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Abstract

Recently, the conditions for stability of an arbitrarily
shaped, finite pressure toroidal plasma against localized
ideal and resistive modes were presented. The characteri-
stic time scale for local instability with respect to ideal
modes is small compared with that for resistive modes so
that an investigation of ideal local stability is a prere-
quisite for an assessment of nonideal local stability. Here
we consider the stability of a particular class of noncir-
cular cross-section tokamak equilibria with respect to such
modes. The equilibria are described analytically so that no
ordering or expansion procedure is necessary, and both ideal
and resistive stability is investigated over the whole plas-
ma region. The effects of plasma shape (vertical elongation
and triangularity), as well as aspect-ratio are investiga-
ted and particular reference is made to next generation toka-

mak designs (e.g. JET).




INTRODUCTION

Recently, plasma stability /1/ with respect to resistive mo-
des was extended to finite pressure, arbitrarily shaped,
toroidal configurations. In particular the modifications

due to resistivity for localized (interchange) modes were
presented. These modes are more sensitive to the details of
the magnetic field configuration than nonlocal ones and so
occupy a principal place in the theory of stability for to-
roidal magnetic confinement schemes. Local ideal instabili-
ties have an associated time scale which is small compared
with that of the resistive ones, so that an investigation
of stability with respect to localized modes requires first
an assessment of stability with respect to the ideal modes.
Only when local stability with respect to these modes exists
is it reasonable to investigate the local stability with
respect to resistive modes. It is clear that this is also

+)

true for nonlocal modes Here we restrict the discussion

to stability with respect to localized modes.

+

Ideal local linear' stability of an equilibrium is deter-

mined by the evaluation of criteria given in various forms

by Mercier /3,4/, Greene and Johnson /5/ and Solovyov /6/,

+)The linear stability of ideal nonlocal modes can probab-
ly best be treated as an initial value problem /2/. This
approach divides the plasma into small but finite regi-
ons and the spatial resolution is therefore limited.

This means local modes cannot be treated.

++)The significance of instability with respect to such lo-

calized modes is not yet clear, and awaits a full nonli-
near treatment.




and a considerable literature concerning their application
to particular configurations exists (see for example /7/
and references therein). Nevertheless, in most cases this
criterion has been applied only at the magnetic axis of the
equilibria considered and this has given rise to the con-
cept of a critical rotational transform or q value (on axis)
for the stability of an equilibrium. This is so because it
is argued that this stability criterion is most difficult
to satisfy near the magnetic axis where the stabilizing ef-
fect of magnetic shear is usually small. Because shear is
not the only stabilizing factor, such investigations do not
allow the ideal local stability of the whole configuration
to be reliably calculated, in particular, values given for

the maximum allowable B are certainly rough estimates only.

The stability of a large aspect-ratio circular cross section
tokamak equilibrium with respect to resistive interchange
modes has been investigated /8,9/. The model used results
from the standard low beta tokamak ordering and is equiva-
lent to an expansion about the magnetic axis for a large as-
pect-ratio tokamak. The numerical evaluations of local sta-
bility for a PDX-like equilibrium /10/ and various tokamak
reactor designs /11/ have been performed. The local stability
of Doublet configurations appropriate to Doublet IIA /12/

has been numerically analyzed.

Here we treat the local stability of a particular class of
noncircular cross-section tokamak equilibria of finite as-

pect-ratio. For this class of exact equilibria, analytical




expressions for important quantities can be obtained and
their relative importance for stability assessed. These
equilibria are characterized by a "flat" toroidal current
density distribution (jT = A.R + B/R, where A and B are con-
stants and R is the major radius variable). The equilibrium
magnetic surfaces are given by G(R,z) = constant, where z

is the coordinate along the major axis. The particular solu-

tion discussed here is

RZ .2 1 z?(R?
G(R,z) = a{(ﬁgq)JfE*@(ﬁi—Y)} (1)

where a,,r ,fL and RO are constants characterizing each

equilibrium solution (Fig. 1).

