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Abstract

A time-dependent explicit finite difference code is developed for computing
growth rates of gross magneto-hydrodynamic modes in helically symmetric
high-, {=1 equilibria. The effect of numerical dispersion on current-driven
and pressure-driven modes and the convergence of the growth rate with the
grid size for modes in screw-pinch, ©-pinch, and helical equilibria are dis-
cussed. In the case of diffuse MHD equilibria with a long helical period
length, the eigenvalues computed by this code are in agreement with those of
a ch-cnalysis and of experiments and are a factor of about two smaller than
the surface current theory predicts. The growth rates of m 2 2 modes are given
as functions of the helical period number, the helical amplitude of the magnetic

axis, beta, and the longitudinal wave number k.
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1. Introduction

The investigation of the linear magnetohydrodynamic (MHD) stability of helically
symmetric high-f equilibria with diffuse pressure profile and a spatial magnetic
axis is of considerable significance for the toroidal high- B experiments Isar Tl
/1/, Seyllac /2/, and the HBS Il /3/. In leading order, the stability of these
toroidal equilibria of large aspect ratio and with many periods around the torus

is determined by the stability properties of helically symmetric equilibria.

In the past, several approximating assumptions about the ordering /4, 5, 6/ and

the pressure profile have been used to calculate the growth rate of unstable modes

in these systems /2/. One important result of the stability theory based on the old
Scyllac ordering /4, 5/ and using a constant pressure model is that the m =1,

k = 0 mode can be wall=stabilized for a sufficiently small compression ratio (b/a)

by the dipole currents induced in the conducting wall. For a diffuse pressure pro-
file and using the same old ordering, there are, besides the gross m = 1 mode, two
additional classes of rather localized m = 1 modes /7/. One set of modes existing
for every monotonic pressure profile is localized in the interior of the plasma and
cannot be wall-stabilized,while the other set of modes is localized rather in the
exterior of the dense plasma and can be wall-stabilized. However, the growth

rates of these modes are a factor of the order £ (¢ = ha, a being the mean plas-
ma radius, L =2W/h the period length of the £ =1 field) smaller than the gross

M= 1 mode in the case of no wall stabilization. The corresponding growth time is
typically about 50us and hence up to now these modes have not been observed hither-
to in experiments. Hence we will not deal further with m = 1 modes which have no
implication in a wall=stabilized experiment during a time scale of interest, but
investigate instead the m = 2 modes growing in a shorter time scale. There are some
theoretical and experimental facts discussed below which called for the investigation

of m = 2 instabilities in helical configurations of small compression ratio.

According to the surface current theory /4, 5/, the MHD growth rate of the m = 2,
k = 0 mode for typical plasma parameters is a factor of the order G (fm (m - 1) /ha)

as large as that of the m = 1, k = 0 mode in the case of no wall stabilization. However,
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the experimental results /1/ indicate that the m = 2 mode cannot be observed or, if
it is observed as in the collision-dominated regime, the growth rate is less than the
surface current theory predicts. This fact was a strong motivation for developing a

model to study the effect of a diffuse profile on the reduction of the growth rate of

m = 2 modes.

More recently, Herrnegger and Nohrenberg /8/ studied the stability of toroidal high-B,
¢ =1 equilibria with a diffuse pressure profile and a vacuum field outside with respect
to localized modes by means of general stability criteria. They showed that (a) for
sufficiently high B-values (32 0.75) and a compression ratio of about 2, the Mercier
criterion is satisfied almost everywhere except in a very narrow region around the mag-
netic axis, (b) a mean high-f magnetic well exists for B-values of 2 0.23 and

(c) the vacuum magnetic field between plasma and wall has a magnetic \;vell, too;
hence the plasma is surrounded by a region of increasing mean value of B, These re-
sults have been an additional motfivation for studying the stability behaviour of helical

equilibria without using any expansions.

Very recently, Marder /9/ investigated the m = 2,3 modes for a helically symmetric
diffuse pressure profile by means of a fSW-cmalysis using the new Scyllac ordering,
which does not include terms of order & . However, in the present code, we do not
make any restricting assumptions about ordering and pressure profile but include all

physical properties of helically symmetric MHD equilibria. The stabilizing effect of
jon gyro-motion on the m = 2 modes /10, 11/ can be implemented into the code but

we do not deal with this effect at present.

There are essentially two distinct approaches to solving the linearized stability
problem. The variational approaches utilize the Lagrangian to formulate an eigenvalue
problem /12/. The solution is found by using the Rayleigh-Ritz /13/ or the Galerkin
/12/ procedures where either global expansion functions /14/ or finite elements

/12, 15, 16/ are taken as a basis. An efficient approach is a combination A YV

of finite elements to represent variation normal to the magnetic surfaces and Fourier

series for behaviour in them.
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The other major technique which we are using is to treat the initial-boundary-value
problem /17, 18/, where the evolution of linearized. perturbations is followed in

time. The unstable mode with the largest growth rate will separate from the others
after some time. As we shall show below, rather small growth rates can be calculated.
This method allows the investigation of nonlinear ideal /19, 20/ and non-ideal MHD
effects /21 - 23/ to be implemented in a straightforward manner in problems depending

on two space variables and the treatment of three-dimensional nonlinear problems

/24 - 27/.

