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Abstract

This report reviews some of the basic considerations which determine
temporal pulse characteristics in amplifiers and absorbers. To concen-
trate on analytical results, the amplification or absorption of a step
pulse is worked out in detail. It is shown that in the small signal
regime the medium response time of T2 is modified because of propagation
effects to T,gL/2 for an amplifier of gain g and length L and Tp/e&L

for an absorber of loss coefficient oL and length L.

Once saturation sets in, general analytical results are no longer possible
except in the Tz'-’ 0, or rate equation limit. However, combining the
finite T, small signal results with the rate equation results one can
estimate risetime effects.

Coherent effects, such as 777 pulses and self induced transparency have
not yet found applications in high power, high pressure gas lasers.
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I. INTRODUCTION

The generation and amplification of short laser pulses play an important
role in the whole laser fusion effort. Present generation high intensity
short pulse gas laser systems such as CO2 or iodine lasers produce pulses
containing a few hundred Joules in about 1 ns duration. The operating
pressures of these devices is typically 1 - 2 atmospheres. This is high
enough that response or bandwidth Timitations for 1 ns pulses may be
neglected. However, with the emphasis to extend these systems into the

.1 ns or below regime, bandwidth limitations require some scaling in the
pressure, and high pressure operation may complicate the design and im-
pose other limitation on the system. With this in mind, it seems appropriate
to look at the physics which Timits the response of the medium in short
pulse amplifiers and absorbers.

The general pulse propagation analysis is a fairly complex problem and
requires involved computer calculations. There are many excellent papers
and reviews on this topic /1 - 3/. Our purpose here is to gain some in-
sight into the physics which determines the pulse shape near the leading
edge of a pulse and develop some simple criteria which can be used to
estimate such rise-time effects in practice. To achieve this, we will
study a simple model for which these considerations can be carried out
analytically. Unfortunately, only a few special cases for pulse propa-
gation in resonant media are analytically solvable. These include the
small signal, or small area pulses /4/, saturation phenomena with pulses
of duration long compared to the dephasing time T, but short compared to
a relaxation or pumping time T1, where rate equations apply /5,6/, and
certain ultrashort pulses (q“p‘< T,), as encountered in Self Induced
Transparency (S.I1.T.) /7/ and other 77~ pulse phenomena /8/.

Since pulses in a high power amplifier chain must first undergo small
signal amplification to reach sufficient energy to saturate, the leading
edge of a pulse is usually determined by the response of the medium in

the small signal regime. At some time later into the pulse, the pulse
energy up to that time may be sufficient to saturate the medium and the
amplification diminishes. S.I.T. and 77 pulse effects occur when the elec-
tric field of the pulse has enough "Area" Cﬁ[é"dt) in a time t < T2 to




affect the medium. This condition implies that the pulse energy up to
time t £ T2 be greater than the saturation energy.

With this in mind, we will concentrate primarily on the small signal
response of a simple two level amplifier or absorber to a near resonant
pulse. This topic is not new. Most of the results can be found through-
out the literature already cited. However, as is often the case, it is
difficult to get the physical understanding out of the formalism. It is
hoped that this review is of some help in gaining this understanding.




IT. BASIC EQUATIONS

As our starting point we use the basic equations for plane wave pulse pro-

pagation in a homogeneously broadened two level system. With the usual

definition of a slowly varying amplitude and phase

Electric field

E(z,t) cos [wt Az +Pt)]
C(zt) cos|wt- 4z + é(z,%)]

Polarization

2 S(Z)f) 5/'N[wf—{zz+¢/2/f)]

the coupled medium-field equations are
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where (W, , U, TZ’ and T1 are respectively the resonant frequency, dipole

moment, phase and inversion relaxation time of the medium. N is the in-

version and ‘T~ = t-z/c is the retarded time.




