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Abstract

This report describes the steady-state analysis of the
mechanical performance of the fusion reactor first wall,
excluding any type of irradiation effect. Starting from a
nuclear power density profile obtained from neutronics/
photonics calculations, we calculate the temperature and
stress profiles taking into account external or internal
radiation heat sources and mechanical stresses due to
pressure loads. The problem is solved for plane, cylindrical
and spherical geometries and for different conditions of
support. As a final step temperature and stress loads are
quoted versus the material's time rupture properties.

The mathematical procedure results in analytical or
numerical solutions which have been programmed for the
computer. This program has been applied to a number of
problems the investigation of which should show justi-
fication for some special kinds of simplification usually
made. The results show that especially the assumption of a
linear variation of the thermal stresses across the wall
can lead to erroneous conclusions. The approximation of the
real nuclear power density distribution by a constant value
results in an underestimation of both the temperature and stress
loads,whereas the assumption of radiation being an outside
heat source results in an overestimation. Of minor
importance is the neglect of Young's modulus, Poisson's
ratio, and thermal expansion being temperature dependent.
After investigating these simplifications,the influence

of the pressure load, choice of geometry and condition of

support is studied.
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1. INTRODUCTION

The mechanical performance of the first wall poses severe
constraints on the design of a fusion reactor which

are manifested as a limitation of either the wall loading
or the first wall lifetime. Both quantities affect the
economics of the reactor very strongly. The wall loading
governs inter alia the size of the reactor and a

number of its components. The first wall lifetime determines
the frequency of first wall replacements and hence, for
example, the amount of radioactive waste produced or,
together with the length of the shut-down periods, the
plant availability. For these reasons, the mechanical
performance of the first wall can be considered to be a

key problem in fusion reactor engineering.

Up to the present time, very few attempts have been made to
get a grasp of this problem [1 - 3]. All these analyses are
restricted to distinct geometrical models with fixed
dimensions and are imcomplete in one respect or another. In
fact, completeness cannot be expected today, because of

the very complex nature of an accurate analysis and
because of the increasing gap between the amount of
information necessary and that available with increasing
depth of the analysis. The latter holds especially for the

field of neutron radiation damage to the first wall materials.

Although we are fully aware of this situation, fusion reactor
systems studies have to deal with this problem in order to
give an answer to the question where a certain limit might
be and how it depends on the systems parameters involved.

To reach this aim the analysis of the mechanical performance
of the first wall is intended to proceed step by step. The
first step and subject of this report is the steady-state
analysis excluding any type of irradiation effects.

Inclusion of non-stationary conditions and radiation effects

will follow in the future.




The steady-state analysis described here starts by
establishing the power density profile. From this the
temperature profile is evaluated for a fixed surface
temperature at the cool side of the wall. This temperature
profile is input to the stress analysis. Here thermal and
mechanical stresses in the elastic range are considered.
All this is done for a number of basic geometries. To get
a first feeling for lifetimes, temperature and stress
profile are quoted versus the material's time-rupture
properties. This analytical model was programmed for the
computer and applied to a series of examples which were

selected to show the consequences of the simplifications
usually made.

2., THEORETICAL FOUNDATIONS

2.1 Power density profile

Internal heat sources in the wall, which determine the shape
of the temperature profile, are due to nuclear reaction pro-
cesses and the absorption of radiation from the plasma.

As far as nuclear heating is concerned, there are again two
separate mechanisms for heat generation. The first is the
release of energy to the wall material by neutron reactions
with the atoms of the wall, e.g. scattering processes.

The second is the absorption of gamma radiation in the wall
which is produced either in the wall itself or elsewhere in
the blanket, predominantly by (n,¥) reactions. From neutronics
and photonics calculations power densities by interval are
gained for both the neutron and the gamma contribution. The
investigation of a series of such profiles suggests using
an equation of the following type for -approximating the
total nuclear heating q, :

g, = G, -1 = = xP), (1)

Here . P [W/cm3] is the power density at that surface of the
wall which is oriented towards the plasma, x [cm] is the




coordinate normal to that surface. In general, o’ a,

and b can be gained if at least three points of the profile
are known. Therefore, in neutronics/photonics calculations
the first wall should be subdivided into at least three

intervals.

Fig. 1 shows four typical profiles for a 1 cm thick niobium
wall which were calculated in the course of our neutronics/
photonics studies. A 200 cm thick blanket of liquid lithium
containing different amounts of niobium structure material
represented by the equivalent volume fractions Eg Was assumed
behind the wall. The absolute values of d, correspond to a
neutron wall loading of 100 W/cmz. Since the shape of the
profile is not changed by applying a different wall loading,
a and b can be considered to be characteristics of the
blanket type. The surface power density 9o’ however, varies
linearly with the neutron wall loading Py
Deviating from this picture, systematic evaluation of
stainless steel/liquid lithium blankets [4] shows essentially
a linear decrease of the nuclear power density in the wall
with x. This case, however, is included in equ. (1) by using
b = 1. With a = 0 a constant power density can be simulated.
Therefore, equ. (1) is able to characterize a series of

interesting nuclear power density profiles.

In addition to the nuclear heating further heating occurs

by the absorption of radiation from the plasma. It is assumed
in this study that the radiation absorption in the wall and
hence the power density qp follow an exponential decrease

= . N
Gy = 8@ BT (2)

Here, qp, [W/cm3] again means the power density at that
wall surface which is oriented towards the plasma and x [cm]
is the coordinate normal to it. The absorption coefficient
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Profiles of the nuclear power density q, in a

1 cm niobium first wall for different structure
material volume fractions eg in a 200 cm liquid
lithium blanket. Neutron wall loading is

Py = 100 W/cmz.




U [cmh1].which determines the steepness of the power density

distribution,is, in principle, a function of the radiation
energy. Of the various kinds of radiation emitted by a
thermonuclear plasma the bremsstrahlung radiation is the
most important, at least under normal operating con-
ditions.

As is discussed in [5],the bremsstrahlung radiation covers a
whole energy spectrum the maximum of which varies in size
and location with the plasma temperature. For temperatures
typical of a D-T fusion reactor (T = 5 + 30 keV) the
maximum of the spectrum is located around energies of about
10 = 100 keV. According to [6], in this energy range the
predominant absorption mechanism is the photo-effect,
characteristic of which are high absorption coefficients u.
For iron:which can be regarded as representative of any
type of stainless steel or nickel-base alloy,typical values
of u in this energy range can be found to be between 4 and
80 cm-1. With regard to equ. (2) these figures mean that the
radiation power density qb(x) reaches half the value of 90
at a depth x of about 2 mm in the case y = 4, and at about
0.1 mm in the case u = 80. From these figures it can be
concluded that it is not necessarily sufficient to treat
bremsstrahlung radiation as an external heat sourceras is

usually done.

An exact treatment of the absorption process would
necessitate evaluating an average absorption coefficient
U from the radiation energy spectrum as the first step.
This procedure is, however, omitted in this analysis.
Instead of this, pis considered to be a free parameter

which c¢an be coupled later to the ion temperature, if

necessary.

The absorption coefficient p is related to a "half-
-thickness" h,

r (3)




which characterizes the depth at which the radiation power
density has decreased to half the value at the surface,

qbo .

The surface value, po is calculated from the integral
bremsstrahlung wall loading Pj [W/cm2] by looking at the
radiation power per unit length of reactor:

trw
21+ Pyt = 6f' qp (x) * 2m(r, + x) dx. (4)

Here r [cm] means the first wall inner radius and
tFW [ecm] the first wall thickness. By introducing equ. (2)
in equ. (4) and performing the integration we get for 9o

2
P .r .u
B B Ty
9po = (5)

- . “Htpy
[(1+urw) (1+urw + “tFW) e 1

For illustration, in fig. 2 the nuclear and the radiation
power density profiles qn(x) and qb(x) and the resulting

total power density profile g(x) are shown qualitatively.
As is suggested in this paper,the total power density can
be represented by

g(x) = qn(:r:) + qb(X) =

b
Gooy A1 S EXE) ¥ g, *0 (6)

2.2 Temperature profile

Having established the power density profile, equ. (6), the
next step in the analysis is to evaluate the temperature
profile. This is done by solving the differential equation
of heat conduction for the steady-state case:

div (A graday) + q= 0. (7)



1.0

Fig. 2: Profiles of nuclear power density q,. radiation
power density gy and total power density q in
the first wall in arbitrary units.




Here 3’designates the temperature and A the .thermal con-
ductivity of the wall material. We linearize equ. (7) by
introducing the heat flux potential

¥
S =3{3 A9 ad, (8)

In equ. (8) the lower integration limit 3% means any
reference temperature,which in all our calculations will
be taken as 3% = o0 °c. By differentiating equ. (8) with respect

to the upper limit of integration and substituting the
result in equ. (7) we get

div grad S + g = 0 (9)

or using the Laplace operator A

AS + g = o. (10)

To solve this differential equation,the Laplace operator

has to be specified according to the geometry used.

Since systems studies need a high degree of flexibility
just with respect to geometry,equ. (10) will be solved for
plane, cylindrical, and spherical geometries. In the
cylindrical and spherical cases an additional distinction
will be made between concave and convex curvatures. This
total of five different geometrical cases allows con-
sidering a variety of possible engineering solutions

for the first wall design.