The method of solution is essentially the same as that developed by Bateman-Schnei-
der-Grossmann /18/ to investigate the stability of belt-pinch equilibria. In contrast
to the belt-pinch-type equilibria, however, the instabilities in the high-@ stellarator
configuration (HBS) without longitudinal net current are not current=driven modes but
pressure-driven modes and have a very small nondimensional growth rate. Therefore,
the computational effort has to be considerably increased for calculating these small

growth rates.

In Sec. 2 the linearized ideal MHD equations formulated in a helical coordinate
system and the boundary conditions are given. Section 3 describes the numerial solution
of the initial-boundary-value problem and the calculation of the eigenvalues. The
numerical dispersion and dissipation is systematically investigated for current-driven
and pressure~-driven modes in screw-pinch, 6-pinch, and helically symmetric high-
equilibria. In Section 4, the eigenfunctions and the eigenvalues of m = 2,3 modes as
functions of the helical distortion, the longitudinal wave number k, and B are

given for a particular ha.




2. The Model

We perform a numerical mode analysis of global MHD modes in a configuration

where the plasma touches the wall; hence there is no vacuum region between

plasma and wall. The basic equations for the model /28, 29/ are the ideal MHD
equations. These equations are linearized about a given helically symmetric, and
hence two-dimensional, equilibrium; we then Fourier-analyze these equations along
the ignorable coordinate and get a system of partial differential equations depending
on time and on two dimensions of space. All perturbed quantities are complex
functions in order to describe the phase of the Fourier components. Together with
appropriate initial values and boundary conditions, this initial-boundary-value
problem is solved numerically using an explicit difference scheme. The results of this
computation are the eigenfunctions v, p, and E, and the associated eigenvalues,

i.e. the growth rates.

This is the general survey of the method; i.e. how the instabilities of helically

symmetric equilibria are calculated.

The ideal MHD equations from which we start are given in nonlinear form

{)

E‘t— + V. (So —\‘/) =0, (])
2 + - _.+ 3‘ E—O 5
Plag * V:V) V+vp- IxB=0, )
ZTP + %V +(x-1) p (v.V)=0, 3)
LE + VxE=O (4)
2t )
tlo-j =V x E, (5)
E+9vxB =o (6)

-
where ¢ is the mass density, V is the flow velocity, p is the pressure, B is the
magnetic field, and po is the magnetic permeability of the vacuum. Equation (3)

describes an adiabatic change of state, where X = cp /cv is the ratio of specific




heats, which we usually specify as X. = 5/3. The current density ] and the electric
field E are determined from Ampere’s law and Ohm’s law, respectively. Equation (1)
for the mass density is not needed since the change of pressure p appearing in the

equation of motion is determined by Eq. (3).

2.1 Coordinate System and Equilibrium

The coordinate system in which the initial-boundary-value problem is solved, and

in which the helical equilibria are calculated, is a non-orthogonal helical coordinate
system (x', x?*, x3). This system (see Fig. 1) consists of cartesian coordinates x7, x2)
rotating around the straight z-axis; the period length L= 2T /h along z is the period
length of the £ =1 field. The coordinate transformations and the metric tensor are

given in App. A.

A

hz 10 L
0 S X

2

Fig. 1:Helical coordinate system (x*, x*, x3) with the origin at 0.
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The magnetic field B and the current density 3 of diffuse, helically symmetric
high-, € = 1 MHD equilibria which are independent of x3) are given in App. A

in terms of its covariant and contravariant components. The solution is computed
numerically for a special choice of the equilibrium pressure function B= p(y)

and of the second free function I (), as is described in App. A,

The equilibrium has the special property that the longitudinal net current vanishes

on each magnetic surface (J . = 0). The outermost magnetic surface of these equi-
libria is a square of side length 2b which coincides with coordinate surfaces, and
which has a helical displacement D1=chfrom the coordinate axis. This is numerically
the simplest boundary curve where we can put the boundary conditions for the distur-

bances and the equilibrium quantities. Some examples of helical equilibria are given

in Appendix A (see Fig. 14).

The five dimensionless parameters of H;mese equilibria are the helical displacement J”
the period number € = ha, 8= p/ (8%/ 24, +p) at the magnetic axis, J, character-
izing the longitudinal net current which is set equal to zero, and the compression

ratio b/a which we usually set equal to 2. The dependence of the growth rate of m = 2
modes on the compression ratio is of less interest and hence this parameter dependence

is not being investigated at present.

