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Abstract

After discussing fundamental relationships of the finite
element method, this report describes the calculation steps
worked out for mechanical stress calculations in the case
of magnetic forces and forces produced by thermal expansion

or compression for toroidal field coils using the SOLID SAP IV
computer program /1/.

The displacement and stress analysis are based on the 20-node
isoparametric solid element. The calculation of the nodal
forces produced by magnetic body forces are discussed in
detail. The computer programs, which can be used generally
for mesh generation and determination of the nodal forces,
are published elsewhere /2, 3/.
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LIST OF SYMBOLS

[D] Matrix relating nodal displacements to strain field

3?x;y,z) Vector of the displacement field

[E] Matrix of elastic constants
f? Two or three-dimensional force vector acting on

the node with the number i.
{E} Vector of the nodal forces acting on all nodes

{%%} Vector of the nodal forces acting on .all nodes
produced by the body force density fg

E? Vector of body force density
G Shear modulus

[1] Identity matrix

[J] Jakobian matrix

[kl Global stiffness matrix

[k1] Element stiffness matrix
IN'1  Matrix of shape functions
Ni Shape function

Ug Strain energy

ot Row vector [aNl 3N2 aNn]
1°xy = 0x ox """ ax
Vg Potential of applied loads

u,v,w Components of the displacement field

u,v Coordinates of the planes in the coil windings
X,¥,2 Global Cartesian coordinates

Xj1¥j125 Coordinates of the node i

64} Vector of nodal displacements (all investigated nodes)

ay Coefficient of thermal expansion

Zf Vector of the displacements of the nodal point i
) Variational operator

? General strain field vector

€ Normal strains

xx'fyy’fzz




x;y,f;z,ﬂ;x Shear strains

S,ll,? Nondimensional intrinsic coordinates
Y Poisson's ratio

f Radius of curvature

39 General stress field vector
S;X,G;y,‘;z Normal stresses

G;y’s§z'séx Shear stresses

[ 17t Transposed matrix

[ ]-l Inverse matrix




1. BASIC RELATIONS OF THE FINITE ELEMENT METHOD

One of the major problems in designing toroidal field coils
for large fusion experiments or for fusion reactors of the
tokamak type is the problem of the mechanical stresses and
strains produced by magnetic forces. The complex coil geo-
metry, large dimensions, the support structure and the
force distribution in the coil windings make it difficult
to solve the problem analytically. Therefore, the powerful

finite element method (FEM) is used.

The FEM is based on the principle of dividing the in-
vestigated structure into suitable elements, each of them
having a distinct number of nodes on which the forces act.
The element number and element geometry have to be
determined by a problem analysis (force distribution,
structure properties). A simple example is given in Fig. 1,
showing a thin plate (plane stress) which is divided into

4 triangular elements. Each element has three nodes. A

force vector with components Fxl and Fyl is applied to the node 1.
If the node 1 is not fixed (supported), the force produces
displacements E? = (Akl’ A4 ). In addition, the displacement

- yl
4; produce nodal forces in the nodes 2 and 3.

Y
A

=l
FX1 TFY1 6

|
x

Fig. 1 Plane stress region divided into four triangular

elements with six nodes under the influence of a
force ?i = {Fxl’ Fyl}'




The principal problem is to calculate the displacements of
the three nodes of the element I from the nodal forces.
A relation between the forces and displacements is given

by the element stiffness equation:

{r} = 1 {a} (1)

The matrix [k] is the element stiffness matrix and {f}
and {;{} are element force and displacement vectors. The
[k] matrix desribes the "mechanical coupling" of the
nodal points and therefore determines the

forces acting on all the nodal points of the element if,

for example, one of the nodal points is displaced.

The [k] matrix is given by the geometry of the element and
the mechanical properties of the material. For the element 1

in our example eq. (1) is written as

~ 3 [~ " - N
Fe1 kj1--- K16 4.,
Fyl 4Yl
F
x2 = 1 (1")
< r > < . >
F e
x3 ‘A
F k. .....k
1 y3 J |61 66_ 3 y3

After calculating the element stiffness matrixes for all
elements of the structure, one has to construct the global
stiffness matrix [K] relating the nodal displacements of
the complete structure to the nodal forces. In our example,
we have 6 nodes each having two degrees of freedom uﬂx,4dy).
The global stiffness relation in this case is

~ - ~ =

1
F, Kll....Kl 12 Cﬁxl

A

Foi ' y1
] - L = e < e (2)
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where the global [K] matrix is constructed from the element
stiffness matrices [k] /4/.