Figs.3 and fig. 4 show the quantities used in the sub-

sequent analysis for the different geometrical cases,

fig. 4 being valid for both cylindrical and spherical
geometries. In contrast to the definition of the radii

b
|5
it
|
4
I
:
i
i

which obviously follows from the design, the definition ;

of the wall depth x is common tO all five cases. The

origin of this axis is the "hot" surface of the wall
which means that surface which is oriented towards the
plasma. A further common feature is the use of the
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Fig. 4:

'‘a) concave curvature

‘b) convex curvature

Definitions for cylindrical and spherical

geometries.
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index "o" for the "cold" surface of the wall. This latter
convention is dropped only once: in the case of plane geo-
metry, x at the cold surface is called t which is the
first wall thickness.

FW

Before entering the procedure of solving equ. (10) one
assumption common to all five cases shall be explained.
In all evaluations it is assumed that the power density
profile only depends on the wall depth x and not on the
radius r. This assumption should prove to be sufficient
for the case of concave shells. It is a simplification in
the cases of convex shells especially when larger ratios
tFW/rO are considered. For this type of geometry, however,
a second simplification is implicitly involved which

may be more significant than that just described. This
simplification is the neglect of circumferential and
axial variations which could only be treated by applying
two or even three-dimensional methods. This, however,

is beyond the scope of this first part of the report.

By specifying the Laplace operator equ. (10) reads as
follows for the plane (case a), cylindrical (case b), and
spherical (case c) geometries:

2

a) g__g + q(r) = o0, (11a)
dr

py &8 ,1d8, (1) o (11b)
a2 E & q '
r
a’s 2 ds

c) = + L:q3 + g(r) = 0. (11c)
dr

(To be systematic, we write r in place of x for the plane
geometry case.)
These equations are usually solved by substituting

ds 1

_=_.Y'
dr rn

(12)




Here the exponent n is the quantity which discriminates
the three types of geometry:

n=20 plane geometry,
n=1 cylindrical geometry, (13)
n=2 spherical geometry.

Introducing equ. (12) into equs. (11) yields

g¥ = arh q(¥]) x (14)

In this way equs. (11) are solved by integrating equ. (14)
and equ. (12) twice. The first integration of equ. (14)
yields:

y = 1);' r'P GiEY] A’ C1. (15)
r
1

For simplification we abbreviate

Qn(r1,r) = }f ' gqix*)"ar"; (16)
T

The arguments r, and r of the function Qn denote the
lower and upper integration limitsrespectively. Equ. (15)now
reads

y=- Qn(r1r) + Cqe D

For the determination of the integration constant C1 we use
the boundary condition which says that at the "cool" side
of the wall the temperature gradient is determined by the
total heat flux density Q at this position:

-2 (- (g—‘g) = Q. (18)

r=ro
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Equ. (18) is also valid for the plane geometry case ,where,
as indicated above, r has to be replaced by x and r, by

tFW‘ If we consider the left hand-side of equ. (18) we
find the following relations from equs. (8) and (12):
(¥) e
ay ds _ o
‘A(ﬁ) (a;) ~ - (a;) ~ == —5 - (19)
r=r, r=r, r,

To find the total heat flux density Q at the "cool" side

of the wall, an .integration over the power density profile
is necessary. This total power has to pass through the wall
surface defined by r . Although the power density profile
g(r) already contains a contribution which is due to
radiation heating we assume here that there may be an
additional heat source outside the wall producing an
additional heat flux density Py [W/cm’]l. Taking all this
into account ,we arrive at the following expression for Q:

3 ro . r11'1
Q = — (r') " *g(xr') dr' + PR' — (20)
I r
(o] r1 (o]

The introduction of P, provides the possibility of taking
any other heat sources outside the wall into account, or
of treating bremsstrahlung radiation as an external source
for comparison. For this case one has to set Pp = Py and
950 © Qs

Equ. (16) shows that equ. (20) can also be written as

r

Q= —t:r0 (ryry) + PR‘(EJ‘) . (21)
]’.'O o]

With equ. (21) and the third term of equ. (19) the
boundary condition, equ. (18) ,becomes

(Y)r=ro 1 1 i
- 7 =T "9 (FpeT) * PR'(E_
¥ ¥ o
o o

(22)
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The left-hand side of equ. (22) can be expressed by intro-
ducing the result of the first integration in the form of
equ. (17), yielding

n
= 2l e OB ] G e 0 7 ) B e (23)
n il g =TT ER Y 4 e R n'
: o r i 5
o o o
This eqgu. yields the integration constant C1:
-— e . n
Cqy ==Pp r, . (24)

The final result of the first integration,equ. (17),can
be written as

y = - Q(r,,r) - Py r1n. (25)

This solution has to be introduced into equ. (12), and this
equation has to be integrated to yield S as a function of r:

r n
f [Q R L A B (26)
£

Just as in the case of the first integration we introduce
for simplification the abbreviation
X
i o 1 % n '
v = [ e e+ e A, @)
7 (')
1

the arguments of this function again denoting the inte-

gration limits. Equ. (26) now reads

To obtain Cyr a second boundary condition must be met. For
this purpose the temperature at the "cool" side of the
wall is fixed at J . Due to equ. (8) this temperature

o
corresponds to a heat flux potential S.:
%
S, ={7 A(dY a¥. (29)

B



By introducing SO at the location r = r, into equ. (28)

the integration constant C, follows directly:

C, =5, + Yn(r1,ro) (30)

and for the solution, equ. (28), we get

S = So S Yn(r1,ro) - Yn(r1,r). (31)
Since the second and the third terms of the right-hand
side of this equation mean the difference of two
integrals with different integration limits but the same
integrand,we can write equ. (31) using the notation
defined above:

S = 8z % Yn(r, ro). (32)
This equation is the solution of the problem because the
temperature profile 3%r) can be directly assigned to the
profile S(r) by inverting equ. (8).

The preceding section was devoted to the general solution
of the problem of evaluating the temperature profile 3%r)
in the first wall from a power density profile g(r). The

temperature profile:y(r) can easily be derived from that

of the heat flux potential S(r). This latter profile was

found to be

S(r) = So + Yn(r,ro) (33)

with the abbreviations

o]
- 1 & 5
Yn(r,ro)-:/n (r')n [Qn(r1,r') + Ppe 1y ]l ar'; (34)

r

Q,(r,,r) = J; (r9)" q(r') ar', (35)
r
1




and the power density profile

_ b . _=HX
(1 a.x’) +q ‘e ’ (36)

alr) = 9ho
The specialization of these equations to the five different
types of geometrical arrangements (plane, cylindrical
concave, cylindrical convex, spherical concave, spherical
convex) is done by choosing the appropriate guantities for n,
Ly, Xy and r, according to figs. (3) and (4) and equ. (13)
respectively.

For'convenience,the definition of these quantities is

summarized in table I.

Table I: Specialized parameters for the different

geometrical arrangements

Type of geometry n r ry r,
plane 0 b4 tFW 0

cylindrical concave 1 ro + x r, T
cylindrical convex 1 r, - % r, r,
spherical concave 2 r.o tx r, o
spherical convex 2 r, - X ry L

For the case of plane geometry the power density profile
is given by the original equation, equ. (36):

g(x) = (1 -a xb) + A6 L {37)

an

The specialization of equ. (35) to plane geometry using
the notation of table I yields

X
0, ©0:x) =S atx) ax. (38)
O
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Introducting g(x) from equ. (37) and performing the inte-
gration results in

_ _a by T o -ex
Qo(O,x)— 90 (x e ) + 7 (1- e 16 (39)
Similarly equ. (34) can be specialized yielding
tFW
Yo (%, tpy) =‘f [Q (0,x') + Pl dx'. (40)

X

By inserting equ. (39) into equ. (40) and performing the
integration, we get
2 2

to ~ X a b2 b2
Yo (Ktgy) =a > T o tew T X )|t

+ q% (e_utFW e (q-ﬁg + PR) (tFw - X). (41)

By using this equation 4(x) can be obtained from

S(x) = SO + Yo(x, tFW)' (42)
2.2.2.2 _ Cylipdrical geometry, concave curvature
In accordance with table I we substitute
r=r, +Xx (43)
Because of the assumption that the power density only
depends on the wall depth x it follows that
_ b -ux
g(r) = q(rw + x) = - A (1- a x7) + Qo * © 5 (44)
The evaluation of equ. (35) specialized to the type of
geometry discussed here,
r
Qq(r,x) = f r'q(x') dr' (45)
3 0y
W

can therefore be done by an integration with respect to x:
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« .
Qq(x ,x) = )’ (Ziok x2) o @iz 4% )y dxY, (46)
(@]

If the right~hand side of equ. (44) is introduced in equ. (46)
it becomes obvious that

Q1(rw,r) off S QO(O,x) + Q11(O,x), (47)

QO(O,X) being just the equivalent solution of the plane
problem, equ. (39), and Q11 (0,x) defined by

X
Qq4(0,x) = i’ wglx"] dx . (48)

the solution of which is

2 b+2
_ x° _ a o o _ -ux
Q11(01x) - qno [2 52 X ]+ u2 [1 (1+ux) e ] .. (49)
To evaluate equ. (34)rwhich, in specialized form, reads
r
°1 : . .
Y1(r,r0) = 4’ e § [Q1(rw,r ) + PR rw] dr (50)

we may resubstitute (r - rw) for x in equ. (47) and accordingly
in equ. (39) and equ. (49). Then we would have to replace Q,

in equ. (50) by these expressions, divide each term by r and
integrate each new term with respect to r. A term by term
examination shows that this would involve integrals of the

type §§n_ dx, generally known as the exponential integral,
which can only be analytically solved by a series expansions.
An attempt to do this with realistic values for p and x shows

a very poor convergence behaviour of this series. Therefore,

it was decided to solve equ. (50) numerically. The recsults

of this 'numerical integration are then utilized to calculate S(r)
from equ. (33).