The equilibrium density ;; appearing in the linearized equation of motion has the
same spatial dependence as the equilibrium pressure except in the boundary region
where the minimum value of ;; is kept at 0.1 of the maximum value ofﬁ at the
magnetic axis in order to keep the Alfven velocity finite. The equilibrium and the
perturbed magnetic fields are referred to the characteristic value B, , which is re-
lated to the magnetic field Eo at the outer conducting wall according to

Be = (935 302)1/2
The characteristic time is the Alfven transit time 7, = a/V, = [Bz /[uoy,a")]—yi

. All lengths are measured in units of the mean plasma radius a.

where the equilibrium mass density p, is taken at the magnetic axis. From this
normalization it follows that the growth rate 7 computed by the code is related to the

A
dimensional growth rate JJ\' as V=¥ 'l;‘ .
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Because the square boundary rotates, all these equilibria we use at present have a
small € = 4 field component which entails a destabilizing effect. According to the
surface current model, however, the relative change of the growth rate of m = 2

modes due to this 5‘1’ ~distortion, which is typically J,*¢==’0.03 , is negligible.

2.2 Linearization and Fourier Analysis of the Initial-Boundary=Value Problem

We linearize the Egs. (2) - (6) ground a given static MHD equilibrium solution re-
presented by the functions B, B and which is described in the previous section:
Q= & + 3 é In addition, we drop the index 1 at the perturbed quantities; 3
is the arbitrary small perturbation parameter. The perturbed state is completely re-
presented by the seven functions v, P B. Since the equilibrium solution is inde=
pendent of x3 and hence the coefficients of this linearized system of differential

equations do not depend on x3

3.

, we can make a Fourier analysis along this ignorable

coordinate x

Q(x1,xz,x3,f)=a(x1,xz,f)exp(iK x3),

~

where all perturbed quantities Q are complex functions (i = [=T). The imaginary

part of the complex solution describes the physical quantities at a plane x> ="N/4
displaced a quarter-wave length of the unstable mode in the x3 -direction (A =2 /K).
We also drop the tilde and have to investigate each Fourier component Q for a given
wave number K of the mode. Because the (x” , x2)-plane rotates around x3 , the
wave number K in the rotating coordinate system is associated with a set of k, m)-

modes in a frame at rest according to

k = =K = mh, (7)

Here, k is the wave number in the z-direction in a frame at rest and the azimuthal
mode number m gives the number of vortex pairs of V in the azimuthal direction. After
doing this and keeping in mind that all perturbed quantities are complex, we get

the following system of partial differential equations for the contravariant components

of the perturbed velocity v* and magnetic field B* , and the perturbed pressure p:




09 < . igk 29 ok

PTDTV + g { pe - {g—f;&e (34 B *J%:B )}—0: (8)
) ) o 1 s

= Pt i 8/4. + Up —-—-—r__g (fg v 2,{—0, )
’D k1 gk

7)? B + —@_——5 EJ,{ —'O/ (]O)
E = = Jg £ v‘: g’ J& =L5ing‘ 1 : (”)
ﬁ 4;‘ ! @- J'//'

For brevity, derivatives are denoted by indices 4 := 9 /QXj and the usual
summation convention is used; here the derivation ? /2x3  has to be substituted
by iK. The permutation symbols are denoted by EciR and £ SR In App. B, the
system (8) - (11) is given in component form. This hyperbolic system of first order in
time and two-dimensional in space was solved numerically together with the boundary

conditions for an electrically conducting wall at a square boundary of side length 2b

(see Sec. 2.1):

S =3

p=0(2), ne(E . -E

(a) ) ) = 0(13), hx E=0 (14),

where n is the unit vector normal to the boundary and is simply related to the co-
variant base vectors % . The condition (13) is for numerical reasons only and de-
fines the normal component of the electric field -E(a) at the artificial points outside
the conducting boundary in terms of the electric field E{z) at the interior points next
to the boundary. This condition states that the electric surface charge,which cannot
be prescribed by the boundary conditions, is determined by the differential equations.
The analytic equivalent form of (n.Vv)=0 was not used for numerical reasons. A
suitable choice of initial values immaterial to the solution of the eigenvalue problem

is described in Sec. 3.1.
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3. Numerical Solution

In this section we shall describe the numerical method of solution; in particular

we discuss the effort to get reliable results by this code.

3.1 Solution of the Initial-Boundary-Value Problem

Difference Scheme:

The difference approximation was made in a grid staggered in space and time: at a
given time step in the numerical calculation, the various physical quantities are
staggered over the mesh.

On the o-grid, the physical boundary curve, the perturbed pressure p and the per-
turbed magnetic field B are defined; on the + - grid, the equilibrium quantities,
the perturbed current density J and the electric field E are defined. This layout
helps the space and time centering of the various difference equations. The grid
size axis the same in the x' and x* -directions. The difference approximation used

here is of second-order accuracy. More details concerning the grid are given in

Appendix C.

For the explicit difference scheme that we use, the maximum time step permitted by
numerical stability considerations is determined by the maximum magnetoacoustic

velocity V, . of the equilibrium solution:

M
Al = Ax/\/M s (15)

An advantage of the linearized system is that this maximum time step is constant

during a run. In general, we used 0.8 of the maximum value.

