (2),(6), and
(7), Note that if B6 + 0, @ = 2(r/R) cos O, so that this system reduces
to the well known Grad-Shafranov equation in the large aspect ratio limit.

It would not be difficult to modify any numerical equilibrium code

(such as Lackner's) to include the extra terms.

In reference | we showed how to write this set as an integral equation
so that the boundary conditions are made manifest. Obviously, the
boundary conditions are the same as those treated by standard Tokamak

equilibrium codes.

III. Stability

The same expansion that was employed in the equilibrium analysis
can be used to reduce the stability problem to one similar to that treated
in Tokamak studies. This is done in reference 2, with the stability
criterion for localized modes derived in reference 3. Some possibly useful

. . ; 4
expressions were derived earlier -,
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In lowest order we must set v « EL = 0 to prevent stabilization
; ; +(0) ..
associated with fast waves and 3 QL /3z v € to eliminate the stable

short wavelength shear Alfvén waves. This is exactly the same as in
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Tokamak work. We can introduce a stream function for %L ,
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In the next significant order we find that v . £, = 0 and that
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remove the stabilization associated with the slow wave, adjust
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These equation are very similar to those treated with Tokamaks (see
reference b, for example). The two differences are in the extra curvature
term in Q and the more complicated form of ¥ which determines the effective
poloidal field in Eq. (10). It would be easy to modify the Princeton
stability code PEST to include this since it has 3 projected in such a way

+(0)

that representation of £ by a stream function is trivial. Modification

of the Lausanne code ERATO should be possible but may be more difficult.



IV High-3

One can get an understanding of many of the features of Scyllac the
Los Alamos toroidal theta pinch, by looking at Eqs. (4), (6), and (7).
If JU is to be small enough that B0 is 0(a/R), we must have either
p/Bi v a/Ror @ =Q (¥). This latter possibilty is the one utilized
in the Meyer - Schmidt model and in standard Scyllac orderings. In
particular, the standard Scyllac approach is to use a mixture of

2 = o and 2 = | fields so that the cos® part of the ez’h Em’h

term in Eq. (7) combines with the (r/R)cos@ term so that the formula

in Eq. (4) is obtained. In a sharp surface model where p'(¥) = O except
on one surface this can be done in a straightforward manner. It is

actually accomplished by making a subsidiary expansion where r/R and

Eolel are made small or by initially assuming them smaller).

Then
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with Eq. (2) reducing to an ordinary equation for WE?; (see Ref. 5)
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Numerical solutions of this ‘s
equation indicate that as 8

is increased the shift of the

Qo
¥
=

surfaces from being concentric
grows as shown in Fig. 1. This P‘
is the familiar Shafranov shift

associated with Pfirsch-Schliiter

currents. At some critical B8,
BC, the shift becomes infinite. Fig. |

For B > BC equilibria can be found, but with the magnetic axis shifted
inward. It is interesting that the homogeneous part of Eq. (11) is just

the Euler-Lagrange equation obtained from Eq. (9) for a straight cylincrical

(o)

i e A ; ‘
system 4 for a mode with £ independent of z and varying as cos@. For
B < Bc this equation indicates stability with respect to such a mode;
for B > Bc it indicates instability. Thus one can visualize the Scyllac

difficulties as being due to the choice of an unstable equilibrium with

the inhomogeneous term in Eq. (11) serving to drive the instability.

It has been, and still is, my opinion that there are enough
parameters available that one could get out this operating regime
at the upper end of B in Fig. | where the shift A makes the average
curvature along a field line unfavorable and where the m = 1, n = O mode
is so apparent. So far I have not succeeded in doing so. Indeed, no
analytic progress and only partially successful numerical work on diffuse
three dimensional equilibria of this type has been done, due to the need

for keeping 2 = @ (¥). I think changing the externally imposed




contribution to A0 could lead to improvement. I think Lortz and
Nilhrenberg would argue that this approach is limited by external
separatices. Since the solution found by Garabedian and Betancourt
utilizes a superposition of fields varying as sinf(®@ - h z), I
find it hard to believe these fields should interact to provide

a positive effect.
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