- = = mm == -_ e me me =™ em  mm e - e Em o s w E= e

In contrast to the concave curvature in this case we have

to use another substitution

r=se. = X (51)

a /




which yields the power density as

g(r) = q(ra - X) (1 - a.xb) + Qg e_“x. (52)

= 9o

As in the previous case we obtain the specialized equ. (35)

by replacing r, by r instead of .t

r
Qq(x_,x) ={ r'q(r') dr'. (53)
a

By utilizing again the above substitution equ. (53) reads
X
Qq(xaem) = [ (xgmx") - alry=x") dx', (54)
o
the solution of which is equivalent to equ. (46):

Q1 (rarr) = ra 'Qo(orx) = Q11(01x)0 (55)

Equ. (55) now has to be introduced in the specialized

equ. (34):
r01
Y, (z,z,) =f & [Q4(ry,x") + Pprr ] dar', (56)
r

which again has to be solved numerically to yield S(r) and
and STr) as the final results.

P A - e e o oam w— = -_ o mm mm mm omm e = e

In accordance with table I we use the same substitution as for the
cylindrical geometry in the case of concave curvature,

expressed by equ. (43). Thus,the power density agrees
completely with equ. (44):

-ux

qr) = qlr, +x) = q  (1- a.x’) + q ™", (57)

no

The specialization of equ. (35), however, now yields

r

o (x,m) = [ 12 qun ar. (58)
r
w
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Introducing the substitution for r into this equation
results in
X
2
Qz(rw,r) =‘/P[rw + (x'? + 2rwx'] 'q(rw + x') dx'. (59)
o

Again,we can split up this integral to utilize, at least

partly, solutions which are already known:
t— 2 - .
Q,(r ,xr) =1r “ -0 (0,x) + 2r -+ Qqq(0,x) + Q,,(0,x) (60)
Here only the last term has vet to be specified:
B 5.2
Qy,(0,x) ={(X') q(x') ax' (61)

The solution of this integral is

qno 3 qno'a b+3

Qopl0ix) = =5~ B — =% &
q _
Fl JoZ o [x% 4 28 g =] se PRY (62)
E Uz H Uz

Represented by its single terms according to equs. (39),
(49), and (62), equ. (60) finally has to be
introduced in the specialized form of equ. (34):

s 5

o
Yz(r,ro) =‘£ (ri)z[Qz(rw,r') -+ PR -rwz] dr'. (63)

For the same reasons as explained in connection with
equ. (50)rthis equation can only be solved numerically,
too. The remaining procedure corresponds exactly to those of

the former cases.

_— o= Em mm mm = e o e e _— = mm e e = e e

As in the corresponding case for the cylindrical geometry
the power density profile is represented there by

q(r) = q(ra*x) = dp0 (1- a°xb) + Qo " © (64)
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again utilizing the substitution defined by equ. (51).
The specialized equ. (35) becomes

Q,(r ,x) = f(r')2 q(r') ar'. (65)

Ta

Introducing the substitution into this equation yields

X
Qy(r,,r) = f[raz + (x")° - 2r, x'1°q(x,-x') dx'.  (66)
o

By splitting up the integral we obtain

2
Qz(ra.r) = ro 'QO(O,x) - 2ra Q11(0,x) + Q22(O,x). (67)

Again, Q,,(0,x) is defined by equ. (61) or equ. (62).
Equ. (67) has to be’inserted in the specialized equ. (34):

r

o
Yz(r,ro) = }r T 5 [Qz(ra,r') 2 PR-raZ] dr' (68)
£ (x')

to yield finally S(r) and from this profile the temperature
profile.g(r).

2.3 Stress profile

In most fusion reactor design studies the stress analysis
of the first wall is treated very roughly. This may be

due to the fact that a complete analysis is rather complex,
and that it requires a lot of information which is not yet
available for fusion reactor conditions. The latter holds
especially for the field of irradiation effects,which have

to be taken into account in such an analysis.

As was indicated in the introduction, we do not intend
to achieve the aim of a complete model at once. We start

here with the solution of the steady-state problem in the
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elastic domain and do not care about irradiation effects.
Subsequent parts of this report shall summarize the results
of the analysis where these restrictions will be removed
step by step. The problem treated here will be ezclusively
concerned with mechanical and thermal stresses. The
solution of this problem can, in principle, be found in

the literature [7 - 9].In spite of this fact, some of the
main ideas and steps of the analysis shall be repeated

here because they are a guide for the treatment of the

more complicated problems to come.

In the following subsections we are essentially following
the presentation of Timoshenko and Goodier [7]. We start
with the treatment of the cylindrical geometry followed

by the spherical and plane geometries. Finally, some remarks
about the toroid are made.

——— e — T ——— — —————— - ———— -

The analysis generally starts with the statement that the
three components of strain can be expressed as the sum of
two contributions:

(E) {T)

. TE. + € 69
£y =€y (69)
Here j denotes, for the case of cylindrical geometry, the
radial, azimuthal, and axial components, respectively
(j = r,0, 2); egE) are the three components of elastic
strain; € T) is the thermal expansion strain, which is
assumed to be isotropic.
The elastic strains are given by Hooke's law:
(E) 1 _
e, g 16, - v(ey + 6] , (70)
(B) _ 1 (o -
€g s 165 - vieL + 6,01 (71)
(E) _ 1 i
e, =g L6, = vIGL + 64)1 , (72)
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the thermal expansion strain by

il o whid (73)

In these equations G},Gé, and G; are the radial, azimuthal,
and axial stresses, respectively, E is Young's modulus,

and A~ stands for a temperature difference
23 =J -y, (74)

where:ﬁun is defined as that temperature at which no
thermal stresses occur. The coefficient o in equ. (73)

is to be interpreted as the average thermal expansion
coefficient in the temperature interval between 3(0) and 7.
It is defined by

g 5y a¥
éo)a( ) d.
= ) (75)
N 10

o

The first case generally considered is that in which an
axial expansion of the cylinder is completely suppressed
(see Fig. 5a). This means that

(E)

€. = E + €
Z Z

(T) _ . (76)

Introducing equ. (72) and equ. (73) into this condition
the axial stress component can be evaluated to be

6, = V(5 + 6, - aEA Y . (77)

When equ. (69) is written for the two remaining components,

G; can be eliminated by inserting equ. (77). This results

in
2 v

ey = Uhlawd = 12 (¢, - 6, (78)
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£

2
= Pltgiohd = 220 C, - 7% 6. (79)

e E

By solving equ. (78) and equ. (79) for the stress components
it is found that

= 2 (1-v) e I |- ..

r = T+ (12w t6r ¥ T=v %0 ~ Tv a1 . (8g)
- E (1-v) \ _ 14y

S = T (7-2v) % ¥ T3 °r 1-v“ﬁ3]° (81)

In the cylindrical geometry the stresses G; and 6; have
to obey the equation of equilibrium:
a6 <65 %

Ir + - = 0. (82)

By substituting G} and 6. from equ. (80) and equ. (81) we

e
get from equ. (82)
de de 3
r, v ©, 1=2v , __ ., o ltv, . dad
rar i Y a1y (Br T8) T 1YY v (83)

The compatibility of strains requires

e, = g% : (84)
=T (85)

where u is the radial displacement. With the derivatives

of €. and €
Y

e
de 2
r d"u
_— = =3, (86)
dr er
EEQ W - . (87)
dr r dr r2 !

and equs. (84) and (85) we obtain from equ. (83) a
differential equation for the radial displacement u which

reads

_.-+;—-——=—-——-oao—-—. (88)
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The solution of this equation is

C
—m-.l i ] —2
LR el :}(r'ASYr')dr' Iy k2, (89)

When this solution is introduced into equs. . (84) and (85)
we obtain the strains:

C
=~ JENV - : ' ' il
€y = [Aﬁ'(r) r2 r Aﬂ’(r )dr] + C, rz' (90)
e o= li!.a. 1 :A,ﬁ( ")dr' + C Sz (91)
e T-v% 32)F royar 17 2

These solutions introduced in equs. (80) and (81) yield
the stresses

] E ™ - —E—.-—2 - ic _1_ 1 { ]
O = T (3w "1 ~ Ty 27T 2 r'ad (rhydr',  (92)
o B o v B2y Bt 0 Gnar S BTy, (93)
e~ () (1=2v) 17 7w 27 T2 L x - .