The equilibrium solution  (x' , x* ) is symmetric with respect to the osculating
q y p

plane of the magnetic axis and therefore is an even function of x*, y ', x*)=

i v

1 - x2 ), hence the magnetic field and the current density of the equilibrium

o o 01 e
have the following symmetry properties: the B . B, ,J ,J, componentsare
= LN
odd functions of x> , all other components of B and J are even functions of x* .

- . RN, T - W N Y e e "J
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Therefore the complex solution of Eqs. (8) = (11) have the following symmetry

properties with respect to x 2 :

B (x', x2) =-B"* (x1, -x?), vl (x7,x2)= vi1x (x1, =x?),
B (x1,x2) = B?** (x', -x*), v2 (x', x2)= —v2x (x!, -x?),
B3 (x*,x2) = B3¥* (x1, -x2), v3 (x?',x*)= -v3x (x?, -x?),
17 &', x2) ==31% &, X2, p &', x2)= p¥ &', -x?),
J? x?1,x*) = J*r (x', -x?),
J3 (x?',x2) = J3Fx (x1, -x?),

where * denotes the complex conjugate value. Starting with initial values of the per-
turbed quantities obeying these symmetry conditions, the computation can be performed
on half of the (x7 , x2 ) plane only because the difference approximation conserves

these properties.

Initial Values:

The solution of the eigenvalue problem treated as initial-boundary=value problem must
not depend on the initial values of the perturbed quantities. Hence any arbitrary
function can be used as initial values for the velocity field (or the pressure or the
magnetic field, which has to be devergence-free) which are not completely orthogonal

to the unstable modes of interest in the parameter range. However, in order to save

computing time, we start with a specific velocity distribution roughly resembling the
particular mode and having some characteristic properties of the eigenfunctions, namely
divergence-free in lowest order of cs; for transverse modes (k = 0) and a cos (m¢) -
dependence on the azimuthal angle ¢ . An example of such a velocity field, repre-

sented in a polar coordinate system (r, § )with the origin at D, , is given below:

vy =fr exp [-im(y:—d)] r Vo= -i f‘f exp [-im(y-o()] . V85087 (16)

The functions f, , f, are specified for different m-numbers as follows R=mr/, ):

¥
0 :f, =Asin R, f, =-A sin R;

1: f. = (A/R) sin R, f, =Acos R;

y Joc S fr=Asin R, f, = (A/m) (sin R+ R cos R).

m
m
m

...
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From these the velocity components v* , v* are calculated by using the trans-
formations between cylindrical and cartesian vector components. Within the circle
r=r, the perturbations are excited, the amplitude and the phase of which are de-
noted by A and & , respectively. All other perturbed quantities are initially set

equal to zero.

We learned that, by using velocity fields with vanishing divergence ( . v o= 0)
initially, the amplitudes of high-frequency compressional oscillations are conside-
rably reduced.

As an alternative to the above described initial conditions, we use as initial values

the eigenfunctions of a previous run for similar parameters.

3.2 Calculation of Eigenfunctions and Eigenvalues

The posed initial-boundary-value problem, Eqs. (8) - (14), is solved by the explicit
difference method described above. After some e=folding times, the most unstable mode
in the system overwhelms all other motion and the resulting spatial functions v, p 5
and Eare the eigenfunctions for the given parameters. The calculation is carried on
till these functions obey the relation
1 2 A

Q (x, x*, )= Q &', x* ) exp (pt)

where Q is any perturbed quantity and the eigenfunction a (x?, x*) remains

constant in time,
The physical high-frequency oscillations in the system can be damped very quickly
by averaging all functions in time at each grid point and taking these new values as

new initial values.

The growth rate f~ can be calculated at every grid point by

g
V=0 vt




- 14 =

But normally there is much noise particularly in the region of low density near the

wall. Therefore we either use the spatial integral of the kinetic energy

— - /2

f, 0= [[38(ReW) axtac, Y, 0= Ep (18)

or the spatial integral of the perturbed pressure or of the radial velocity multiplied
by a weight function /28/:
YP (t) = _” p cos (m¢) dx? dx? , (19)

Y, ()= JS v, sin (m¢ ) dx!dx? . (20)

For the natural logarithm of these functions Y (t), a least squares fit is made to

obtain the growth rate -

3.3 Numerical Convergence

Before using this code for investigating the stability behaviour of helical & =4l
equilibria, we performed several reliability tests. In particular, we investigated the
convergence properties of the numerical scheme, i.e. we calculated the eigenvalues
of different modes in different configurations as functions of the grid size 4 x.

We started the investigation with current-driven modes. In addition, we checked to
see whether the code guarantees linear superposition of different modes. We excited

simultaneously as well as successively m =1 and m = 2 modes of equal initial

amplitude, run the calculation a characteristic time, and finally added the eigen-
functions of the m =1 and m = 2 calculations. The result of this second run was

identical with the first, where the two modes had been simultaneously excited.

