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Abstract

The problem of determining the shape of a flexible current
filament forming part of an ideal toroidal magnetic field
coil is solved in a virtually analytical form. Analytical
formulae for characteristic coil dimensions, stored magnetic
energies, inductances and forces are derived for the so-
called D+coils.

The analytically calculated inductances of ideal D-coils
are compared with numerically calculated ones for the case
of finite numbers of D-shaped current filaments.

Finally, the magnetic energies stored in ideal rectangular,
elliptic and D-coils are compared.
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1. Introduction

Toroidal magnetic field coils with elongated minor cross-

sections have gained interest for several reasons such as:

- The problem of finding coils which are only subject to
tensile forces has two principal solutions. One of them
is the so-called D-coil, which is elongated in the
direction of the main torus axis.

- Fusion devices with axisymmetric divertors of the double
null type need space for the divertor chambers above and
below the plasma ring.

- There are some indications that Tokamak plasmas with
elongated minor cross-sections will offer the chance of
attaining higher values of the plasma B than are possible

with circular cross-sections.
Because of this interest this paper presents information on

elongated coils in a virtually analytical form, thus pro-

viding simple relations for basic comparisons and scalings.

2. Ideal magnetic field coils in pure tension

We shall treat the case of an ideal toroidal field produced
by coils which are subject to pure tension. By "ideal" we
mean that we disregard the deviations from the 1/r-variation
of the field produced by the finite number and size of the
coils. The coils themselves are treated as infinitely thin

current filaments.

2.1 Calculation of the coil contour

A current filament is subject to pure tension if the

magnetic force P acting on any length element ds with




Centre of curvature z

radius of curvature §_ is just balanced by the tensile
forces T. This situation is visualized by Fig. 1 and 2.

Q

Fig. 1 Fig. 2

In the following we restrict ourselves to the case of an

ideal toroidal magnetic field, the induction of which
varies as

G- Z8(%) )

(r = distance from the main torus axis, re = arbitrary
reference radius).

From Fig. (2) we read
7 =t . (2)

With

A = %zé’(ﬂ) oAs

m (3)

we get from (2)
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By using the definition of the radius of curvature f; of
a plane curve

X
$= a’of (5)

we get from (4)
o - 27
e 7TE@>

If we set the reference ratius re equal to r; Isee Fig. 3),
we find from (1) and (6) that

(6)

A =kr (7)

with

k -Ig(?‘)?' . (8)

If we use the formula
, A r /A2
L = {9)
& [+ lArAz) T

together with (7), we find the well known differential

equation for the contour of a filament in pure tension

for the case of an ideal toroidal magnetic field [1]:
g,
ar 7 2
”d;a [4*‘( 7 . (10)

The solution of (10) gives a cycloid-type curve as shown
in Fig. 3. Because we aim at a parameter representation
of the contour, we shall proceed from (7) in a way different

from that in [1]. From Fig. 4 we read the following relation-
ships:

Ar =ds. Steox

(11)

cl2

where ds is the length element of the contour to be

Cgﬂf. Cos X ,

1

(12)

determined.
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Equations (5), (7) and (11) together yield

%—"’=k (tnox. A, -

which can readily be integrated to give

- K& Hcocx
r=ne e . (1)

In deriving (14), we have used the initial condition

rla=9) =7, . (15)

The parameter o, which varies along the contour, is the
angle between the tangent of the contour and the z-axis.
Because r is an even function of o, we can replace - o

by o. Points on the contour corresponding to characteristic

values of a thus defined are marked in Fig. 3.

From Fig. 3 we read

K

7%= M(x=2)=7; ¢ (16)
o —2k
7".’=7"/6(=*) 7 e . (17)

From (16) and (17) we reproduce the well known formulae

[ & > (18)
z/@[&/{") (19)

From egs. (5), (7), and (12) we find

oz =kncosee . A . (20)

By inserting (14) in (20) we arrive at the differential
equation for z(a):
_4' & lor i

7 ke Cosoe .
51’0( or (21)




With the initial condition
z(=0)=0 (22)

we get from (21)

4K bcosa’
2(x) = 4’8 ,/8 cose'. Ao’ (23)

Because of
¢ /
K cosro —
/g co.r//'zcr’). 6{&”= 2\-44,[0 (24)
7

(In = modified Bessel function of the first kind and order n)

we get for Z5 and So (the half-length of the curved part of
the contour)

e -2lx)-0p ke LT ALD
ana =8 (x=0)=T7% ke~ A"ﬂﬂ= /é-—.,/?/ (25)

For many applications it is adequate to give z(a), r(a), 2z
and s_ in terms of k and the inner radius ry:

o

2(x)= 7‘%/‘:/’84 “e " e’ (26)
é &
”/ﬂ.’/'—"" 7"6 e 0!0(’ (27
~e —_
2= ke _4’[47,

(28)

t'\'?&.‘ée 4-2; /‘7 (29)

The functions z_/r, and s /r., Vvs. r_/r, are shown in Fig. 5.