In order to determine the integration constants C.I and sz
we have to apply boundary conditions. With regard to a

possible generalization of the problem we apply the pro-
cedure to a hollow cylinder with innexr radius a and outer

radius b and we request the radial stresses G; at the

surfaces to be equal to equivalent pressure loads
P, and B respectively. From this it follows that

6, (r=a) = - p,, (94)
6. (r=b) = - p. (95)
From these conditions the constants C1 and C2 are found
to be
¢« ) (RabyiPe it cof meis s
1 - E b2 2 a“b a
-a
(1+v) (1=2v) 1 b
t O 'bz_az‘ﬁjﬁr'aﬁrtr')dr', (96)
a




b
o 2a Gfr'ﬂfg(r')dr'. (97)
a

By introducing C, and C, from equs. (96) and (97) into
equs. (92) and (93) the final solutions for the radial and
azimuthal stresses are obtained:

2 2
G b

=P+ (BP) s (1 - %) +
o a a b b2_a2 r2

Il

3]

28]

b -a

2 b r
Eq Be=g . 1 ' ' v 1 ' [ 1
+ 7 [2 r—2£ r'ad(r')dr r—zg'r 2 Y (x )dr], (98)

G b2 a2
=-pP_+ (P_P,) —s (1 +3)
a a“b b2-a2 2

+

+

2
+
— r—-i fr'Aﬁ’(r ydr' + —[r'ag art - A @],  (99)
T-v b a 2
To obtain the axial stress, G}, we have to evaluate equ. (77)
by inserting equ. (98) and equ. (99). Doing this we arrive
at g

6, =2V [~ p, + (P~F,) -2——2]+

[ Z.- AN r*yar: - Aﬁ(r)] 7 (100)

as the final solution for the axial stress in the case
that free axial expansion of the cylinder is completely

suppressed.

Normal forces occur at the end planes of the cylinder
which can be calculated from G;. These normal forces are
a necessary consequence oOf the assumption of a zero
axial expansion.
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During the derivation of these equations we deviated from
Timoshenko's procedure only in one point. With equs. (94)
and (95) we chose different boundary values for the

radial stress G}. While Timoshenko assumed a zero pressure
load we decided, with regard to the first wall problem in
a fusion reactor, to account for the possibility of having
a certain pressure either inside or outside the cylinder.
In comparing Timoshenko's results with those presented
here we see that the three stress components Ga are
represented by

- (M) ¢x)
G'J = GS + Gg I (101)

GT(M) being the contribution resulting from the mechanical

v (T)

load, G} being that resulting from the thermal load.

In contrast to the case just treated, it shall now

be assumed that the cylinder can undergo free expansion

in the axial direction. A solution of this case restricted,
however, to thermal stresses only has been presented by
Timoshenko [7]. Since no internal or external pressures
are applied in this case, the problem can be considered to
be equivalent to Fig. 5b,which shows a hollow cylinder
completely open at both end planes.

According to Timoshenko, there is no need to repeat the
entire procedure once more on the assumption that

equ. (76) does not hold.He states - without proof - that
equ. (98) and equ. (99),which describe the radial and
the azimuthal stress distributions, remain unchanged, and
that it is possible to derive the axial stress component

G; from a consideration of axial forces only.

In the casewhere the cylinder was prevented from free

expansion a normal force at the end planes occurred owing




to the axial stresses G;. With a completely unrestrained
hollow cylinder such a normal force may, however, not
occur. This condition can formally be met by superposing

a uniformly distributed axial stress K, which just
equilibrates the stress distribution defined by equ. (100):

Kz -ﬂ(bz-az) = —_}bZﬂr'GE(r')dr'. (102)
a

The new axial stress distribution é; for this case is
then given by

E; =G + K (103)

the result being

1=v

b —

S EC! 2 1 1 1

7 - B [ e dener - o). e
a

This expression for ﬁ; is obtained independently of the
assumption whether there is an additional pressure load
Py and/or P, or not. Just for physical reasons the con-
tribution of &, ™

we are considering an open cylinder. The axial stress is

to the total 6; has to vanish because
exclusively due to thermal effects.

The real and practical case for fusion reactor blanket
application will most probably be defined as one

in between these two extrema. It will be, as shown in
fig. 5¢, an axially closed cylinder, but having the
possibility of free axial expansion. In spite of the free
expansion there will be a normal force at the end planes
because of an either internal or external pressure load.
The equivalent axial stress Eg has to be added to the
axial stress G; valid for the free expanding cylinder,

yielding the total axial stress ;i for this case:

+ K_. (105)

A
+
=~
n

|
+
=

Ei =
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For the case of internal pressure, P_, ﬁz is defined by

a

K = —5—5"'P,. (106)

For the case of external pressure, Py Rz additionally
depends on the geometry outside the cylinder considered.
Here we restrict ourselves to the arrangement of two con-
centric cylinders, as shown in fig. 6. With.respect to
the inner cylinder Py, works as an external pressure. The

resulting axial stress ﬁz in the inner cylinder becomes

c?p?  (c+a) -V2 (Pp?) |

(b%-a%)  (c+d) - (atb)

Py, (107)

While the meaning of a and b is the same as before, c
and d are the inner and outer radii of the outside
cylinder.

The analysis of the spherical problem is very similar to
that of the cylindrical problem. Instead of the axial
component of both stress and strain there is a second
azimuthal component which is identical to the first one.
In the spherical geometry it is called the tangential
component. The elastic strain components are therefore

given by
e, ®) = 16, - 2v671, (108)
e, '® = liep —veL + 61, (109)

while the thermal strain e(T) still follows equ. (73).
There is no component which has to be eliminated in

order to reduce the number of equations to be solved.
After solving equ. (108) and equ. (109) for the two

stress components the equilibrium condition for spherical .

geometry-
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ds
—XI
dr

B

+ (t;]-:-?)=o (110)

t

can be applied. With the same compatibility conditions as are
valid in the cylindrical case, equs. (84) and (85),

the differential equation for the radial displacement can

be obtained,the solution of which is

c

3]

s & 1_::_3 oiite if 20 F (eydr' + c,r + =2, (111)

r2 1

ol

r

By doing the reverse procedure with u known from equ. (111)
we arrive at the following expressions for the radial and
tangential stress components:

E-C 2EC -
R Iy 1 _ 2,
& = - i r3jr' Arhar' + = - 15 3 (112)
EC EC
G’:Einl '2 t 1 1 —-—.—20—1-—E—_-.al
£ T " 3 o An&(r ydr* =+ T ¥ e 3 =V AJ’(r), (113)

We again generalize this solution to the case of a
hollow sphere with the same boundary conditions as in the
case of the cylinder:

6f - (r=a) == P, (114)
o7 (r=b) = = P+ (115)

By introducing equ. (114) and equ. (115) into equ. (112)
and equ. (113) it is possible to evaluate the integration
constants C1 and Cz,yielding

3
_ (1-2v) b - -

+ ]"'2" . 32 E afr'zaﬁ’(r')dr', (116)
a
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3.3
1+4v a~ b
C, = =2 . B =P ) =
2 2E b3—a3 a b
3 b
+ 1‘% . ;a—_,,-af 20 (r'ydr'. (117)

-a a

With C

1 and c, from these eguations the final results
for the radial and tangential stress components 6} and
6;, equ. (112) and equ. (113), become

b3 a3
==l ® Gyl rig—s (1 = =33 4
b -a
+ B r3"a f r'2aYear - & rr'2a3(r')dr- (118)
r
1=v b —a 3 r3J/
3 3
G, = - P+ (P-P )+ —2—= (1 +2=) +
t a a "b’ [3_.3 op3
r
+"1.3-_€_'£\3 2r+a 3fr ¥ ryar + —fr'zaﬂfr')dr' Yol (e
a

Again, these equations show the same structure as was
indicated in equ. (101) so that an easy splitting into a
mechanical and a thermal contribution can be made. The
thermal contributions in both equ. (118) and equ. (119)

are, furthermore, in complete agreement with Timoshenko

[7]!

2.3.3.1 Thermal stress

In the case of plane geometry the three strain components,
equ. (69), read

Ex—

(6, - v (G, +67)1 + asd) (120)

Hi=
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ey =5 16, (8, +6,)1 + ard (121)
=1 -
€, = & 6, -v(& + 6&)]+ an, (122)

According to fig. 7 it is assumed that there is a temperature
distribution in the x-direction which deces not, however, vary

with y or z. The plate shall be perfectly restrained in the
lateral directions Yy and z,

E.. = € = 0 (123)

and shall not be loaded by any additional pressure, which
means

6 = o. (124)

Then from equs. (120) to (122) the stresses can be directly
derived:

g, = 8, = - %), (125)
If, however, the plate is free to expand laterally normal
forces and - in the case of a temperature distribution not
svmmetrical with respect to the y-z plane - even bending
moments have to be superposed to arrive at a plate which is
free of force. Assuming free expansion in both the y and

z-directions,Timoshenko |7] gave the sclution

5
- - - Eo Ea | 1
G;—S'Z- = 8 ¥x) + T 20/ s (x)ax +
-C
c
ik l%% °i§% 4 Aﬂ?x)dx. (126)
2¢ Lo

Since equ. (126) originated from the consideration of

forces and moments with respect to a single direction, y

or z, it should be possible to use equ. (125) and (126)

for the different stress components, if different boundary con-
ditions with regard to expansion are valid. It should be
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mentioned that equ. (125) and equ. (126) were derived

for the case of rectangular coordinates. They are, however,
applicable in the same way to a circular plate in which

the temperature varies only with the axial thickness. In
this case the radial and azimuthal stresses, G} and Cg
respectively, are precisely the same as the lateral

components in a rectangular plate:

- R R (127)

For the cylindrical and spherical geometry it has already
been shown that the total stress of the single components
can be evaluated as the sum of a mechanical and a thermal
contribution, equ. (101). The same holds for the plane

geometry, too. Therefore, in this paragraph some remarks
about the mechanical stresses in plane plates caused by
pressure loads shall be made.