3.3.1 Screw=-pinch

The first application of the model described above, is a screw-pinch equilibrium with
straight magnetic axis and a superimposed € = 4 field. The longitudinal current is

fairly large so that current-driven instabilities with relatively large growth rates are

expected.

‘si
R ——————————SSS .,%
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Fig. 2: Dispersion curve| vs ka of m=1 (===) and m = 2 (—) modes in

In Fig. 2, the dependence of the growth rate on the grid size 4x versus wave
number k of m= 1,2 modes is shown. For the m =1 mode sufficient accuracy is
obtained for a moderate number of mesh points, i.e. the 24x24 (& x = 1/6) grid
yields results within an accuracy of approximately 10%. The convergence of the

m = 2 mode is worse, which is qualitatively understandable because of the finer
structure of the mode. In the coarser grids, the results are shifted towards stability,
which may be due to dissipative effects arising from the difference approximation.

The maxima of the dispersion curves are slightly shifted to larger ka values as 4 x

decreases.

a screw pinch for various grid sizes Ax.

TR,
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Y B=05,6,=0,e=01,b/a=2,3c=2

02
wl

Fig. 3: Dispersive effect of finite grid size near the marginal

point ,

Another effect directly related to the finite grid size is demonstrated in
Fig. 3. This plot shows the dispersion curve ¢~ (ka) of an m = 1 mode near
the marginal point for different mesh shizes Ax. The finite difference
approximation causes a fairly large shift of the dispersion curve to larger

ka values, this being a dispersive effect of the difference approximation.
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Fig. 4a: Convergence behaviour of eigenvalue y‘ ofm=1(—)
and m = 2 (--=) modes with different ka values in screw-

pinch-like equilibria.

In Fig. 4a the different convergence behaviour of various m modes is shown. The
solid curves are for m = 1 modes, the first one for ka = 0.5 approximately at the
maximum of the dispersion curve. With increasing ka values, the mode becomes more
localized, as can be seen from contour plots of the perturbed pressure (Fig.4b), andhence
the slope of the convergence curve increases. The convergence curve of the m = 2,
ka = 1.5 mode (this ka value is near the maximum of the dispersion curve) is about

a factor of 4 és steep as that for the m = 1 mode, i.e. the convergence of higher

m modes is considerably slower than for the m = 1 mode. This fact is plausible because
of the finer structure of higher m modes. A roughly second-order convergence of the
eigenvalues leas (Ax)z has been obtained for the current-driven unstable modes in

screw=pinch-type equilibria.
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ka=0.2 ka =0.6 ka=12

Fig. 4b: Contour lines p = constant of perturbed pressure of m =1 modes

with different ka values in a screw pinch equilibrium

(8=0.5d, =0, €=0.1, b/a=2,], =2).

3.3.2 6-Pinch

Leaving this class of equilibria with longitudinal current and tackling the

stellarator-type equilibria with vanishing longitudinal net current, the situation

gets more difficult. Before using the code for studying the stability of general £=1
equilibria, we tested it on the zeroth order approximation of such equilibria, i.e.

for 81 =0, and small but finit £ , or, in other words, for the B-pinch with a
superimposed € = 4 field. The upper curve in Fig. 5 shows the eigenvalue y2vs ax
ofanm=1, ka=0mode for € =0.1 ( <ﬂ, = 0,03). The extrapolated value of

}/7‘ for & x— 0 gives a real growth rate which is considerably smaller than yszc (e=0.1)
predicted by the surface current model /4/. Reducing the influence of the £=4

field on the instability by increasing the helical period length, one should get in

the limit of €-0 marginal stability behaviour, which means ¥ 2 =0;

this is illustrated by the dashed curve which is calculated for € = 0.01.
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Y2116y =05, 8,20,b/a=2,3c=0
[m=1 ka=0
2 —-YSC(ESOJO)
1 .,
0 //(t::&m)‘q | -
e \91 0.2 Ax

Fig. 5: Eigenvalue Y?. vs b8xofm=1, ka=0 mode in a 8-pinch-
like equilibrium with different & values (Jz, ~0.03).

In both cases the eigenvalue Y" converges as ( A x)’l In the case of € =0.01,
the eigenvalue J/z = 0 extrapolated from the stable side is in accordance with the

theoretical marginal value.

The eigenvalue J/'z = 0 is highly degenerate. It is easy to show that the linearized
unsteady MHD equations (8) - (11) have marginal solutions of the type

V=V(X), p=p (X)t, B=B(X)t (21a)

where the velocity is constant in time,and the pressure and magnetic field grow
linearly in time. The initial conditions put in Sec. 3.1 are satisfied by the ansatz (2la).
The velocity field V has to obey the boundary condition (V.n ) = 0. The spaﬁol

dependence of these solutions is determined by the differential equation for V:

v [(v.vB wup (v.9)] - ax(v.Q)+JxQ 0 (21b)




where for the moment

- 3

Q:=(B-7)v-(V.7) (v.V).