Another form of these equations more convenient for what follows is to
introduce the complex quantities

tE; & f’gﬁ (2.3a)

I

=

and

P

in terms of which the set of equations (2.2a) to (2.2e) becomes /1/
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The equivalent sets of equations 2.2 or 2.3 are quite general, and des-
cribe a variety of effects which can occur in a homogeneously broadened
two level system. For real systems, such as CO2 or Iodine, certain mo-
difications have to be made because we don't have simple two level
systems. Essentially, the inversion N has to be replaced with separate
equations for the upper and Tower level density for each level, resulting
in equations for Ng and N}. Each transition and level may have its own
Tys aJoj and uj. This complicates the analysis, but does not add a
significant change in the physics. We will forego these complications
to be able to proceed analytically.




ITT. SMALL SIGNAL ANALYSIS

a) Reduction of Equations

By definition, in the small signal regime a pulse cannot affect the po-

pulation inversion. Hence, for short pulses ( < T1), N is assumed to be
constant during the pulse duration. Taking the Fourier transform of the

polarization and electric field amplitudes

E[z,’T) L El(z, ¥) 6_1'}7;{31. -
p(z7) ), Pl=4)

I

and applying this to (2.4a) and (2.4b) we get

2E (z.4) _ L h P(z3) (3.2a)
22 2

and

T Plzd) = [ (00 0)] Ple3)? 4N EGI); 4

The small signal intensity gain or loss coefficient are defined through

g o oL =_:_;Jf/fz/1/’7;

(3.3)

with gain for positive N, loss for negative N. Solving the polarization
equation for P(z,t), substituting into the field equation and using the
definition of the gain coefficient, one obtains

DE(z4) g E(z3/
& 4 = 2 ) — 7 [ Wo—to+d)T;

with its solution

(3.4)
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Equation (3.5) is no surprise. Given the spectrum of the electric field
envelope E(z = 0,f) at z = 0 and the complex index of refraction of the
medium

b o = _g_ /
)= 17236 it

(3.6)

the envelope after propagating through a distance z is given by equation
(3.5,

The slowly varying envelope approximation implies that the range of f over
which the integrand in Eq. (3.5) contributes is small compared to (o and
a)o, but not necessarily small compared to CJ"“%V the amount of resonance.
The integral (3.5) is to be performed keeping causality in mind.

At this point we make a general observation. From Eq. (3.5) we note that
the intensity IE(z,'T)I2 depends on the complex index, but from Parseval's
theorem /9/, the total energy
/
1 (la-ward)z’f'z?'

3
EwilZ) :/ I(Z;'T)C(’T' w//5(=09‘)/23 d+ (3.7)

depends only on the real part, that is, the gain or loss. This is a
general result. The energy does not depend on the phase with which the
Fourier components are added, but the intensity does!




b) Small Signal Propagation of a Step Pulse

We will now apply Eq. (3.5) to the propagation of an exponentially de-
caying step pulse with a field envelope as shown below.

To DECAY

Fig. 3.1 Exponentially decaying step pulse

The analytic expression for the envelope is

0 7o
— T/, (3.8)
E,e T =20

E(Z:O,!T) =
The choice of this pulse is motivated as follows:

i) Analytic results can be worked out.
ii) There are no causality problems, the field is zero for 7 « 0.

This is important for risetime questions where a well defined leading

pulse edge is desirable.

iii) The zero risetime of this pulse should not be thought to contradict

the slowly varying amplitude approximation. We may think that the
actual risetime is several optical cycles, which is still quite

short compared to T, times even in the 10 ps range. Hence, the mathe-
matical convenience of a zero risetime need not contradict the initial
assumptions of this model. We will return to this point later on in

this section.
iv) In the small signal regime, where because of the linearity of the

equations the superposition principle applies, the exponentially de-
caying step pulse is very suitable for constructing other interesting

pulses via superposition.