To invert the system (2)

{A} - w17 7}, (3)

it is necessary that some 'Ai are zero (this means the
structure is fixed at the nodes i) because the stiffness

matrix is symmetric.

In the following, we give a general description for calcu-
lating the element stiffness matrix [k]. First we introduce
the concept of the shape function. The shape functions N
are defined by relating the displacement-field 3Tx,y,z)
within the element to the node displacements Ai

g = [N]{d} . (4)

(%, v.2)

The shape functions are the components of the [N] matrix.
For the triangular element of Fig. 1 showing only'ﬁx- and

dy—displacements, eq. 4 can be written as

(4, )

u X
dx,y) = {v} =01 N, IN, IN;1944° } (5)

N,, N,, Ny are the shape functions, I is the identity matrix
(2x2) and u,v are the components of the displacement field.
In this case the [NY-matrix is a (2x6) matrix and the Ax’

.Ay'are the nodal point displacements.

Nty = (5)

0 N

Ni is designafed as shape function because it represents
the shape of the variable g(xy) when plotted over the surface

of the element for the case that only the nodal point i is




displaced and all other nodal points are fixed (ij = 0;
ij = 0). In our example in Fig. 1, if only nodal point 1
is displaced then the displacement field decreases between
point 1 and point 2 or 3 from the, generally normalized,
value 1 to zero. This decrease is described by the shape
function Nl' The shape functions play a central role in

the finite element analysis, as is shown later.

In calculating the element stiffness matrix [k], we use the

concept of virtual work /4/, which can be formulated as
6VE = 6UE1 (6)

where 6V is the external work done by the nodal forces 4F
as a consequence of the virtual nodal displacements 6{1 .
It follows that

6V = {54}T {F} . (7)

6Up is the work of the internal forces arising from the
Y
action of the internal stresses &(xyz) through the strains

6? associated with the virtual displacements.

o
U = } & sed(vol) (8)
Vel
3, _e’ are the general stress and strain vectors including
normal and shear components. For a three-dimensional state

? and &’ are given by

- - -
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z z
ox &
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With the definition of the displacement-field ?(x,y,z) as

u (x,v,2)
3(X.y,2) = v (xX,¥.2)

w (X,¥:,2)
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the strain vector is given by

= 9
gg
ox
ov
oy
ow
S5 dz
€ = 4, a—u + 8_1] > (11)
oy ox
v ow
3z tay
ow du
Lax i 0z J

In general, the strain displacement equation can be written

as
e (D] {A} (12)

The [D] matrix is related to the shape function but the
relation depends on the particular problem. For the example
in the plane stress case (Fig. 1) ? is given by

EEEREEA
LT sz
€ oN A
X 3% X3
€ =de, p= 4 O \..1?4A = [p] {4 (13)
Y1
Yy o %‘34 4z
Y, 8%y 4
\ y {.Y3‘
N N, N, oNj
X;y is the shear strain and 3%, s the row vector [ax 5 s

In general, the [D] matrix is relatd to the shape functions
by differentiation processes.

The virtual displacement field and the virtual strains are

given in the same form as egs. (4) and (12)

53 = [N] & {A} (14)
52 = (0] & {A} (15)
To satisfy the identity of 6V and 6U, a relation between

> i
the stress & and strain ? must be given. From the elasticity
theory it follows that




> >
€

#=[E] - [E1T, ,, (16)

including also initial strains ?lnit such as are produced
by, for example, temperature variations+). [E] is the
elasticity matrix. Substituting (16), (12) and (15) in
eq. (8), equating this value with 6V and comparing eq. (8)

with eq. (1), the [k] matrix is defined as

x1 =/ 17 [E1 D] d(vol) (17)
vol
For the forces acting on the nodes as a result of the

initial strains §lnit the corresponding force vector
{Finit} is given by

_ T >
{Finit} - v{lm] (81, ,, d(vol) (18)

To account for the body forces in an element given by a
force density fg} the integral (19) (internal work done

by the body forces)

-faar‘f‘; d(vol) (19)
vol
must be taken to suppliment 6VE. By substitution of 63'=
=[N]{%A}-one obtains for this term - {;q?{%b} with

{Fb} = /[NI]T 'f":d(vol) (20)

vol

{Fb} is the vector of the force components acting on the
nodes where the forces are produced by the body forces
E:. {fé} is therefore also called element body force

vector.

)

For thermal expansion g = a-dT,'where a is the

init
coefficient of thermal expansion and 4T the temperature

difference from the stress free state.