Solutions of (21b) being independent of z (ka=0) are easily found for ©-pinch

equiliobria with an arbitrary pressure profile 8 (x, y ) and the equilibrium magnetic

" = 2 o 0.7/ 2 5 g : .
field B= B2 e;=(1-2p) e, . In this case, a solution of (21b) is given by
N = Y o -
p(x, y,t)==-(V.vp)t, B(x, y, )= - (7Bt & , (21c)

where the velocity field v (%, y)= v, (x y) e, +vy (x, y) é‘y +v, (x,y) 32
is an arbitrary divergence~free field v.v=0, e.g. as is given in Eq. (16). The
numerical solutions computed by our code for marginal cases of 8-pinch-like equilibria

(see Fig. 5) showed the marginal behaviour described by (21).

3.3.3 Helical € =1 equilibria without longitudinal current

Having studied numerically the stability of the 8-pinch, whose marginal characteristic
is obscured by the £= 4 field and therefore shows the destabilizing effect of the (54_ -
equilibrium distortion, we deal with =1 equilibria with a helical displacement of
631 =1 and a helical period number of € = 0.1. Because the calculation is performed
in a domain with a rotating square boundary, a small Cg,*-disforﬁon is inherent in the

P =1 equilibria. Since the m = 2, ka =0 mode was of great interest for the dis-
cussion concerning the HBS project at Garching, we spent most of our effort on that
particular mode. Some results are plotted in Fig. 6. Starting with rather coarse grids
(a x = 1/6), we always got stable results, But when we used a grid size of ax=1/12
or smaller, we got the unstable m = 2 mode. The plot shows the calculated eigenvalue
&/2 vs A x for 8 values of 3 =0.5, 0.7, 0.9.
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Fig. 6: Eigenvalue J’z vs ax of m= 2, ka =0 modes in

helical £ =1 equilibria of different 8 values,

With increasing 3, the slope d Y'z/ d (Ax )z of the convergence curve yzvs (a x)z
increases. The reason for that is that in the case of high- values, the displacement of
the helical magnetic axis with respect to the center of the outer boundary has become
large (see Fig. 14), and hence the pressure gradient is large in the region where the
flux surfaces are close together. Consequently, a smaller Ax is needed in order to de-

scribe sufficiently well the ¥ 8 term in this region for high-f3 values.

In Fig. 7 the convergence curves yzvs (ax )?' are plotted for different m (ka = 0)
modes in equilibria without longitudinal net current. The m =1 mode in a 6-pinch
equilibrium shows a more favourable convergence behaviour than the more finely

structured m 2 2 modes in the £ = 1 equilibrium.




- g

Y2[164
15+
0F ™
N m=3
A
X, >B=O.7,51=l,€=0.1
°r ..'}x\m=2
'._A.. \x
0 . I\“ | | -
T 0.01 \\ 0.02 003 (Ax)?
m=1 p=05.5=0,£=001
A \\
x\\
-10F+ \\
AN
\\
-15L AN

Fig. 7: Convergence behaviour of eigenvalue Yz of m= 1, 2, 3 modes with

ka = 0in equilibria with vanishing longitudinal net current (b/a = 2,
J.=0).

The essence of these convergence tests is twofold: all these investigations were primarily
intended to improve the reliability of the numerical results. On the other hand, this pheno-
menological picture of the influence of numerical dispersion and dissipation may give some
hints for improving the approximation and the numerical scheme. Practically speaking, one
could try to use higher-order approximations with all their specific problems or possibly

try to use more appropriate coordinate systems. But up to now, we have used this code

as it is in order to obtain some relevant physical results which are described in the next

section.




o D8 =

4, Results

Because the rather high effort in computing a couple of e-folding times of the time
evolution of the instability prevents a detailed parameter variation, we could only
do a limited series of cases which are of particular interest for the HBS experiment
at Garching. First, we give the dependence of the growth rate on the wave number
k of the m= 2 instability. The resulting dispersion curve versus ka calculated for
& x = 0,06 is plotted in Fig. 8. The calculated maximum growth rate is near ka=0,

but not exactly; the maximum value of e is reached at ka= -0.015,

0.03 B:0,7‘61=1 =
e=01,bla=2

[m=2]

0.02—

0.01—

1 ] | L | ] |
-0.04 -0.02 0 002
ka

Fig. 8: Dispersion curve Jvs ka of the m = 2 mode in a

helical € =1 equilibrium (A x=0.06, J'c =0).

The next variation is on {; in addition, this result is also important for the comparison
with surface current theory / 4 / which predicts eigenvalues as given in Egs. (22) -
(24), and a Sw analysis carried out for a diffuse pressure profile / 9 / by using a

small £ expansion. It turned out that the solution of the initial-boundary-value problem
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agrees very well with the latter and gives growth rates which are a factor of 2 smaller
than those predicted by the surface current model. This is shown in Fig. 9. Besides
the results obtained for A x = 0.06, the extrapolated growth rates for ax — 0 are

plotted, too.