To calculate the propagation of the pulse (3.8), we first need the Fourier
transform of the incident pulse

- _-E>-
E(z=04) = — (3.9)
/J"— /To
and then from Eq. (3.5) get E(z,7 ). The integral to be evaluated has a
first order singularity at f = — Oﬁg from the incident field and an

essential singularity at f =-{k%-¢69'-7/ﬂa from the exponential which
gives the propagation. Both singularities are in the lower half of the
complex f plane as demanded by causality. From the calculus of residues
one obtains after some tedious algebra /4/

o L0 (3.10)
iz =

( ’ ) IH()/) amplifier
E e X T 0

t:L (y) absorber

where Jn(y) and In(y) are Bessel functions

and X = 1/3@7_ (J___L__:'A) (3.11)
(§ord)z N Tp o
y- J2TZ (§ =) (3.12)

/P

for an amplifier with small signal intensity gain g or an absorber with
loss o . The amount off resonance is given by A=W, ~ W,
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As it stands, the analytic solution (3.10) is not very transparent. How-
ever, several points can be made.

a) Amplifier:
i) The medium cannot respond to the sharp leading edge. When T =
E(z,T =0) = EO.
ii) Using the sum given in Appendix I.1 one can show that for

'T;»ff;)’}"—;aﬂ

- Tle, 8%
2

E(z, 7<) = E_ ¢ e "““'712

o

(3.13)

This is what one would expect for the off-resonance electric field
amplification when the medium responds with the full small signal

gain. For the intensity one has
=z

L{(z, 7> v"j-f]_—(z:o,’}":;f) e *o'MmE . (3.

ii1) An interesting result follows for long step pulses on resonance,

To~> <, A= 0 . For2T/gLT, =1, x = 1 and the sum for
the amplifier in Eq. (3.10) can be carried out (Appendix [.2) with
the result

gL/Z _9t [
E{f)—: g}z[_) E e //+€I{9J (3.15)

For practical gL values, say gL = 5, one has
92/,
E/q—:fp ﬁi) [_) e [ 5—.6)508 (3.16)
z 2 ’
that is, one reaches about .5 of the full electric field gain
after t = T2 gL/2, or only about 1/4 - 1/3 of the full intensity
small signal gain.

It is tempting to formulate this result as a rule of thumb for

estimating the medium response times in the small signal regime




= .=
for the electric field:
T~ (Rise to 1/2 Max) = T,g1/2 (3.17)

The meaning of this rule is that even though the local medium-
response-time is Tz, propagation effects lengthen the effective
response.

iv) Another simple result obtains for on resonance pulses with 0; =T

In this case
-T/m,

E(m,z)= E,e I, (/232’7')_ (3.18)

T%

2

Such a pulse never reaches its full small signal amplification,
it is simply too short!

v) Figure 3.2 shows a plot of the amplification of an on-resonance E
field step pulse (To=><”, &4 =0 ) as a function of time. The
curves are normalized to t/T2 and E(z,’T)/Eoé?ng2 . Hence, full
amplification is unity. Curves for different values of the para-
meter G = gL/2 are plotted. Notice the progressively greater time
required to reach .5 - .6 of the full gain as G increases. The
crosses represent the field values determined from Eq. (3.15).

b) Absorber:

i) Again the medium cannot respond to the sharp leading edge of the
pulse and E(z, 7T = 0) = EO.
11) Using the sum listed in Appendix I.3 one can show that
_7—/,,; _jZ /
= /] —=ra'T,
E(T>-,2z)= E, ¢ e ia'; (3.19)

as expected for off-resonance electric field attenuation when
the medium responds with the full small signal loss.

iii) For the Tong on resonance step pulse one can show that near
T~ = 0 the dominant term in Eq. (3.10) at z = L is
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Fig. 3.2 Small signal amplified step pulse
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iv)
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E(TZ):E, jo(/—%{f—i—r/ (3.20)

which determines the transient decay of the leading edge. The
time constant (J (¥) ~ .5) is T = T,/ L. Again one can give
a rule of thumb for the response time for the electric field:

fT' (absorber response) = To/,L L {3.21)

Figure 3.3 shows a plot of the absorption of an on-resonance E-
field step pulse as a function of time. The curves are normalized
to rT'/T2 and E(z,T )/EO. Hence, all the curves start from unity
at the leading edge of the pulse. Curves for different values of
the parameter A = oL L/2 are plotted. Note the transient pulse
width obtained is roughly consistent with the T,/ol L rule. How-
ever, the electric field amplitudes can now go negative, and the
approach to the steady state absorption is not monotonic, but
contains ringing.
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¢) Discussion

The analytical results obtained above can be understood as follows: in
the amplifier, energy is put into the back of the pulse, in the absorber
it is taken out of the back of the pulse. To understand physically why
the effective response times are To times gL or divided by 4L, we con-
sider the following, first for the amplifier.