This exact solution for the flux surfaces of the magnetic

field removes the necessity of an expansion about the mag-

netic axis (R = R

o B = 0) or in aspect-ratio. In addition

it has been shown that these equilibria are self-consistent
resistive equilibria /13,14,15/ in the sense that the pres-
sure and current distributions are determined by appropri-
ate mass and energy sources, consistent with plasma resisti-
vity. Using the Mercier form of the local stability crite-
rion /3/, the ideal local stability of a particular subset

of these exact equilibria has already been discussed /16/.

Here we consider the effects on local stability of the va-
riation of plasma cross-section shape and aspect-ratio,

which can be accomplished by the appropriate choice of con-
stants in expression (1). In particular the D-shaped cross-

section of JET, a next generation tokamak, will be investi-




gated and contrasted with other cross-section shapes.

The considerations of local stability in this paper are re-

stricted to the particular choice of equilibrium model (1),

so that the specific results may be non applicable to other

equilibria. Indeed, one feature of our results is that
the application of local stability results at the mag-
netic axis can be misleading in an assessment of the lo-

cal stability of the whole configuration. For example
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Fig. 1 Magnetic surfaces for particular values
Sf the constants ®, T‘, u and RO (R = R/RO
Z = z/VﬁlRo). The lines © = const. result
from Z = (R°-1).(R%-p~ /2. tano.
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some equilibria treated here exhibit instability with res-
pect to local modes over a radial plasma region not contai-
ning the magnetic axis or the plasma boundary. Further, for
a plasma stable on axis with respect to local ideal modes,
the effects on local stability of finite resistivity vanish
at the axis and therefore it is necessary that those cases
which are stable to local ideal modes be investigated over
the whole plasma region to test their stability to local

resistive modes.

Already there exist many numerical codes which calculate
plasma equilibria consistent with a prescribed set of ex-
ternal current-carrying conductors under various constraints
(e.g. current density distribution and a spatial bound for
the plasma) and it is clearly desirable to be able to test
each solution for its macro-stability. For local stability
this is conceptually straightforward as the stability cri-
terion involves only a knowledge of some equilibrium quan-
tities. Nevertheless, accuracy in the calculation of these
quantities involving higher-order derivatives of magnetic
surface functions (ie. those constant on a magnetic surfa-
ce) is a problem, and calculations such as the one presen-
ted here, which remove such difficulties through exact
knowledge of the equilibrium, provide an essential check on
such codes. It is this, as well as the indication of quali-
tative features of the effect of plasma form on local stabi-
lity together with specific results for JET which motivate

the present work.




THE LOCAL STABILITY CRITERIA

We will use here the local stability criteria given in /1/

which are as follows

D= E+F+H-+ <0 (2)

for stability against local ideal modes, and

De=D;+(H-3)? <0 2

for stability against resistive local modes, where (in MKS units)

~

. o KB o o6 s e LFBD (4)
E = pg <2 {Q Ho P <Bz> 5"@;}
- z<é2>{ (]-§)2>_<i-§>2}
F = pé <2 < = B (5)
9 o LLﬂ<é2>l G-B> <GB ] (6)
S {BY =-=ghe>

The average <A) for any function A(x) is defined as

d 7)
A> = ~—fA(x)d3x (
< dv
Vix )V
V is the volume enclosed by a magnetic surface. Quantities
with ©~ are normalized by [V , e.q. E = B/ |VV| . The mag-
netic field and current density are denoted (as usual) by

B and j respectively.




The flux functions of the toroidal field is F(V), and the
functions for both toroidal and poloidal current fluxes are
I(V) and J(V) respectively. The plasma pressure p(V) is
then related to the magnetic and current flux functions by

the equilibrium relation
p' = JF'-I1'C (8)
The prime denotes derivatives with respect to V. Further
S = GF"-F'G" (9)

Q =JF"-1'G" (10)

The functions D, and H can be written (using Hamada coordi-

nates) as follows:

O

L] 4 1 AN n ’ n 1 ( e} ')2
Ps—f ((GFYW, + G"GW, + F Fw3}+ils_f(w1w3 W,2) -1 (11)

o HoP(-CAW, + (u IG™- FAIW, + poIF W )
S(FA+u.G1) e

where

A = 21R Bro- 1) = 2mRB; (13)

BT (BTO on axis) is the toroidal maanetic field.