It is not intended here to go into the details of the

theory of plates but to present some design formulae which
can be used in the course of the stress analysis. Such
formulae can be found in Hitte I [10] for some special cases
of shape, load and restrain conditions. For the evaluation
of these formulae a series of assumptions was made the most

essential of which are the following:

a) The thickness of the plate is small compared with
the lateral extension.

b) There is no strain in the mid-plane of the plate.

c) The stress component in the direction of the thick-
ness of the plate, here designated as G;, is

small compared with the lateral components.

For the subsequent procedure, the last of these assumptions

is converted to the statement:




,

G, = o0 (128)
X
For a rectangular plate, as shown in fig. 7, with the
thickness tew and the edge length 2a and 2b (a >b) the
stresses G& and G, due to a pressure load Ap can be

expressed by the equation

b
G = A o Ap o —— 129
v y P e 2 ( )
FW
b2
G =A_+Ap » — (130)
Z 2z ‘ 2
FW

The pressure load Ap stands here for the difference:
- Py (121)

The coefficients AY and A, depend on the ratio b/a and

the restrain conditions along the edges. Furthermore, they
are a function of both y and z. It can be concluded from
[101that for the case of a laterally perfectly restrained
plate the maximum stress occurs at the position y = * bi

z = 0. This is in agreement with the results given by
Timoshenko et al. [11].

For a simply supported plate the maximum stress obviously
[10] occurs at the position y = z = 0. The coefficients
valid for these two cases are given in fig. 8.

In contrast to the rectangular plate, the evaluation of
which calls for a great deal of mathematical effort, there
are some more practicable equations for the stresses in a
circular plate [10]. If the plate is perfectly restrained
along its circumference the radial stress G} and the

azimuthal stress Gé vary with the radius r as

2 2
6, = ME-R—z [(1+v) - (3+v) 51, (132)
8 tFW R
2

I a

_ 3 Ap . R
6., = > [0 +v) = (143v) 1, (133)

8 tFW R

2
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R being the limiting radius of the plate. If the plate is
only simply supported the equivalent equations are

3 Ap + R r®
G = =B (3+v) (1- ), (134)
8 tFW’
3 Ap » R? r2
G; = —le—Tr-[(3+v) - (1+3v) 1. (135)
8 toy R

For the practical purpose of this analysis it is sufficient
to calculate the maximum stresses in either case. As can be
seen from equ. (134) and equ. (135) the maximum stresses 6}
and Gé in the case of the simply supported plate occur at
its center and are of equal size:

5; = Eé = E_AE__%_ (3 +v) (136)
max max 8 t

FW

In the case of the perfectly restrained plate equ. (132)

for the radial stress component yields a tensile maximum

at r = 0 and a compressive maximum at r = R. The same holds
for the azimuthal stress ?6, equ. (133), which,however, yields
a lower compressive maximum than that of the radial stress.
Since it can be shown that

16, v 6/ T/ f»‘;;/réR ' (137)
(6] + 6%)r= > 0, (138)
(6 + &) <0 (139)

and since it is clear that tensile stresses are more
dangerous than compressive stresses of equal size we again

choose the values at the center for the further analysis:

2
R
& _ G; - 3..&2_5_ (1+v) . (140)
max max 8 tFW
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While there is no solution for the problem of thermal

stresses in toroidal bodies H. Neuber [12] presented equations
for the mechanical stresses in a toroidal shell due to an
internal overpressure Ap. With the notation of fig. 9 the
azimuthal and the meridional components Gé and Gﬁyof the
stress become

Ap ‘T,

B =5 (141)
© 2 tFW

Ap =% 2R &+ ¥ sin:}
W W

Q3 = - . (142)
2 tFW R + rw sin g

The maximum meridional stress §% cccurs, as can easily
max b

be concluded from equ. (142), for an angleﬁ= - 5,which

means the position at the inside of the toroid. At this ?

location we get

Ap *ry 2R-r

A\
oy = e (143)
max 2 tFw r rw

The radial stress component G; is set equal to

6. =o (144)

which is a necessary assumption in the theory of shells.

For the subsequent analysis we again make use of the
principle of superposition of stresses, indicated by

equ. (101). Since there are no solutions available for
thermal stresses in toroidal geometry we use here as a first
approximation those gained for the cylindrical geometry.

As the final equations for toroidal shells we therefore

use
2 2 b x
& = ElE=a A Zg Sienar « -l-/r'A (r*)ar" (145)
Foa 0oV | 22 o2 r2 ' ,
4 |
G _bp-(ath) B |2 SR P ¥ 5
. = ] t | B ]
©~ 4 bra) 1|22 a[rA WS = gl Eh) ;




tew= b-a

Fig. 9: Definitions for toroidal geometry.

41




42

with Cr =V if the torus shell is perfectly
restrained in the "axial" = azimuthal
direction,
CR =1 if it is free to expand,
at+b
6w - Ap (atb) 2R -0
¥~ "4 (b-a) T atb r
R —(—5—)
2 2 b r
Bl [ ear + S radeyaer - 2w |. (147) |
v |,2 2 2 2
b™—a" r £ r's g

2.3.5__Determination of reference stress

The stress analysis described so far yields three components
of stress the directions of which are normal to each other.
The question now is whether a certain material can withstand
this three-dimensional state of stress.

Aside from real performance tests of accurately specified
structural partssgenerally only a maximum permissible stress
for a material is known which has been determined in a one-
-dimensional experiment. It is therefore necessary to find
a reference stress from the components of the three-
-dimensional stress which can be quoted against the per-
missible stress as a material property. For this purpose

the field of theoretical mechanics has provided a number-.of
strength hypotheses [10, 12].

The first hypothes#s says that the maximum tensile stress

is to be used as the reference stress:

Gret = Emax v1ag

It is mostly applied in cases where all three stress
components have tensile character.
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Due to the second hypothesis the reference stress is
determined by the maximum shear stress:

Oref = %hax = ®min = 2 Tpax® (149)

This hypothesis is widely used for ductile materials where

deformation or continuously applied loads lead to failure.

In both cases @ and 6 . stand for the maximum and
max min

minimum of the three principle stresses 67, 6C and 62

I I1* TI1!
respectively.

The third hypothesis, which is recommended as the better
alternative to the second one, again uses a shear stress

as the reference stress. In contrast to the former hypothesis,
this one uses the stress occurring in the plane whose surface
normal forms angles of equal size with the directions of the
three principal stresses 6&, GEI' G&II' The reference stress
resulting from this "octahedral shear stress" is defined as

_ 1 _ 2 _ 2 _ 2
Sr = \E[ (67~ 67p) " + (637 = Gpp)” + (6377 — 67 1. (150}

In general, the principal stresses follow from the components
of normal stress and any shear stresses existing by

choosing a new coordinate system (I, IT, III) such that the
shear stresses become zero. Since the present analysis
assumes only hydrostatic pressures as the external load with
the consequence that shear stresses are not present, the
three stress components evaluated for each type of geometry
automatically coincide with the principal stresses.

By using the reference stress G;ef it is also possible to
define a reference strain E ot [10]

G‘ef

i -
ref E ¥

(151)




H. Neuber [12], however, recommends that equations equivalent
to those for determining the reference stress be used for
the reference strain.

In the case of the "normal stress hypothesis",

€ref = Emax' (152}

In the case of the "shear stress hypothesis",

= i =
‘ref = 7= *max ~ Cmin’ L153)

In the case of the "octahedral shear stress hypothesis",

£ el RS gl (e B8 e B
ref ~ 1+ || 2 I II II III Tl 0

Here, as was the case for the stresses, €1r E and ¢

Lk T IIT
are the components of strain in the directions of the
three principal stresses, — and =, being the

maximum and minimum from these principal strains.

2.4 Lifetime profile

Since the analysis described so far yields as the final
results the temperature and stress load profiles under
steady-state conditions,it is possible to estimate the life-
time of a material exposed to those conditions. This can
be done by quoting the temperature and stress versus the

time rupture strength of the material under consideration.

This material property takes into account the well-known
feature that a slowly rising plastic deformation takes
place at high temperatures and high stresses. This
mechanism, called thermal creep, is responsible for a
limitation of the useful life even at stresses far below
the yield strength.
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Generally, the literature presents data which

indicate a certain limiting stress (;B/t(T) a material was
able to stand at a certain temperature T for a certain
period of time t. For many materials, especially steels,
data for ¥ 1000, pp 2nd @ £ev £0T 85 400 000 n ¥

known. After the investigation of a lot of experimental
data it could be shown [13] that a variety of data G

B/t
can commonly be represented as a function of a parameter P

P=T (C+ log t)« (155)

which is called the Larson-Miller parameter after its
originators [13]. This quantity combines the

temperature T[K], the operating time t [h], and a material
constant C.

By inverting equ. (155) it is possible to obtain the
expected lifetime t

(156)

as a function of the absolute temperature T and the
Larson-Miller parameter P.