The medium response time is Ty, or its bandwidth is &)y ~ '/TZ. How-
ever, this Lorentzian frequency response appears in the exponential be-

cause of the pulse propagation. This exponential may be written (Eq.(3.5))
on resonance in the form

[ ;T2 F
y
I+r7;zj‘2 /+I/ﬁ22j2

GAIN ANOMALOUS INDEX
OF REFRACTION

1/292_

(3.22)

which explicitly shows the real gain and anomalous index of refraction.
The exponential gain has a narrower bandwidth than the Lorentzian alone
(gain narrowing), which Teads to a longer effective response time. The

anomalous index leads to a group velocity Vg =C/(1 + Tzcg/2) /10/.

Since the Teading edge of the pulse propagates with the speed of 1light

(high Fourier components) but the main body of the pulse with the group
velocity, a further stretching of the rise time results.

Precisely the opposite is true for the absorber. The effective bandwidth
is broadened and the group velocity Vg 7 C. This has the effect of pro-
ducing a short pulse behind the leading edge. The two cases are depicted
on Figure 3.4, a and b.

In connection with the preceeding physical arqgument one might ask whether
the effective narrowing of the gain (broadening of the loss) or the group
velocity has the major effect in shaping the pulse. To decide this, let
us write the complex index in the form




GAIN NARROWING

— Vg<C
EnegLIZ
AFTER
DISTANCE
EO et L
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LOSS BROADENED

Vg 26 = I,
e ¢
—C AFTER at
C
- D!STLAN E

b) SMALL SIGNAL ABSORBER

Fig. 3.4 Gain narrowing or loss broadening and group velocity
effects on pulse shapes in amplifiers and absrobers
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If a = b, we have the correct complex index, but a and b separately
determine the real part (gain or loss) and the imaginary part (anomalous
index). The condition a# b is not very meaningful, since it does not
obey causality. Nevertheless, the above breakup of the index shows that
in the 1imit a = b, our calculation would give results involving the
combination (a + b)/2. This implies that the real and the imaginary part
of the index contribute equally in distorting the pulse.

For both the amplifier and the absorber we have found that the in-
finitely fast risetime of the step pulse is preserved. However, we know
that within the envelope approximation this risetime must be at least
several optical cycles, and the question arises as to what happens to

a still fast, but not a step rise. In this case one can show quite ge-
nerally that if the leading edge of the incident pulse rises faster than
T2/°L L or Tz/gL for a small signal absorber or amplifier respectively,
it propagates unchanged. The proof is given in Appendix II.
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APPLICATIONS

The basic equations (2.2) or (2.4) are linear in the small signal regime

where N = N_ = constant. This permits the use of the superposition prin-

0

ciple to get new solutions for pulses which are superpositions of our

basic decaying step. We look at two examples:

i)

To obtain a pulse with an exponential rise and decay we take

+ L0

o,
_ _7 _ £ (4.1)

ii)

For'fk & , Zﬁ? is the rise time, EO approximately the peak
amplitude, and Z); the decay time. In terms of our step with ex-
ponential tail, the above pulse is the difference between two such
steps, one with decay constant f/z-F , the other with "/?_LF_* Vtg
The resulting output is easily expressed in terms of solutions of
type (3.5).

Another interesting example is to send a long pulse, which after some
time is truncated to zero, through an absorber. This can be con-
sidered as the superposition of a step pulse, having started some
time ago, and a negative step, starting at time t = 0. Near t = 0,
the output of the absorber then consists of the first pulse, having
reached its equilibrium absorption exp(- szz), and a negative step,
near its leading edge. The expression for the output electric field
can be written as

-dL/ L
E__ig= E € - £(772) (4.2)

where E(z,T) is the absorber solution from Eq. (3.10). For large
J L, this is a spike as shown below on Fig. 4.1.