The equations for equilibrium are

{r} - w1 {8} - {Fint} . {E‘b} (21)
From eq. (21) the nodal displacements can be calculated
and from the displacement the stresses

*

&= [E] [p]{a}- (12

ing (22)

Finally, we want to discuss the so-called "isoparametric
formulation" of the FEM /5/. The name derives from the

use of the same interpolation functions to define the
element shape as are used to define the displacement field,
namely the shape function. By this method the curved shapes
of the investigated structures could be mapped into one,
two or three-dimensional "basic" types for which the
mechanism described above can be directly used. An example
is given in Fig. 2.

AY

l
L
|

f“1ﬂ/ )_ e “"-L-..fzf
/

Fig. 2 Mapping of a three-dimensional curved element

into a cube
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The coordinates of the element are given in the form

m m
X = N.X.; y = N N¥Y::' 2= T “Nlz, (23)

where X{0 ¥y and z; are the ©oordinates of the nodes and
the Ni are the shape functions; in this case (23) they are
used as transformation functions N, = Ni(gﬂhﬁ ) . They
transform the coordinates of the global x,y,z system to

the "intrinsic" "or natural" 5, Ny system.

2. DESCRIPTION OF THE ELEMENT

For the displacement and stress analysis we use the 20-node

isoparametric solid element shown in Fig. 3.

Fig. 3
ﬂf Hexahedral element in
2 9 1 natural coordinates ﬁﬂh?
10 X |
| i 12 o: element nodes
3 : n n 4 x: chosen stress output
locations
$18 17
X | ) :;—g
196 | $20
I x
6 13 S
1% P . . .
-1 x % With the instrinsic g,q_,?
% .% 8 system in the centre of

the element the node

coordinates have values
of only ¥ 1 or 0. For instance, the point 1 has the natural
coordinates (1,1,1).

As shape function for calculating the force distribution

produced by body forces (eg. 20) we use the following
ones /4/:

Np =g (4§§y) (qng) O gy G6 tanit PYs -2

.

(24a)
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for nodes at the corners (nodes 1,2,3,4,5,6,7,8),

. | _¢2
N, = y (1 § ) (1+;ULi) (1+ ?.Ti) (24b)
for the mid-edge nodes with §i= 0, py = g, fi =1,
1
Ny =3 (l—qz) (1+ jﬁi) (1+ ¢yp,) (24c)
i - = T w X
for the mid-edge nodes with Qi =0, ji = 1, j& = 1
and
Al
N =3 (1 r ) (1+ §§i) (1+ 771) (244)
for the mid-edge nodes with So= 0, ﬁ‘i = X 1, 'li =1 1.

3. DESCRIPTION OF THE CALCULATION PROCESS

In this section we describe the procedure we worked out in
order to investigate a three-dimensional displacement and
stress analysis for toroidal field coils.

First we calculate magnetic force densities in the coil
windings using the HEDO computer program /6/. For these
calculations we divide the winding cross-section into
guadratic elements (see Fig. 4) each carrying a "line current”
in the centre of the element. The number of elements np
depends on the winding cross-section; for large coils (a,b
greater 0.5 m see Fig. 4) np is chosen larger than 40. For

the circumferential segmentation about 30 - 35 segments are
generally used. The program calculates the forces per unit
volume -f::= (f0
element AV /6/.

x' Toy’ foz) in the centre of each volume

This procedure can be done for:

a) circular coils
b) ideal "D" coils
c) real "D" coils

d) oval coils




N

12

segment n+1

~B

A segment n

aAv

Pxyz)=PUyz)

y Ac center line
# - x
— Xi = ~~— J
Xa -
afoy

- > fox 1
10E i b
MOLiE ab }

U Aa

center line current path
for one element

Fig. 4 Scheme of a D-coil showing the subdivision of the

winding cross section and the segmentation of the

coil along the coil circumference.
S foy' fOz are the force densities acting on
one element with the volume Av = Aa* Ab: Ac.

¢ is the radius of curvature, {U,v} system for

the planes across the winding section.
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By ideal D-coils we mean coils for which the radius of
curvature is given according to /7/ as

f=k.x (25)

where x is the distance from the main torus axis and k is a
constant

k =3 L4n (x,/%;) (26)

Calculating real D-coils,we use the relation /8/

f== x [ gé (1+ % ) - % £n ii 1/ (1+ i cos @) (27)
a a

where n is the number of coils.

With these definitions (25, 27) we calculate numerically
the shape of the centre line for the ideal /9/ and real

cases.