For many materials the time rupture strength G;/t is
known as a function of P. By inverting this dependence, a
certain value for P can be assigned to a given reference
stress G;ef' If this value of P and the temperature T

is now introduced in equ. (156),we finally find the life-
time t as a function of T and G;ef: t = t(T,G;ef).

If lifetimes are calculated by the method just described,
as is done in our analysis, a few remarks are necessary
to put the results to be expected from this procedure
into the right perspective.

- Tt is not intended to conclude from these results that
the fusion reactor first wall will stand the time

evaluated even approximately. The author is very well
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aware of the fact that there are other mechanisms

that contribute to shortening the useful life.

The most essential of them may be the degradation of
mechanical properties like time rupture strength and
ductility by irradiation effects and the most probable
need for operating the reactor in a pulsed mode.

= The last step of this analysis - quotation of stress
and temperature versus time rupture strength - is,in
fact,an inconsistency of the analysis. The time rupture
behaviour includes thermal creep,whilst the analysis does
not cope with elongations caused by creep. To exclude

this inconsistency will be one of the next steps.

N It should be noted that the accuracy of the lifetime
estimated by the procedure described here is necessarily
very poor. This is a consequence of the appreciable
error bars which appear if experimental data Gg/t(P)
are represented by a smooth curve for the purpose of
interpolation. The size of these errors determine, on
the other hand, the error of the logarithm of the useful

life. It should, therefore, be clear that the determination

of lifetimes in the course of this restricted analysis
does not aim at absolute values but rather at the de-
tection of tendencies and maybe for comparisons of
different materials.

3. COMPUTER PROGRAM

The equations resulting from the mathematical procedure
described in the preceeding section have been programmed
for the computer. The author's aim in doing this was

to arrive at a program structure which permits a

twofold kind of usage. At first, a number of basic
investigations should be possible showing the influence

of simplifying assumptions on the final results. Secondly,
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the structure should permit at least parts of the program
to become constituents of a modular fusion reactor systems
program. These requirements have been met by choosing a
structure as is indicated by fig.10.

Four subroutines, QPRF, PFRF, SPRF, and LPRF,have been
elaborated which calculate the profiles of power density,
temperature, stress, and lifetime, respectively. Three of
them need further subprograms,the function of which is
described below. The four main subroutines are connected
to each other by a main program which, at present, serves
for the purpose of testing. It can easily be replaced by
any other main program prescribing a different strategy.

The main program in operation at present has been written
especially for test purposes. It performs all input and

output operations.
The following quantities are needed for input:

MTRL material identification number (see: a))
MOD geometry option
= = 2 spherical, convex curvature
= - 1 c¢ylindrical, convex curvature
0O plane
= 1 c¢ylindrical, concave curvature
2 spherical, concave curvature
= 3 toroidal

MQ number of available intervals (see b))
NP number of intervals desired (see b))
IS0 option for stress evaluation (see c))

= O axial or lateral elongation prevented
= 1 axial or lateral elongation permitted

IS1 option for thermal stress evaluation (see c))
= 0O no stresses at low temperature TO

= 1 no stresses at average wall temperature TM
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Is2

IS3

RT
RW
TFW
TB
HD

PWN
PWS
TO

PIN
PAU

AR
BB

QN

QG

DX
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option for thermal stress evaluation (see c))

= 0 E, v, and o temperature independent

= 1 E, v, and o temperature dependent
option for reference stress evaluation (see c))
strength hypothesis to be applied is:

= 0 normal stress

= 1 maximum shear stress

= 2 octahedral shear stress

torus radius [cm]

wall radius [cm]

wall thickness [cm]

thickness of breeding zone [cm]

half thickness for radiation absorption
[cm] (see d))

neutron wall loading [W/cm2]
radiation wall loading [W/cm2]

wall temperature at the cool side [C]
wall inside pressure [bar]

wall outside pressure [bar]

outer radius of cylinder or sphere in the case
MOD > O [cml
radius of circular plate for MOD = O [cm]

(see e)

edge lengths of rectangular plate [cm]
for MOD = 0; BB < AA

(see e)

power density by interval due to neutron
reactions [W/cmz] (MQ values)

power density by interval due to gamma reactions
[W/cm2] (MG values)

widths of intervals [cm] (MQ values)




Fer a better understanding a few remarks are added:

a) MTRL: material identification number

Since this type of analysis should not be restricted
to a single material provision was made to store
material data for various materials in the subprograms
CONDIT, ALFA, NUE, E, and LMP. To distinguish these
data, the identification number MTRL, which is a four-
digit integer number, was introduced. To obtain some

order in the variety of metals and alloys to be con-

sidered it was decided to choose as the first two

digits the charge number of that element most

abundant in the alloy. The last two digits are con-

secutively assigned to special alloys. The following

numbers have already been assigned: F

MTRL material specification
2601 1.4970 stainless steel
2 sandvik 12R72HV

2602 1.4988 stainless steel
2603 1.4961 stainless steel
2604 1.4981 stainless steel
2605 1.4436 stainless steel
2606 1.4919 stainless steel
2607 316 SS stainless steel
2801 Incolloy 800 |
2802 Inconel 625

2803 Hastelloy X

2804 Inconel 718

Assignment of a material identification number does not,
however, automatically mean complete availability of

data. Table II shows the present status of the subprograms
containing the information on the material properties.

The data included in these programs are taken from

K.D. Closs [14] and K. Ehrlich [15].
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b)

c)

d)

e)
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MQ, NP: number of intervals

The program is constructed to start from the

results of a neutronics/photonics calculation. This
type of calculation yields the power density due to
neutron reactions, QN(M), and that due to gamma
reactions, QG(M), in a limited number, MQ, of
arbitrarily sized, DX(M), intervals. Usually, MQ
dces not exceed MQ = 10, which is too few for the purpose
of numerical integration that has to be applied in

this analysis. Therefore the entire wall is subdivided

into a number NP of now equally sized intervals.

ISO, IS1, IS2, IS3: options for stress evaluation

For stress evaluation a number of options have been
introduced essentially for test purposes. While ISO is

left to the user's discretion, IS1 should usually be chosen
to be IS1 = 1, and IS3 should be IS3 = 2, The influence

of the.choice of IS2 will be shown below.

HD: half thickness for radiation absorption ;

As was already outlined in section 2.1,the wall depth

HD at which the power density due to radiation
absorption has decreased to half the value at the surface
exposed to the plasma depends upon the spectral distri-
bution of the radiation energy. At this stage of the
analysis the influence of the size of HD upon the
characteristic results should be identified. Thus, HD

is used as a free input quantity.

RA, AA, BB: additional guantities describing the geometry

If MOD >0, TFW and RW and in the case MOD = 3 additionally
RT are capable of describing the geometry completely. In this

case, RA, BRA, and EB do not have any meaning.

If MOD <0, however, additionalinformation is necessary
to describe the relation between the entire toroid and
a single module. Of the two possibilities of doing this

- either the number or the sizes of modules can be
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fixed - the latter was chosen. RA, therefore, defines
the outer radius of the cylinder or sphere limiting

the module at the
BB do not have any

If MOD = O,
the assumption of
of thickness TFW.

there

side exposed to the plasma. AA and

meaning.

is a possibility of deciding between
a circular or a rectangular plate
If a circular plate is chosen, RA

has to be set equal to the outer radius of the plate;

AA and BB have to be zero. In the case of a rectangular

plate AA and BB have to be set equal to the side

lengths of the plate; RA has to be set equal to zero.

Owing to fig. 10 the operation sequence of the main program

is very simple. When the input data for the first example has

been read, a first output list (Output I) is produced which

contains all necessary information about the input. Then

subsequently the four main routines QPRF, TPRF, SPRF and

LPRF are called for operation. Every time one of these

routines has finished the main program edits the profiles of

the most interesting quantities just evaluated. Thus, the

single output lists contain the following information:

Output II: Nuclear power density profile QQON (N)
Radiation power density profile QQS(N)
Total power density profile Q(N)
Output III: Total power density profile Q(N)
Heat flux potential profile S (N)
Temperature profile T (N)
Profile of temperature difference (T(N) - TO)
Output -IV: Profiles of the three components
of mechanical stress SM(I,N)
Profiles of the three components
of thermal stress ST(I,N)
Profiles of the three components
of total stress SP(I,N)
Reference stress profile SV (N)
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Output V: Total power density profile Q(N)
Temperature profile T (N)
Reference stress profile SV (N)
Lifetime profile LD (N)

After complete evaluation of the first example the next
can be directly attached by defining a completely
new input data block.

3.2 The subroutine QPRF

The task of this subroutine,which is to establish a power
density profile at NP locations equally distributed
across the wall thickness,is accomplished in three steps.

First the nuclear power density profile is calculated.

By adding neutron induced and gamma induced power density
by macro-interval the total nuclear power density by macro-
interval is calculated. By means of an interpolation

procedure the power density values at both surfaces and
in the middle of the wall are determined, which are then used

to define the coefficients g a, and b of equ. (1). These

noe'
coefficients are used to calculate the NP profile values.

The second step is to evaluate the radiation power density
profile. From the radiation wall loading PWS and the
arbitrarily chosen half-thickness HD u and Q07 the

coefficients of equ. (2) are calculated. This equation

then is used to evaluate all NP profile values.

il

Addition of the nuclear and radiation power density profiles
completes the work of this subroutine. Both the profiles
and the coefficients mentioned above are transferred to

the main program.