Y 8y=1,€=01,b/a=2,ka=0
0.09-
7 Surface /
current /
0.07- model\/’
/
/
/
0.05- /

/  p8W-analysis
/

l /
2D-Code
0.03- oAx=006
AAx-= 0
0.01-

O+=F———T T T T T -
0 02 04 06 08 10 g

Fig. 9: Comparison of growth rates sz B of m=2, k=0 modes

in different models .

The eigenvalues yz obtained from the surface current model / 4 / read for J; <« €<

‘VZ:CZ Bl el) om (Glp,, + G240 ), (22)
Gl ™ 35 41 (E-1) + B (max [m,e1- 1)} (23)
(2-8)(4-38) €% _ 3 ; for €=’1,'m-1
(1- )8 (4 /a)*
62, - (24)
0 for E>1,'m>1.

Another parameter variation is the increase of the helical displacement 6',1 of the plasma

column. The growth rates of an m = 2, ka = 0 mode and of an m = 3, ka = 0 mode calcu-
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lated for

models is made, and again the code yields reduced growth rates.

o x = 0.06 are shown in Fig. 10 and Fig. 11. Again a comparison with other
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4 T .
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4/
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To summarize these quantitative results, one can say that within the parameter regime of
interest (B~ 0.5 = 0.9, dﬂ,, ~123, € =0.1)the calculations are in good agreement
with the d'W results and the growth rates are a factor of 2 to 3 smaller than predicted
by the surface current model. The experimental results obtained from the Garching

ISAR T1-B experiment / 1 / when operated in the collision dominated regime also agree

rather well with our numerical results.
To illustrate the eigenfunctions which are obtained by computation with 8x = 0.06
in a helical equilibrium, we selected an m = 2 (ka = 0) mode and plotted the velocity

field in the (x* , x2 ) plane and the contour lines of the corresponding perturbed

pressure (Fig. 12).

Mode: m=2,ka=0,Y=0.025(B=07,6,=1,€=01,b/a=2,3=0)
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Fig. 12: The m = 2, ka = 0 eigenfunction in terms of velocity field

and pressure in the planes x> =0and x> =2 /4 .

The pictures on the left are in the (x” , x2 ) plane for x2 = 0 and the pictures on the

right are at x> = A /4, i.e. a quarter of a wavelength of the unstable mode down the

tube. This plot should illustrate the rotating feature of the instability in the rotating




coordinate system.

Fig. 13 likewise shows an m = 3 (ka = 0) mode in a helical € =1 equilibrium.

Mode:m=3,ka=0,Y=0.027(B=0.7,6,=1, €=01,b/a=2,3c=0)
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Fig. 13: The m= 3, ka = 0 eigenfunction in terms of velocity field

and pressure in the planes x3 = 0and x3 =N /4 .
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5. Conclusions

The method of calculating the gross MHD instabilities by solving the linearized
initial -boundary-value problem is applicable to arbitrary equilibrium confi-
gurations having one spatial symmetry and even for cases of rather small growth
rates. From the numerical point of view, an insiéhf into the mechanism of
numerical dispersion and dissipation or, in other words, an improvement of the
existing method would be desirable. As far as the physical problem is concerned,
the code will be extended to investigate the modes in configurations with

arbitrary boundary shape, and furthermore the stabilization of m = 2 modes by

finite Larmor radius effects (FLR) will be investigated.
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Appendix A: Coordinate System, Helical Equilibria

We use a non-orthogonal helical coordinate system (x* , x2, x3) (see Fig. 1) which
consists of cartesian coordinates (x' , x ) rotating around a helically deformed x3
coordinate axis. The helical coordinate axis has the period length L = 2T /h of the
helical € =1 field and a helix amplitude of D¢ =a Jc ; d_ and € =ha are nor-

<
malized to the mean radius a of the plasma column.

The transformation of coordinates from cartesian (x, y, z) to helical coordinates

(x?, x%, x?), and the covariant and contravariant components of the metric tensor

read:

x' =xcos hz + y sin hz-ac;; ; (A1)
x? =-xsin hz +y cos hz , A2)
x3 =z, (A3)

2 2. 2

9, =9, =1, 933 =1+h [x? +ad_ ) +x*) 1, (A4)
9, =0 9, =-h*, g, =h&" +ad ) Vg=1, (A5)
g™ =14+ (x*)®, g2% =1+h" " +ad, )* , g3 =1, (A6)
ok &' +ad )x*, g® =%, g*? =-h ! +ad ) A7)

The helically symmetric equilibria are independent of x3 ( 9/9x3 =0) and obey
the static MHD equations:

o o
- -

V;=JxB, Uoj‘= Vxﬁ, v

%
B

=0 . (A8)

The solution of these equations is usually represented by a flux function yw obeying the

nonlinear elliptic differential equation:

£ Z.I 1 01 !
A\P’m— —FF—(P "’II/Q_;g)/ A9)
95 8% = [1+ (92 Ty, + [ 1+ (%) 140

(A10)