The integral in (26) can very easily be calculated numerically
because the integrand does not exhibit any singularities.

A term by term integration of any absolutely convergent series
expansion of exp(k cosa) is easily possible.
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2.2 Different types of coils in pure tension

If we connect the points ¢« =ntand a = =1 (see Fig. 3) by

a straight line, we get the contour of the so-called D-coil.
Obviously, this coil is in pure tension only in its curved
parts. The straight part is subject to both tension and
lateral forces directed radially inward.

A possibility of getting a closed coil which is in pure
tension in all its parts is presented by choosing the drop-
thaped loop between o= o, anda= 21 = ag (see Fig. 3).
Because this coil contains the point where two branches
of the contour cross over, there exists a sharp edge. To

avoid this one may cut the edge by a straight line parallel
to the z-axis as shown in Fig. 6.

Obviously this straight portion again is subject to lateral
forces directed radially inward. These forces result from
the tension in the curved parts and from the magnetic field
acting on the current in the straight part.
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Figures 7 and 8 show D-coils and drop-shaped coils
respectively. The curves are normalized to get the same
radial extent for all coils. This makes it possible to
compare the shapes of coils corresponding to different
values of ra/ri. The shape of one coil is completely
determined by the value of k chosen.

With values of k approaching zero the D-coils and the drop-
shaped coils approach circles. This can be seen from, for
instance, (26) and (27) if we calculate the limiting

values of z and r for k — o:

lim 2 = ?;éfé'ucx ’ (30)

£—0

fr;@, 77 = 7;(’/;4’50:05). (31)
-0

Equations (30) and (31) describe a circle with radius krg

centered at z = o, r = ry- This limiting case is only of
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academic interest because k — o corresponds to a vanishing

difference between the outer and inner radii o and r,.

The half-height Zg of a D—c01l is given by

27/
#
Ze = 2(0(=¢/) 7‘46?/ comd'ow( e’ (32)

i . . s I
Figure 5 shows zs/rl vs ra/ i

Zs/ri and zo/ri approach zero for r /r —>» 1, which

corresponds to the limiting case of a circular contour.
With increasing values of ra/ri the two curves diverge
which corresponds to an increasing degree of elongation

of the contour in the z-direction. Coils envisaged today
are in the vicinity of ra/ri =5,

2.3 The stored magnetic energy of D-coils

The magnetic energy stored in an air coil is given by

oz
Elﬂttl ¢ o, (33)

For our idealized case the volume V is that swept by the

D-contour rotating around the z-axis. With

AdV=2endrAz (34)

we get 7@ é}

RN LY PN
A0, ?L[)




(rca is the branch of the contour between a= o and
a = 272, Ewd is that part of the contour beyond « =2>/2;
see Fig. 3). The factor 2 in front of the integral (35)

originates from restricting the interval of integration

to o< z *_(_zs, which is possible because of symmetry.

By integrating (35) with reigect to r we get

=459 %?3{33) B / EEE? 2
5&’? éz —Z—;;‘ 7;40//4, 7 oAz . (36)

The integration in (36) can be performed by using

(27) and yields

En o= 47 “be/kZ, ) (k-7 ()] ~

z.(‘)J

(37)

This expression can be compared with that for a toroidal

coil with circular cross-section:

Erne =4 052e*Crit 4t)”

e 37)
Zhg

é. ] (38)

The ratio of the magnetic energies stored in a D-coil and
in a circular coil for identical values of k, r; and B(ri)

Eno_ HHT e h9Z, 08

£39)

Em Z[J’M"/I./Z

1€

Figur
gure 9 shows Em,D .

Am (see section 4).

/E vsS. ra/ri

and the aspect ratio

1S
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2.4 The inductance of D-coils

We treat the case of N D-shaped turns carrying the
current I which are arranged toroidally. In the ideal

case we have
/"o/VI
S(7) = Zrx (40)

The inductance LD is related to the stored magnetic energy
EmD by
é Z tmf?
- % A
7° " rz -

By inserting EmD from (37) and I from (40) in (41) we get

(41)

Ei:
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2 =N, /ﬁg%—z; (kDL 1)]75 . ()

For equal numbers of ampere-turns the ratio of the induc-
tances of D-coils and circular coils is the same as the

ratio of the magnetic energies according to (39).