3.3 The subroutine TPRF

The operation of this subroutine starts by establishing
a table inwhich temperatures and heat flux potentials for
the material under consideration are assigned. This is
done using the function subprogram CONDIT.

To evaluate the heat flux potential for every interval,

equs. (35), (34), and equ. (33) have to be used subsequently.
Since the program is, at present, fixed to the power density
profile defined by equ. (36),the first integration, equ. (35),
can be done analytically. The corresponding functions are
contained in the function subprogram FY. The second inte-
gration, however, which is indicated by equ. (34) has to be
done numerically. The discrete values of the function to

be integrated are supplied by the function subprogram FS, while
the integration itself is done by using the method of Simpson.
Now the profile of the heat flux potential can be established.
By inverse interpolation in the table produced ©On starting
this routine the heat flux potential profile is converted

to the temperature profile.

3.4 The subroutine SPRF

This subroutine starts with the evaluation of the average

wall temperature which is needed for the determination of

some material properties. As the next operation the

calculation of the mechanical stresses due to the pressure
loads follows. This calculation is done by using the different
formulas described above,depending on the geometry (MOD)

and on the restrain condition (ISO) used.

When this part of the calculation is completed, the
evaluation of thermal stresses is started. Depending on

the option IS1,the temperature differences are fixed and,

if IS2 = 1,multiplied by the temperature dependent materials
properties factors. The integrations necessary to obtain
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the stresses from the temperature differences are again
performed numerically using Simpson's rule.

Finally,the three components of mechanical and those of
thermal stress are added to yield the components of
three-dimensional total stress. Owing to the choice of
IS3 these stress components are subjected to the
equivalent strength hypothesis to yield the reference
stress profile.

Subroutine SPRF makes use of five function subprograms.
CY and CZ contain the factors Ay and A, respectively
used to evaluate the stress components due to equ. (129)
and equ. (130) for the rectangular plate. ALFA, NUE, and
E are subprograms from which thermal expansion, Poisson's
ratio, and Young's modulus are called.

3.5 The subroutine LPRF

The very short routine LPRF finally takes for every point
of the profile both temperature and reference stress in
order to estimate a lifetime.

The reference stress is fed to the subroutine LMP, which
provides the Larson-Miller parameter P valid for the

case that the reference stress is just the rupture

strength belonging to this parameter value. LMP additionally
supplies the material constant C and the maximum short time
rupture strength SMAX,which isan absolute limit yielding

a zero lifetime.

From the Larson-Miller parameter and the temperature the
lifetime t is derived using the constant C.
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4, FIRST RESULTS OF BASIC INVESTIGATIONS

It is very likely that the further analysis of the
problem of the mechanical performance of the first wall
will necessitate one or another simplification in order
to arrive at operable solutions. By means of the program
developed here it is possible to check the consequences
of such simplifications at least as far as the steady
state behaviour is concerned.

Some of the simplifications possibly needed can already

be foreseen. They have been investigated at least for a

single set of parameters and the results are reported in
the subsequent sections.

For all calculations a temperature of 500 C was assumed

at the cool side of the wall, the material considered is
1.4970 stainless steel, and for reference stress calculation
the octahedral shear stress has been used for the strength

hypothesis.

4.1 Influence of the shape of the nuclear power density

Erofile

The approximation of the nuclear power density profile by
equ. (1) followed from the first neutronics/photonics
calculations for a niobium first wall performed at our
laboratory. Subsequent systematic evaluations of liquid
lithium/stainless steel blankets [4] showed, in principle,
the same dependence though much closer to linearity.
Therefore, the assumption of a linear profile may be
justified if any difficulties should occur in the
analysis using equ. (1) in its original form. A further
simplification, finally, would be to assume a constant
power density in the wall as is often done in reactor
studies.

For a special example we evaluated the three cases in

order to see the consequences in the final results. To see
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clear differences we chose a 2 cm thick stainless

steel wall which is exposed to a neutron wall loading of
PN = 100 W/cmz. The power density profile shown in fig. 11
and designated as curve "a" is that which follows from
the approximation of the neutronics/photonics results by
equ. (1) in its original form. Curve "b" is a linear
approximation, and curve "c" the constant power density
case, both evaluated with regard to agreement in the total

amount of heat generation in the wall.

To evaluate temperatures, stresses and lifetimes,it is
necessary to make further assumptions. For this investigation
a hollow sphere with an outer radius of 30 cm was assumed,
this outer surface being exposed to the plasma (MOD =-2).
Plasma radiation was excluded (PWS = 0.) as was an

extra pressure load (PIN = PAU).

Table III shows the essential results of these calculations.
As far as temperatures and stresses are concerned,there

is nearly no difference between the cases "a" and "b".

The deviation of case "b" as compared to case "a" is
positive and is below 0.5 %. The assumption of a constant
power density, case "c", however, causes deviations of

the order of 5 % which additionally tend to the negative
side. This means an underprediction of temperatures and
stresses.

The relatively small differences in temperatures and
stresses are responsible, as was already outlined in
section 2.4, for very big differences in the estimated
time rupture life. This is underlined by the results
shown in table III. What can be stated with certainty

for the case considered here is that the life of the
first wall under steady-state conditions would be limited
by the temperature/stress condition at the hot surface

of the wall although the reference stress is only half

that occurring at the cooler surface.

According to the results for temperatures and stresses

the minimum life is predicted by case "b", the linear
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Fig. 11: Nuclear power density profiles in a stainless
steel first wall
a) real profile,
b) linear approximation,

c) constant power density.
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approximation. It should, therefore, be sufficient to
base further calculations on this assumption rather than
on a constant power density,to remain on the safe side.

To gain an impression about the real profiles occurring in
the wall and the deviations caused by assuming a constant
power density the temperature, stress, and life profiles
have been plotted in figs. 12, 13, and 14, respectively.

The temperature profile, fig. 12, shows the typical, nearly
parabolic shape characteristic of walls with internal
heat sources.

The stress profile, fig. 13, characterized by the variation
of the tangential stress G, , shows tensile stresses at

the cold surface and.compressive stresses at the hot one.
Also shown in this picture is the variation of the
reference stress G;ef' While in the tensile region of 31
F;ef coincides with the tangential stress,G;ef is evaluated
to be G;ef = - 6 in the compressive region of<§1. For this
reason two maxima occur at the two surfaces of the wall.
Which of these maxima is more dangerous with respect to the
lifetime depends upon the temperature. In the case evaluated
here it is the combination at the hot surface as can be

seen from the lifetime profile, in fig. 14.

In £fig. 13 a straight line (=+=-- ) has been additionally
drawn. This line characterizes the thermal stress distri-
bution following from the approximation usually applied
[l 2; 313

6= & EL. 4 AT

1-v 2
This approximation says that the thermal stresses at the
hot and the cold surface are of equal size but different
sign, the size being given by half the temperature
difference between the two surfaces. In between, a linear
stress distribution is normally assumed.
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Fig. 12: Temperature profile for real (case a) and

constant (case c) power density distribution.
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All these assumptions coincide with the case of plane
geometry, perfect restraining of the plate and a linear
variation of temperature across the wall such that the
average temperature can be assumed to be located in the
middle of the wall.

It is most probable that the approximation of assuming

plane geometry throughout may be justified. The assumption

of a linear variation of the temperature, however, means that
there are no internal heat sources in the wall. Such an
assumption is simply wrong and leads, as can be seen from
fig. 13, to results far from reality.

From the evaluation above it already followed that the
critical surface is the hot one, characterized by

J A 602 C and G;ef N 1220 kp/cmz. The approximation just
described yields for the same temperature a reference
stress of G;ef X 2070 kp/cmz. These data quoted versus the
time rupture properties would result in a lifetime of about

6+10° h instead of 1.7 + 10’ h.

4.2 Influence of the shape of the radiation power

density profile

As was outlined in section 2.1, the radiation originating
from the plasma will be absorbed in the first wall and
converted to heat. The resulting power density profile
depends essentially on the radiation energy spectrum.
Usually it is assumed that this energy is deposited
within a very thin surface layer so that it can be treated
as an external heat flux. By means of the computer program
described in section 3 it has been studied what conse-

quences arise from this assumption.

Againsa 2 e thick stainless steel wall has been con-
sidered which is exposed to a neutron wall loading of

Pn = 100 W/cmz, resulting in a nuclear power density of




approximately 10 W/cm3. Now a radiation wall loading of
Po =5 W/cm2 has been additionally superimposed. The
resulting radiation power density profiles are shown in
fig. 15,depending on the choice of the half thick-

ness h. In the calculations h was varied between 0.5 cm
and O, the latter meaning that there are no heat sources
due to radiation inside the wall but all heat enters the

wall by heat conduction.

The results of these calculations are summarized in

table IV. Depending on the choice of the half

thickness h,the temperature difference between the hot
and the cold surface differs appreciably. The assumption
of all radiation heat entering from outside causes the
biggest temperature differences. The deeper the radiation
penetrates into the wall the lower will the temperature
peak be.

The temperature profiles for the two limiting cases,

h =0 and h = 0.5 cm, are shown in fig. 16 together
with the profile for pure nuclear heating. It can be
recognized that again the region near the hot surface
is most influenced by the choice of h. In the parameter
range investigated the deviations in the temperature
difference amount to about 10 %.