The next step in the calculation process was to determine
the forces acting on the nodal points. In our case the
nodal forces are produced by the body forces.

The simplest way to calculate the nodal forces (force
distribution) would be to calculate the total force fﬁr
acting on the centre of the element used for the FE ca-
culations (volume elements for the FE calculations are
generally not identical with the volume elements used for

magnetic field and body force determination) according to

1-"_0’ - /f:d(vol) (28)
vol

and then distribute f: to the 20 nodes. The nodes at the
corners (nodes 1-8; see Fig. 3) would be loaded with

§:732 and the mid-plane points (points 9-20) with 53716+).

+) The distribution regards the fact that a corner point
belongs to two or four elements according to whether
the element is located at the surface or not, whereas

a mid@plane point belongs to 1 or 2 elements.
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We use a more realistic distribution (an example for this
assumption is given later) using eq. (20) which distributes
the body forces according to the shape functions.

In order to carry out this integration, we had to calcu-
late the volume forces for any arbitraty point P(x,y,z) in
the coil winding.

From the output of HEDO we have the volume forces E?

at

the current pathes in the centre of each element AV =
da'Ab:Ac. In Fig. 4 for two segments (in the circumferential
direction) n and ne#l, the centre points of the body forces,

are shown as dots in the planes AB and ¥¢D.

TO calculate in the plane AB, the force density f: for every
point in the plane, we use the spline technique /10/. For
this we divide the plane AB in elements as was done for the
force density calculations with HEDO (see Fig. 4). One

. =
component £, £  or f,, of the force density f_ (for

oy
fox"' we use the symbol S) is given by
! i-1 3-1
s(u,v) = . j:l eij (U-X; ) (V-Y, ) (29)

where U,V are the coordinates of an arbitrary point in the

plane, XLX and YLY are the coordinates of the element centre t

(centre of f: ) and Q&j are the spline coefficients of the

. ., 3

n : n
centre points (XLX’ LY

In carrying out the summation process of eq. (29), one has
to calculate the 16 spline coefficients for every "centre
point", then the element in which the point with the
coordinates (U,V) has to be found. A detailed description

for this case is given in Ref. /3/.

With the E:TX,y,z)—values the nodal forces acting on the nodes

could be calculated with eq. (20)

T
{Fb}' = /[NI] ‘f"z(x,y,z) dxdydz . (20)
vol
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We carried out this integration in the (§,n,§) space.
For the integration in the (g.rl,y) space we have to con-
struct the Jakobi matrix [J] because the volume element

d(vol) = dxdydz transforms to the volume element d§ dq qr
as eq. (30)

dxdydz = det [J] dj dQ Qf (30)
The integral (20) is now written as
b 1,7 =
{F} = ///[N 1 £ (§'T'Y) det [J] di d'l df (31)
For the 20-node element with 4xir Ayi'

ments the components of eq. (31) should be described in
mor detail.

and Azi displace-

The [NI]-matrix

!

3 N, O 0O Ny O 0...N,g O O
[N"] = [IN;. IN,.....IN,(]J=| O N; O O Ny O... ONyy O
O 0 Nj O O Np...0 O Ny

is a matrix with 3 rows and 60 columns

IN'] = [ 3 x 60] (33)
and nT1T =60 x 3 1. (33')
The shape functions Ni are given by eqg. (24a) - (24d). The

multiplication of [NﬁT by the force density vector f’==

o
[3 x 1] leads to the {Fé}-vector with

b b
rFxl

b
Fyl

{%ﬁf = [60 x 1] = 4 Fgl ?. (34)

B
. FzZOJ

(32)
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The advantage of calculating the nodal forces {fb}
according to the shape function distribution (eq. 20) in
contradition to the simple nodal force distribution

(eq. 28) is demonstrated in Fig. 5a, 5b. Two cubes, fixed
in the z = O plane, are loaded with a body force of 1 N
per unit volume which is directed parallel to the z-axis.
The produced displacement field of the points 1,2,3,4 and
5 is shown in Fig. 5b for three cases: the realistic case (a),
the calculation with the "shape function distribution"
(egq. 20) case b, and case c with the simple nodal force
distribution (Fo/16 resp. F./32).