This particular scheme was first used by Yablonovitch /11/ to create ultra-

short CO, laser pulses. The fast truncation of a long pulse is achieved

through a gas breakdown shutter.
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I
t=0
~ N
OUTPUT N‘_ T, /oL
E FIELD
t=0

Fig. 4.1 Free induction decay pulse as a superposition
of two step pulses

The above effect with a truncated pulse is often explained as a free
induction decay. From this point of view, the absorber is said to radiate
a field out of phase with the input to destructively interfere with the
input. When the input is abruptly terminated, the absorber polarization
cannot decay instantaneously, but takes a time T,. Propagation effects
then shorten this free induction decay to a spike of width To/ oL L.
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V. LIMITATIONS: SATURATION AND LARGE AREA EFFECTS

The discussion so far has concerned itself entirely with small signal
considerations where the population difference stays constant. Sooner or
later in a high power amplifier this condition is no longer satisfied
and even the leading edge of a pulse may have enough intensity to change
the populations. Clearly, if T2 gL or TzﬁkL estimate some small signal
pulse characteristic timescale, then if ¢\ or g changes during this time,
the estimate 1is no longer meaningful.

The general analysis of this problem requires a computer solution of the

set of equations (2a) - (2e) or (3a) - (3c). However, besides the small
signal 1imit, there are two other limits in which analytic solutions are
possible. Pulse shape and risetime questions can be considered within

these regimes, but one must be careful that these considerations are applied
within their domain of validity. At this point, we will briefly investigate
the two cases.

a) Rate Equations

If one assumes that any change in E, P, and N is slow compared to T2, the
polarization equation (3b) implies that P is always instantaneously in
equilibrium with the product EN, and (3b) is easily solved for P.
Substituting this P into (3a) and (3b) results in the rate equation
approximation, which can be formulated so that only \Elz and N are left.
If one further assumes that T, is large compared to the pulse duration

of interest (Ty>e¢?), the two coupled equations for IEI2 and N can be
solved analytically /5/. We quote only the result

-
ez - L @d

T(552) = I,,(T)/(/-—(;_e )6 g =EZ } (5.1)

where 10(7‘) is the intensity of the incident pulse, a is the gain g or
loss =g/ of the amplifier or absorber espectively. ES is the saturation
energy
A Lo
E; - — Joules/cm? (5.2)

20 (w)

y
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where the stimulated emission cross section is

7
T(w) = A L, - o
4 ]—H'/‘; (w“'wa)
Equation (5.1) may be integrated over all time to relate the input and
output energy densities Ein and EOut

a’l EJ'N/E
Ewee = E; n 1+e (e =

(5.4)

a:go«r-—aL-

which is the familiar and much used equation in the short pulse laser
business.

Equation (5.1) may be used to predict the pulse shape. It has the property
that the leading edge of the pulse near ‘7 = 0 propagates with the full
small signal gain or loss. Later on in the pulse saturation sets in

and the gain or loss is reduced. This has the effect of distorting the
pulse shape. In an amplifier saturation tends to push energy towards the
front of the pulse, in an absorber towards the back. After propagating
through a certain length of saturated medium, significant changes in the
pulse shape during times comparable to T, result, and the model no longer
applies. The full interplay between T, response times effects and saturation
must then be considered. This situation can be understood from the
following example. Consider again a step pulse into an amplifier. The ex-
pected output is shown on Fig. 5.1.

The curve marked rate equations is a plot of Eq. (5.1) with gL = 5 and
since we are measuring time in units of T2 the incident intensity was
chosen such that IO T2 = .1 ES for arbitrary values of these parameters.
The incident step pulse is too small to be seen on this graph. We notice
the full small signal gain at the leading edge and the subsequent gain
saturation characteristic of the rate equation solution.

The curve marked small signal response is taken from Fig. 3.2 gL = 5, but
the square of the ordinate is taken, since we are comparing intensities
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4 6 8 10 12 14
TIME t/T,

Combined effects of small signal response and rate
equation saturation in step pulse amplification
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rather than E fields. Note the approximate 1/2 E field point at t/T2 =
gL/2 becomes the approximate .25 full intensity point on this figure.