2.5 Forces and stresses pertaining to D-coils

The lateral force Kr which acts radially inward on one

D-turn is given by
Ap =g—f6’(if) 22, (43)

By inserting I from (40) in (43) we get

Z
/4t;.==;¥f4¢2}-7?z%> 2?'6(%i)

. (44)
s

Insertion of zg from (28) in (44) yields
‘( 7)
fr=Zév kT SIF

The mean pressure exerted by the N coils on a support

(45)

cylinder with radius r. and height 2z is given by

R L S i 7] "

227 7% 2

The tension T in one D-turn is constant along the contour

and follows from (8) to be
-_— A7
7= FhTE(R)T (47)

With I from (40) inserted in (47) we get

— &
/ =/77 kT ?2. %). (48)
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3. Comparison of analytically and numerically calculated

values of the inductances of D-coils

The formula (42) for the inductance Ly of a D-coil was
derived by disregarding the deviations from the 1/r-
variation of the magnetic induction produced by the
finite number of coils. To get an idea of the influence
of this finite number, the inductance LD,num of a
toroidal arrangement of N filamentary D-windings was
calculated numerically with the computer program from
[2]. Figure 10 shows LD,num
to (42) for a typical case: Am = 1.62, corresponding to

k = 0,72 or ra/ri = 4,22,

normalized to LD according

0 20 30 40 50 60 70 8 90 100

Fig. 10




4. Comparison of the stored magnetic energies in

different types of elongated coils

The following results all pertain to ideal coils.

We shall replace the more academic parameter

/F‘Z—Z//"(%/?) (49)

by a "magnetic aspect ratio" Am' which we define by
mo
a c
For coils with circular minor cross-section Am reduces

to Am = R/r (R and r are the major and minor radii

respectively).

From (49) and (50) we get
“7
42 S —
[ fé&.fﬁl‘ . (61)

Eq, (51) and the approximation Am'=5l/k are shown in
Flg. 1l.
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4.1 Rectangular coils
[}
Ig4--—
0 fi
-ls+———
Fig. 12
By using (33) together with (34) and (1) we get for
the magnetic energy Em " stored in a rectangular coil
r
(see Fig. 12): 2
En= P24 T 0p%
X Z c ¢ (52)
740

4,2 Elliptic coils

We now consider the elliptic coil inscribed into the
rectangle in Fig. 12 (major axis = 2 Zg minor axis =

ol ri).
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The stored magnetic energy Em e Can be calculated from
r

Em c for the circular coil as given by (38). We get for

r
E
m,e

r

=

&

=Ly e o (53)

After some rearrangement we find from (38) and (53)
£ =gt (ra 4y 372(7")
e Jenl k o 6‘ . 54)

The ratio of the magnetic energies stored in an

elliptic coil and the corresponding rectangular coil

(identical values of Iyr 2zg énd B(r ) -assumed) is given by

CE;&,3_=5 (\_ (1fk/!‘? Aaéa)
ég}n»yz J?J?k“hf

/

(55)

or

é_/h, 2 A 1se W aiqe
E,.,,;c z 4&%4«4’(4/,4)/4 4"’/4&:). (56)

For wvalues Aﬁ»'l we find from (56)

&, o~ -

e o Lo 0 264, (57)
E ne, > 4

The curves corresponding to (56) and (57) are shown in

Fig. 13 (two lower curves).
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4,3 D-coils

In contrast to rectangular and elliptic coils the

values of Tis ra,and zg are interrelated for the

case of D-coils. By selecting, for example, r, and

r; we also fix z This fact can be read from (32).

S-

20
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The stored magnetic enerqgy E according to (37) can

be written as follows:

Epy = 4T PR 02 D), /4—/’7 By

(58)

with

Al%) -

(59)

T/& o5 e
{’ éé o rosocct

F(k) vs. k and Am are shown in Fig. 14,

We thus get for the ratio of the magnetic energies

stored in a D-coil and in a rectangular coil:

g > FlE
S22 Pl ntinly).

For small values of k and hence large values of Am we
get from (60), (59), and (51)

dgkhﬁ’ Oh- T4k
Cmr " G 744K o

(for k«1l) and

£m o > TmFT /{/&‘/'4
dgin'w- ‘4 /¢htft 7 42 (62)

(for Amiil).
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Equations (60) and (62) are visualized in Fig. 13
(upper curves).

By comparing the stored magnetic energies in different

types of elongated coils characterized by identical

values of r. , r_ , z_ , and B(r:)we find
i a s i

- the maximum energy is obviously stored in a rectangular

coil,
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- the magnetic energy in a D-coil is about 80 % of
that in a rectangular one nearly independent of
the aspect ratio Am’

- the magnetic energy in an elliptical coil is only
slightly smaller than that in a D-coil, the ratio

of the two energies being nearly independent of Am.

A comparison of the approximate results with the exact
ones in Fig. 13 shows that the simple formulae (57) )
and (62) are sufficiently accurate for all cases of
practical interest (AmZ,l.S).
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