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Abstract

The influence of the density and temperature profiles on
the mean fusion power density 6N in a circular Tokamak is
considered. For fixed By and g(a) peaking of the density
and temperature enlarges GN' If for g(a) the smallest
value compatible with the condition g (F) 2 1 is taken,
peaking of the density remains favourable but peaking of
the temperature diminishes éN considerably.




We consider a 50 - 50 deuterium-tritium tokamak plasma
with circular cross-section. The cylinder approximation
is used.

The fusion power density is given by
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In the following we shall use the approximate expression [1]
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In a Tokamak there is an upper limit for the poloidal B,
given by [2][3]
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L. All quantities are in cgs units, except T, which is in

keV, and B, which is in kG, in formulae with decimal
coefficients.




If the impurity concentration is not too high, one can
assume that ne = ni = n. Furthermore, for not too high
temperatures Te and Ti do not widely differ in a fusion
plasma.

Hence we set Te = Ti = T,

We shall regard profiles of the form
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for the density and temperature respectively. With these

| profiles one gets from 1: and 2: for the mean nuclear :

energy production rate éN
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(obviously I = 1 if n and T are independent of r)

and for ﬁLﬁ
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(A = R/a the aspect ratio)
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(obviously J = 1 if n and T are independent of r).
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From 5: and 4: we elimininate n  to express ﬁN for fixed Bg:
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Up to now we have not yet taken into account that there
exists a lower limit for g(e) in 6:, because of the con-
dition q(r) 1 for 0 S r S 0o , which depends on the
density and temperature profiles. To determine the minimal
g(a) which is compatible with this constraint, we consider

Ampere's law:
1 0 4T 4
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2} is related to the toroidal electric field by Ohm's law:
1

;u [-" 77

We shall assume E,, to be independent of r and77 to obey
the classical formula
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we can now write
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where ’Y)o and Zr“ are peak values of 7) and 31«“ respectively.
Integration of 10: yields
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The condition Q/(P)ZELB—E ' 7 for < < Ol requires
that K = 0. Ehﬂ

It then follows that
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Taking into account 9: and the specified form of the
profiles, one immediately sees that g(r) is an increasing
function of r. The requirement that q(r) takes its
minimal value g(o) = 1, when applied to 12:, gives the

following condition for ah?:
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From 13: and 12: follows that
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where g(a) is now the minimal value such that g(r) = 1 is
fulfilled. Evidently stronger peaking enlarges g(a).

In deriving 14:, Zeff was assumed to be independent of r.
If the neoclassical correction in the expression for'p had

been taken into account, the result would be still more

unfavourable.

We shall now regard three types of profiles for n and T:

profile A B C

A/ I 1 1 1
/6§ 0 1 4

For a graphic representation see Fig. 1.

The constant profile A serves as a reference profile.

C is the most peaked one.

To study the influence of the profiles, we compute
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determined according to 14:, for various combinations of

profiles A - C. f gives the enhancement of EN for fixed
ﬁiﬂand g(a) relative to its value for constant density

and temperature.

F is proportional to 5N for a given system (fixed B¢ , A)
and fixedﬁbg




f allows the influence of profile variation on éN to be
studied iffiﬂ and g(a) are kept fixed.

F gives the influence if ﬁiﬂ is kept fixed but g(a) has

the minimal value compatible with g(r) % 1.

Figure 2 shows f as a function of the peak temperature To.

f increases with increasing To. For given To stronger

peaking of T as well as of n enhances £f.

If allowance is made for the enhancement of the minimal
g(a) compatible with g(r) 2 1 that is due to peaking, the
situation rapidly changes.

Since g(a) is independent of the density in our approxima-
tion, peaking of n remains favourable. On the other hand,
the enhancement of f is by far compensated by the enhance-

ment of g(a) for peaked temperature profiles.

To visualize this influence of the profile dependence of
g(a), we plotted F(To) for some typical profiles in Fig. 3.
It can be seen that peaking of T strongly diminishes F.

Usually QN is computed with constant n and T, but taking
some reasonable g(a) (say g(a) = 2.5) instead of g(a) as
determined according to 14:. The corresponding F is given
by the dotted curve in Fig. 3.

It is seen that F for the most peaked profile is almost
one order of magnitude smaller, even in the case of the

most favourable density profile.

Profiles of type C for n and T are not unrealistic.
Profiles of similar shape have been found by Conn et al.

[3] by 1-dimensional simulation of a reactor-like plasma.
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