W1, W2 and W3 /17/ are surface averages

_ / Ges
W= |vv12> (14)
W, = 995> 15
CEANTIVE (1

Wa = (9% > (16)
. <|vv12
and 986’ gé§ and Jggg are elements of the metric tensor in

Hamada coordinates (V,6,%).

As shown in /17/, for axially symmetric equilibria Wo~W, =
= 0(v°) and W3 = O(V*1) as V = 0. Thus, for reasonable

distributions, D =0(v'1) and H = 0(V°) as V =oO.

I
A configuration which is ideally stable at the magnetic
axis due to terms of the order V_1 is not unstable there
with respect to local resistive modes. Stability with res-

pect to local resistive modes must therefore be investiga-

ted throughout the whole plasma region.

For the particular class of equilibria given by (1), the
fluxes F(V), G(V), currents I(V), J(V) and the geometric
W-integrals can all be expressed in closed form and are

given in the Appendix.




THE MODEL EQUILIBRIUM

The specification of a particular configuration as a preli-

minary to investigating its local stability proceeds as

follows:

The outer boundary of the plasma is required to pass through

four points in any (for reasons of axisymmetry) poloidal

plane (fig.2). The points (R,z) are (R1,O), (R2,O) and

(RM,izM). The latter points are chosen to be the points

of maximum vertical plasma elongation.

As G is an even

function of z, there is up—-down symmetry about the equato-

rial plane.

This requirement determines the constants in expression

(1) as

v

(17)

Fig.2 Geometry of the
magnetic surface coinci-
ding with the plasma
boundary (G = GB).

(-- represents a separa-
trix)




1 RERA-RY (18)
Y 7 2RZ  RZ-R{

2 (19)
L= =525 o a
where RO is the radius of the magnetic axis, and the poloi-
dal magnetic flux at the boundary as

21\2
Gg=a Biifiw (20)
R12 ¥ R22

If,in addition,we require the total toroidal plasma current
to be IB' then ol 1is fixed too. Thus we have shown that a
choice for R1, R2' RM' Zy and IB is equivalent to parti-
cular values for the four constants &, T ,}L, R0 and a

boundary value GB for G. The fact that G is solution of the

equilibrium egquation

A*G = Ridiv %Gz = -AA - 4, R*p ey
_d _ dJ
p= a(% N= -1 g6 @555

relates the parameters of the equilibrium to definite distri-

butions of pressure and current according to

_ __all+4p) (24)
2TE2“'0|J-ROL
AA = 2“12 (25)

URO




Because /\ itself enters the stability criteria, integration

of equation (25) introduces BTO as further parameter

= égl(3+6n2Rme2 (26)
uRe’

instead of which we can also take d,r as

(27)

B (llu. )112 T RDZBTuz
B 0y T

the g-value on axis.

Summarizing, we can say that the equilibria under considera-
tion are described by exactly six parameters and we have

chosen them as R1, RZ’ RM' Zy IB and BTO (or qo).

LOCAL STABILITY ABOUT THE MAGNETIC AXIS

Although results later will show that the stability beha-
viour of the equilibrium in the neighbourhood of the mag-
netic axis (V = 0) is, in general, not an index for the
stability of the whole system, it is useful to investigate
this behaviour to be able to retrieve the generally accep-
ted results concerning the effects of magnetic surface

shape on the local stability behaviour.