The dashed curve is what one might expect from the combined response time
and saturation effect. The curve is not calculated, but simply a sketch
of a pulse which initially tries to follow the small signal curve, but
gradually falls behind because of saturation. It reaches a peak, but then
must approach the rate equation result for large t/Tz.

b) Coherent Effects

A special situation arises when the time integral of the electric field
multiplied by the dipole moment

-
’%(Z/ f_) = //—E_V/-jo 5(2',?.") o/f/ (5.5)

becomes appreciable for times t g T2.Th15 can arise for ultra short pulses
( 7¥F’ < T2) or in the leading edge of a pulse with a steep rise time. As
before, we must of course have pulses or rise times larger than several
optical cycles to satisfy the envelope approximation.

To understand this condition, consider Eqs. (4a) - (4c) in the limit when
both T and T, = . In this case, the pulse spectrum is much broader
than the medium response spectrum so that without loss of generality we
can set 47 = (O , and hence chose P and E real. Equations (4b) and (4c)
then read

= (5.6a)
0T A

and
i;lf!i = .féglfgi (5.6b)

with the solution




- P =

N = N, cos ¥(T,2) (5.7a)
P =pN, sin- ¥ (77Z) (5.7b)

where /79(7“, zj is the above defined quantity.

The total "pulse area" is defined as

/f(z) = %J cC(Z)z‘/jq’zL/ (5.8)

pulse duration

and when this quantity is 2 9T , equation (5.7a) tells us that the po-
pulation was left unchanged. This is self induced transparency (S.I1.T.).

For our purposes here we wish to point out an interesting condition. The
small signal limit here implies from Eq. (5.7a) that ¥ << ] . For

an incident step pulse we may write -AP(#) ~ &, T where t is the time
measured from the leading edge into the pulse. Hence, the small signal
condition becomes

2
/_’W_/ — Enlt z< ) (5.9)
2

777
where we have used Egs. (5.2), (5.3), and the fact that the energy/cm? in

a step up to time t is given by

2
=y () = c é° (5.10)
Y7
Since t < T, in this regime, pulses with th)/Es > | may still pro-
pagate in the small signal region.

Together with the equation for the field

viE - 4L EF (5.11)
2z 2

f




one then has the starting point for various interesting topics such as
self induced transparency‘/jc/ and other 77T pulse problems.

So far these effects have received little attention in the high power gas
laser business. One reason is that pulse lengths below T, of a high pressure
device are hard to come by. Second, and more important, is thatonceS.I.T.
and 7] pulse coherent effects set in, the field intensity is high enough

to completely dominate the medium with little effect of the medium on the
pulse energy. This is not exactly a good power amplifier. Another problem
comes from the fact that Co, and iodine laser transitions are degenerate
(angular momentum 2J + 1) which greatly complicates matters. S.I.T. and

T~ pulse effects tend to be washed out in degenerate media. Nevertheless,

this area of research on pulse propagation effects in large power amplifiers
may require more attention in the future.
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APPENDIX I

1) Hansen /12/; formula 57.6.2 pg. 385

2

< B g F 5 "CZC/.ZZ

2 C jK+a [Z )= Z q'e QJ k< Jee) (fjclj-
K=0 (o]

2) Same; formula 58.5.2. pg. 414; similar formula for I(z)

3) Same; formula 58.1.2 pg. 411

5 I (x) = ?({X—ID(XJ)

K=/

4) Same; formula 57.1.2 pg. 377

g @ =g]1- 20 +j:jowczf]
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APPENDIX II

The statement made at the end of Section III that pulse risetimes faster
than Tg/d.L or Tz/gL are preserved during propagation can be shown as
follows.

If the Fourier transform of a function q(t) is F(f), then there is a
relationship between q(t) t — 0 and F(f) f-> «2/9/. From Eq. (3.5), the
propagation exponential may be expanded for large f

/

o St e _/ + 8- (ﬁ/

€

l

and in the time domain, this factor then contributes

I TS
Z T2

to the original pulse shape, which has no effect for t < T,/qlL.

]
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