This situation is underlined by the results for the
reference stress and the calculated life shown in
table]V.Whilst the maximum difference in the reference
stress is about 4.5 % at the cold surface, it amounts to
about 19 % at the hot surface. The equivalent

differences in the calculated lifetime are factors of 2 at
the cold, but 32 at the hot surface.

These differences should not, however, be overemphasized
because we feel that the real deposition depth of plasma
radiation will be rather in the neighbourhood of h = 0
than at h = 0.5 cm. We therefore want to argue vice versa




67
100
30+
80t
70
T 60 -
t
% S50H
o
40
qs for
il h = 0.04cm
h =0.1cm
20 h =05cm
10F Qn |
0 l —
0 05 10 15 2.0 |

x[cm] —

Fig. 15: Radiation power density profiles for

Py = 5 W/cm2 for various half thicknesses h.
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by asking what errors might occur if the radiation
penetrates the wall for a characteristic length h instead of
behaving "ideally", which means acting like a heat flux
from outside.

The answer is given by fig. 17 for the temperature difference
A9 and the reference stresses G;ef at the hot and cold
surfaces. In general, this picture says that assuming all
radiation acting as external heat flux (h = O) represents

the worst case with respect to both temperature difference
and stress. The fact that, in reality, the radiation is cton-
verted to heat inside the wall can only improve the results.
It additionally seems that the accuracy will be satisfactory
as long as the half-thickness h does not exceed 1 mm.

Fig. 18 shows the equivalent picture for the lifetime.
Here the same conclusions can be drawn. Assuming the
radiation heat to be produced inside the wall means to
prolong the calculated life.

4.3 Neglect of temperature dependence of E,v, and o

Whilst the temperature variation of the thermal conductivity
has generally been taken into account by introducing the
heat flux potential S, all calculations done so far did not
account for a temperature dependence of the physical
properties:thermal expansion a, Young's modulus E and

Poisson ratio v. Since the computer program allows this
restriction to be avoided, one sample run was performed to
see the consequences. Table V gives a summary of the

results.

It can be seen that neglecting the temperature dependence

(IS2 = 0) leads to a slight increase in the reference

stress at the hot surface. Since, for this special case,

this surface is the critical one with respect to the lifetimes the
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Fig. 18: Deviations in the calculated life t of the hot
and cold surface depending on the half-value

Thickness h of radiation absorption.

72




oo¥ 08l 008 SZ¢ [ul soezaIns PTOd 3B SITT PSIBINDTED
&4 9¥8 [ul soezans 30Y 3e SITT PI3BINOTED
Eege F gy HNEU\mxu ooeIINS PTOO 3B SS8I3S DDOUI9I3Y
0507 9907 HNEO\QMH 20BJINS 30Y 3B SSIBI3S SD0USIASIFSY

DPOI9PTSUOD pa3ooThou :oouspuadap 2anjerddusy

uo Qf = v a2axayds 3O snTpey

(xoauco’ *xouds) Z- = aowW KI132woe

0 = (I¥d-NId peoT @aInsssaid

wo Z = MAL SSOWNOTY3 TTeM

*0 = an SSaUNOTYI-FTEH

wo/M § = SMd BuTpeoT TIeM UOT3IRTIpEY
MEU\B 00l = NMd pUTPROT TTEM UOIINSON :SUOTIAUMSSY

*s3Tnsex Teuty sy3z uo » pue ‘a ‘@ 3O aouspuadsp

ornjerodue] JO 9OUSNTIUT OY3 HUTMOYS SUOTIBTNOTED JO SITNSSY tA oTdel



74

neglect means staying on the safe side. This statement

is underlined by the result for the lifetime calculated at

this location. On the other hand,the stresses and lifetimes

evaluated for the cold side of the wall are appreciably

underestimated if the temperature dependence is neglected.

As long as the critical surface does not change to the cool

side this deviation does not matter. As will be shown in

the next section, such a change can, in fact, occur.

4.4 Influence of pressure load

As was already outlined in section 4.1 and shown in

fig. 13, the thermal stress distribution in a wall is

such that compressive stresses occur at the hot surface, and

tensile stresses at the cold surface. This is valid as
long as the wall is assumed to be free of stress at
the average wall temperature.

The fact that the hot surface is the most critical one
with respect to the wall lifetime - at least in the cases
presented so far - and that it is loaded by compressive
stresses suggests an improvement of the mechanical
performance if the wall element is loaded by an internal
pressure. The results presented in table VI for a 2 cm
thick wall prove this statement. A significant increase
in the lifetime can be expected in the case where the
stress level is dominated by thermal stresses.

If, however, the stress level is dominated by mechanical
stresses ,an increase of pressure worsens the situation
and the calculated life decreases. This is to be expected
in the case of thin walls,as is indicated by the results
summarized in table VII for a 0.2 cm wall. Since in this
case - with the exception of very low overpressures -

the stresses of both the hot and the cold surface are
tensile,even the critical surface can change to the cold
side.
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4,5 Influence of geometry and restrain condition

Up to now the calculations reported have been exclusively
for spherical geometry with convex curvature. In

practice, this means that the reactor blanket may be con-
structed of a number of modules arranged along the minor
and major circumferences, having spherical end cups which
are directed radially towards the plasma. The outer radius
of such a cup was assumed to be RA = 30 cm.

For comparison, we now assume the end cups to be cylindrical
in one direction with a radius of RA = 30 cm; subsequently,

we assume them to be plane circular plates of radius RA =

30 cm and, finally, to be square plates having side lengths

of AA = BB = 30 cm. In all three cases we additionally vary

the restrain condition,thus considering both perfect

restrainment and free,axial or lateral expansion.

The results of these calculations are summarized in

table VIII. It can be concluded from these figures that
the cylindrical geometry yields similar results to the
spherical geometry as long as thermal stresses

dominate in the wall. The higher mechanical stresses in
the cylindrical case are even advantageous with respect

to the lifetime because they outweigh part of the thermal
stresses. The fact whether the cylinder will be clamped

or freely extendible does not matter very much.

As compared with these cases, the plane geometry calculations
show the important influence of the mechanical stresses

due to the internal pressure,which was assumed to be Ap = 30 bar.
In the cases evaluated here none of the four possible
solutions satisfies even the requirement of stresses to

be below the short-time rupture strength. This means

that only small overpressures can be applied in the case

of plane first wall geometry using similar extensions.
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5. CONCLUSIONS

The analysis of the mechanical behaviour of the Eirst
wall under steady-state load conditions and the computer
program based on it which are both described in this
report involve a minimum of ad hoc assumptions. Both the
analysis and the computer program, however, permit the
introduction of spec¢ial simplifications which are usually made
when considering this problem. Therefore,it is possible
to study the influence of simplifying assumptions upon
the final results - at least upon those results which are
considered to be final in the scope of this analysis.
These are essentially the temperature and stress load of
the first wall.

A few simplifications have been investigated: the shape of
the nuclear power density profile, the shape of the radiation
power density profile, and the neglect of the temperature
dependence of some physical material properties.

As far as the nuclear power density profile is concerned

it has been shown that the assumption of a constant power
density leads to an underestimation of the temperature

and stress load. A linear approximation of the real profile,
in contrast, yields rather accurate results with an
accuracy of about + 0.5 %. This is valid at least for the

power density profiles found in stainless steel walls.

The error introduced by assuming the plasma radiation to

be an external heat flux to the wall instead of giving

rise to internal heat sources cannot be explicitly assigned
because the real penetration depth is dependent on the
energy spectrum, If the radiation source is restricted to
bremsstrahlung radiation alone, the error should not exceed
5 % in temperature and 10 % in stress load. For other
radiation sources equivalent errors can be estimated if

the energy is approximately known. In principle, the
assumption of radiation to be an external source of heat

- regardless of the radiation energy - puts the results

on the safe side.
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Taking into account the temperature dependence of material
properties sometimes causes significant difficulties in the
analysis. Therefore, average values are often applied. This
is valid especially in the case of Yound’s modulus, Poisson
ratio, and thermal expansion used in the course of stress
analysis. From some few calculations it was found that such
a simplifying assumption is justified in the case that the
life of the wall is determined by the conditions at the hot
surface. If, however, the conditions at the cold surface
are the dominating ones an underestimation of stresses is
the consequence.

Very often thermal stresses are estimated on the basis of
a linear variation of temperature within the wall. This
means, in practice, the neglect of any heat source
inside the wall. The correct analysis described in this
report shows that such an assumption is not justified. In
fact, it puts the results on the safe side but it is
believed that they are too far en the safe side as to
permit conclusions close to reality. This is especially
valid if the hot surface is the lifetime-limiting one. An
overestimation of stresses by about a factor of 2 does

not seem impossible.

Besides the intention of showing the influence of some
simplifying assumptions,some first parameter studies just
for orientation should be made. This was done by intro-

ducing a pressure load in addition to the thermal stresses

and by considering the influence of the choice of geometry and

restrain condition. It could be shown that an internal
pressure in a module can have an advantageous effect in the
sense that thermal stresses can be lowered. This holds
especially in the case of thick walls. The reverse is valid
for thin walls. As far as the geometry is concernedrit
could be shown that plane wall elements can only be loaded
by much smaller pressures than spherical or cylindrical
elements of similar size. Though not surprising,these

results give a first feeling for subsequent investigations.
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