An expansion in V about V = O gives for DI and H

DyfV) = DV DR« OFW. oy (25

H(V) = HO +HOY + - (29)




From the latter it is clear that for D£-1) # O , resistive

effects on local stability in the neighbourhood of the axis

(=1)

are negligible. An expression for Dy

will be given

in the Appendix.
(

The zero of DI-1) defines a critical q on axis and is given

by
Q2 = L. mp* - y(1-y)” 0
C A 1+1?“_Y)_1_ mﬂZB*“eruz)_]
where
mos 2R BF (sl (31,32)
4p

Ty

When d, = 9. both ideal and resistive terms come in at
the same order in V so that more detailed considerations
are needed. For ideal local stability of the complete con-

figuration it is necessary that qi:>0 and (at least)

RESULTS

For a particular aspect-ratio and major radius we examined
the effects of varying the plasma ellipticity (or elongation)
and triangularity on the local stability of the equilibria
considered. The aspect-ratio A and the radius R0 of the
magnetic axis (cf. (17)) are given as

12
A = R, +R, Ro={%(Rf+R§)}f

= RZ_RI I (33,34)
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local ideal modes at some radial point, for g(0) = d.;
... indicates regions where the equilibria are unstable to
local resistive modes for q(0) = g_.

C

so that fixing A and RO is equivalent to fixing R.| and R2,
i.e. the radial extremities of the plasma configuration.

The "ellipticity" EB of the quter magnetic surface where

By = 2'ZM/(R2_R1) , is varied by altering z,, and the triangu-
larity of the configuration depends essentially on RM (R1é

Ry< R2). D-shaped configurations where the curved part of

the D faces outward away from the major axis are characteri-

zed by RM/RO<1 (L>0, T<1).




The stability of this subset of configurations with respect
to ideal local modes was investigated in /16/. D-shaped con-
figurations with the curved part of the D facing inwards to-
wards the major axis will be called anti-D shaped and are
characterized by RM/RO> 1 (HJ<O, 1‘7 1) .

For fixed A and Ro, RM and z, were varied over the (R,z)-

M
plane, and the local stability of each configuration obtai-
ned in this manner was examined. Results of such a proce-
dure are shown, for example, in Fig. 3 where parameters
corresponding to JET have been chosen, i.e. R1 = 1.71 m,
R2 = 4,217 m or A = 2.37 and Ro = 3.21 m.

The (R,z)-region is divided up into several subregions:

(1) a region (hatched) where p'(V)>0, i.e. such equi-
libria involve positive pressure gradients and will
not be considered;

(2) regions (+++) where D§_1) is always positive, i.e.
no real d. value exists so that such configurations
are unstable to ideal local modes in the neighbor-
hood of the axis;

(3) a region (444) where the configuration are ideally
stable on axis for some value of d, but for q4..%-9,
are nevertheless unstable to local ideal modes in
some radial region of the plasma (see Fig. 4);

(4) a region (...) in which the equilibria are complete-
ly stable to local ideal modes but are unstable to

local resistive modes (see Fig. 5);



(5) a region (blank) in which the equilibria are completely

stable to both local ideal and resistive modes.

Note that in Fig. 4(a) the radial instability region is not
about the axis or at the edge (as in Fig. 4(b)) but in an

internal region.

The effect on stability of increasing the toroidal magnetic
field is shown. Reasonable increases in the toroidal field
do not lead to complete stabilization and essentially influ-

ence only some neighborhood of the magnetic axis.

In Fig. 5 several different cases of instability with res-
pect to local resistive modes are shown. All these cases

are completely stable to local ideal modes. The effect on
stability of increasing the toroidal magnetic field is
shown. As in the case of local ideal modes, the stabilizing
influence of increased toroidal field extends not far enough
from the magnetic axis to achieve stability of the whole

plasma region.

The effect of aspect-ratio on the stability properties of
the model equilibria is shown in Figs. 6(a) and 6(b). It
can be seen that D-shaped configurations above a certain
elongation are always stable to local modes. Anti-D shaped
configurations have a smaller unstable region in elongation

-triangularity space as the aspect-ratio is reduced.




CONCLUSIONS

For the particular class of exact, resistively self-consi-

stent, toroidal equilibria considered here we have shown:

(1) Stability with respect to both local ideal and re-
sistive modes should be investigated not just at
the magnetic axis but throughout the plasma con-
figuration, as the former procedure can be misleading.

(2) In general a reasonable increase of toroidal field
is of limited effect on the overall linear stability
of the configuration.

(3) D-shaped configurations are more stable to such mo-
des than anti-D shaped configurations.