>N

Fig. b5a
Arrangement of the two

) 3 | cubes for demonstrating

the displacement fields
/fy for different nodal force

! !

| |

J__ HJé/’ P distribution
i

1

0 +1 jr_’.x

Eig. .5b
Displacement field of
the points 1,2,3,4,5 for

a) realistic case

) 5 , (elasticity theory)

f
|
|
|
1 T
\ +? fFie b) nodal forces calcu-

S P, l\\ / lated with "shape
$ function distribution"
D Sa (eg. 20)
| c) nodal forces calculated
by a simple distribution
(ﬁ:732; ﬁ:yls; eq. 28)

% | ‘l




For our 20-node element the Jakobi matrix is given as

o -} e -
e Nop XY, %
3 3 " o
} j j X Z
2 ¥ 2
[J] = ?.N_l % aN_ZO (35)
o R T
3 59" —3
d d d ¥0 Y20 %20
e —J L J

Xis Yyr 27c0:25q are the coordinates of the element nodes
in xyz space and the N, are the shape functions listed in

eq. (22a- 224).

For the numerical integration of eq. (28) we use the Gauss
method.

i, 4 =
T
f [f[NI] f—g(ﬁc’]aj")dEt[J]dfd’Ldf= < :jJ %[NI]T-f_g(fi,rlj,Yh)wiijkdet[J]
1

Sy P (R
(36)

where (§£Q$}E) are the coordinates of the sampling points

and Wi Wj' Wk are "weights". In Fig. 6 the 9 sampling points

for the midplane (f = O0) of the used element are shown.
1

/f =1 Fig. 6
o7 o/l o}
Sampling points in the
TT midplane of the used hexahedral
08 6$——"*} 03 | F.1 element for Gauss integration.

o9 o5 o2
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The location and "weights" for the points 4,5 and 6
(n= O:j= 0) are listed in Table 1.

Table 1: Gauss quadrature coefficients (for n = 3)
Point Location Weight
¥ = 0.7745966.. 5/9
= 0.7745966.. 5/9
Y'= 0 8/9

The extension of the Gauss quadrature coefficients in the
mid-plane and to the points forf# O is straightforward.
The number of sampling points in an element is 27. Finally,
a transformation of the coordinates of the sampling points
is done with the aid of the shape functions (eq. 23) to
get the corresponding body force values Eg(si'fi'fi) from
the fZ'(x,y,z) values.

To get the displacements Z? the global
stiffness matrix [K Imust be known. The SOLID SAP program

and stresses G'
calculates the element stiffness matrix [k] and the [K]
matrix if the element type, the number of elements, the
geometry of the structure, the node numbering and the

material constants are collected as input data.

E 10 1/E _oxy/E _‘,xz/E 0 0 o] r;'
% 3 XX vy zz 68
€ ‘ayx/E 1/Eyy _uyz/E 0 0
Yy XX zz
€ Y x/E -V 1/ 0 0
z2z XX zY/EYY EZz
Y. 0 o) o) 1/, 0
Xy ny
sz 0 0 o} o 1/.
Y, o) 0 o o) 0

e LAt Al i




In our notation eq. (37) is written as

PoETT (38)

;3 and 6, are normal strains and stresses, €j4 and Ey
are shear strains and stresses. The elastic and shear
moduli are tenned as Eii and Gij; aij are the Poisson's
ratios and a; are the coefficients of thermal expansion.
With the SOLID SAP computer program the calculation of the
stresses produced by thermal expansion or compression
reduces, in principle, to determination of the mesh (nodal
points) and the input of the o-, and 4T values in addition
to the data necessary for calculating the [k] matrix. The
nodal forces {Fint} produced by temperature variations which
are given by eq. (18) are calculated with SOLID SAP 1IV.

The stresses and strains produced by the cooling down
process of superconducting coils and the stress distribution
in parts of a coil after a local normal transition can be
calculated with the Mesh Generation Program /2/ and

SOLID DAP IV (see Fig.7).

The [D] matrix for solid elements used in this analysis is

given by:
g—N 0} 0
2%
0 g—i‘; 0
—/
oN
o} 0 3z
[D] = (39)
aN ON
ot S 0
Cy s
oN N
o) 3z @
oN oN
% ° 3%

4. PROGRAMMING

A scheme of the programming process runs as shown in Fig. 7.




Subdivision of
the Coil into
Macro-Element

Mesh Generation

Micro Elements

Nodal Force
Calculation

{%e}mbdaLanxm

SAP IV

20

Coil Dimensions
Current

Field and Volume
Force Calculation

Forces.f (xi,yi,zi)

for poin
P(x;,V:s2;) in
the windings

Interpolation
Spline Technique

Volume Forces

-IE-; (xIYIZ)

Stress and Strain

E] INPUT / OUTPUT

[ ] PrOGRAM

Fig. 7 Scheme of the calculation process
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