+ R (1+ 2'/933)(323 W = 313?’,1)"' 2 942'"’, 12

———___:Ar; e s
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where [g () and T (y) are arbifrary functions of y . For brevity, the derivgfives
are denoted by indices ,J = 7/9 x? and ’=d/dy . The magnetic field B
and the current density J are then given by the covariant and contravariant compo-

nents, respectively:

B! =- —%—m ; B, =g, B tg, BY , A1)
i %— LRI 5, =9, B7+ 9., B A12)
B - ‘,f‘%n[% . 313\,,,2]_3_;%, B, =-1(y), A13)
)" =~ E—va 3, =, 3 +g, 3%, (A14)
3t - % Y1 (')]2 =95, 3+ 9,3 3’ ) G139}
3 - ZrCPeBT) Jymm g ey, B HIT ). (A16)

To solve Eq. (A9) numerlcally, we use a code by Marder /9 /. The appropriate
boundary conditions (B n = = 0) for an ideal electrically conducting wall are given

at a square boundary of side length 2b. The geometric centre of the square is shifted
by an amount of D, = a 51 in the direction normal to the magnetic axis away from
the origin of the coordinate system (see Fig. 1). The total normalized helical shift of
the geometric centre of the square is given by J = 'J:c + C/:, . In fact, without
loss of generality, all calculations were carried out for D. =0 and hence J = C[, ‘
The helical distortion J,, is somewhat different from the helical shift J,.M of the
magnetic axis where ¥ =0, but cf,, is an adequate measure of the helical distortion
of the plasma column for the comparison with the surface current constant pressure
model (e.g. for € =0.1, b/a = 2, d_ =1: () B=0.5 dys=1.23;

(k) B =0.9, d,,,=1.54).

The helical equilibria are characterized by the following five dimensionless parameters :

the plasma beta § = p / ('[‘3"‘7- /2pe  + P ) at the magnetic axis, J‘q , €& , the

compression ratio b/a , and J_. characterizing the longitudinal net current.
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Equation (A9) has to be solved for an arbitrary pressure profile p (v) andan

arbitrary function T (y ). In fact, Eq. (A9) is solved / 9/ for the case of

/
1= [ 1- R exp (-C\y)fz (A17)

where the constant ¢ is determined by the compression ratio b/a , which is the
arbitrary input parameter (I (¢,,,0, ) =1). From the additional constraint of

vanishing longitudinal net current on each magnetic surface

§J3ds=§>;‘1@(-§’+ B* I')ds=0 (A18)
¢ =const. Y = const.

the pressure profile is determined as a function of ¢ . The line element ds and the
line integral are taken along the contour lines ¢ = constant of the magnetic surfaces
in the (x?7 , x?) plane. The numerical values of ¢ are stored and used as input
data for the stability code, where according to (A11) - (A16) the equilibrium fields

are calculated on the + - grid. Examples of helical equilibrium solutions just described

2

are shown in Fig. 14 in terms of contour lines ¢ = constant in the (x 7 , x? ) plane.

=05

Fig. 14: Contour lines of flux surfaces of helical =1 equilibria  for
different 3 values (equilibrium parameters :
((4 =1, € =0.1, b/a=2,]_ =0; the coordinate
axis and the magnetic axis are marked by CA and MA,

respectively ).
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Appendix B: Linearized MHD Equations in a Helical Coordinate System

—_

The system of partial differential equations for the perturbed quantities v, p, and B

is written in component form using covariant and contravariant vector notation (L= i/:_1)

f v -g" F -g™ K -g® F =0, (81)
o 9 2 11 2 23 -

[ VT T g F1 - g F, - ¢ F;, =0, (B2)
ﬁ v3 - g3t F -g3** F, -g°* F, =0, (B3)
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!
Appendix C: Calculation Mesh
ppoe = &
The equilibrium quantities Y = { 8, B, Jg } are stored as REAL * 4 variables;
all perturbed quantities Y = iV, p, B } are represented by COMPLEX
variables and complex arithmetic is used for their calculation. The variables are defined

on a staggered 2D (x? , x2) grid as follows:

x"1

[}

I

i
+ b+ —> Ax! |e— +

i l .

——————— o————-—— - e - () - = e - .-

? l?

[}
+ o+ o+ + 1+

i ]

? [e) o l?

1 1
+ 1+ + + 7.4 P+

E) o o N é

| Yok I

i . 2
+ 1+ + i bx

(=) [e] (e] =?

]

| | f
+ V+ + + 1+

] ]

1
|° ——————— o ——————— o ——————— o ——————— o ———————————————— -’
x1

o+ o o+ + +

Fig. 15: Calculation grid.
On the grid denoted by o, the perturbed pressure and the perturbed magnetic field
are defined:

o"=-grid: Y g = { [ B




B ¥ e

o
On the grid denoted by +, all the equilibrium quantities Y and the perturbed

velocity components v* are defined:

|I+|I _grid: é 6’ V1 7 v?., V3 ’
_ ° 4 o, °3
Zgg =8B, B, E, ,E,, Ej,
o o
LI L E ', 1%
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