(4) Anti-D shaped configurations can be made more stable

to local modes by increasing the effect of toroidicity.
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APPENDIX

Using expression (1) the volume V(G) enclosed by the mag-

netic surface G(R,z) = G can be found to be
1 3 M2 E W
- nlow O {(Z—kz)E(k) 20Ky A1)
where
G = Gla - 26" (A2,A3)
]1-E|+G”2

and K(k) and E(k) are the complete elliptic integrals of

the first and second kind /18/. For G'(V) = dG/dV we obtain

- GGUL
= TmRIKGaT (a4)
From
1
B = 5—(V{x VG +AVL) (A5)

where ( is the angle about the axis of symmetry, we find
. 1 ,
o) = 5= (NVVX VL + A*G VL) (A6)

where A* is defined in (21). Thus |

ol = 42 [ jvg oix - 412 a;‘:iféw{ & +E2} (a7)
with e
Ey = Klk) - Elk) - k2(K(k) + E(K)) + %—ZE(k) - %(1—5)K(k)
. %2(k2—§)(1—§)ﬂ(g,k) (8)
E,= 4k?(2K(Kk) - E(k)) - 8(K(k)-ElKk) (29)

TM(g,k) is the complete elliptic intearal of the third kind

as defined in /18/. % is constant on a magnetic surface
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and given by —1/2
20
g

- sign(u) +G"2 (A10)

(A7) shows the relation the total plasma current IB (i.e.

I within VsVy) and « (cf. the remark after equation (20)).

From

oo L —d—fB-ng3x (A11)

we find through (A5) for the safety factor g = F'/G'

1>: w2 Ry A(2-E)kTT(E k)

m2G \\R2 LY2aT G Ve (A12)

A is to be taken according to (26). It is related to the
distribution of the poloidal current J(V) through (13):
113

o _ _ YV2a? G
o 2T RS AKKIK) (A13)

For I'(V) we obtain

' =

y(z—gm(g.k)}

pOTt?R {] 8 p K(k) (A14)

The second derivatives of the magnetic fluxes F and G are:

Fn_ F‘G'{Layﬁ _
B A

. 1= —‘;g} (215)

Sl = 2K EK) g2 2-E Kl (2 k2 24@) £ EK
1-K2 Kl 1-E  1-g TTEK) £ £ 1-k2) (k2-gTIEK)

(A16)

o Ci 1,31 Eflk) }
G_AG{l (1-Jie2) =k

(1- kA K(k) (n17)
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To determine the metric elements of magnetic surfaces in
Hamada co-ordinates (V,8,f) needed for the calculation of
the W-integrals (14,15,16) we make the co-ordinate trans-
formations (R,z,£) — (V, 8 = cos—1{(R2/Ri—1)/V613C) -
(V,8,£) where for the latter transformation the follow-

ing relations hold

98 98 "Ry G 0

R[] ot ) 2aIN|"2 (218)

at ot mmeS(F, o ) 1

30 aC 2 IN[72 4T2R? 2T
Now the W-integrals read

T
ik = G f d6
T LV2TRZ kK(K) ) INM2(N+y)
0
2,2 ' 2
- LRGA - (2 -E)N+y)TT(E, k)
: 4aZGN(N+YIT,, 2K(k) (212
T
1 =-1/2

W, = lul"*A G de - (2 -E)(N+YITT(E k)\ (a20)

4amRy k2 K2(k) | 2|NI¥Z (N+y) T, 2 K(k)

0
T
W = V25" do (A21)
3 4RIKIK3K) | NPT,
0

In (A19-A21) use has been made of the following abbreviations:

N = sign(p){l1-yl +G”2c059} (A22)

-2 ;2 = 1/2
o = sin‘0B " };—I{ZcoseJr sin“8 G

2
N+y -yl +G"2cos@} (A23)

Expanding (2) in V about V=0 gives for D§"1) in expression

(28)
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o 8@*mﬂ2q02(1-1)2(1+ L Vﬁﬁ*)( 2_q2).R3 (A24)
1T A2 20-y) ~ 1+vm 0

where g i
A
A= y+ q§(2+é(1—Y)+m)

and m, q_, 4, B* are defined in equations (27,30-32).
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