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ABSTRACT

A Computer program RADELI is described to calculate the

moments of the range and deposited energy distributions for

light ions in amorphous solids. The scheme of the classical

work by Schigtt and by Sigmund and Weissmann is followed, but
more accurate approximations are used. The physical problem

is described and the formulae necessary for the evaluation

are presented. A detailed description of all subprograms
contained in RADELI is given. Methods to construct a distribution

from its moments are available but are not discussed in this note.




Zusammenfassung

Ein Computer-Programm, RADELI, zur Berechnung der Momente

der Verteilungen sowohl der Reichweite als auch der
deponierten Energie filir leichte Ionen in amorphen Substanzen
wird beschrieben. Die analytischen Rechnungen folgen dem
Schema der klassischen Arbeiten von Schigtt sowie von Sigmund
und Weissmann. Es werden jedoch bessere Niherungen verwendet.
Das physikalische Problem und die zu seiner L&sung notwendigen
Gleichungen werden diskutiert. Der Bericht enthilt ferner

eine detaillierte Beschreibung aller in RADELI enthaltenen
Unterprogramme. Die Methoden zur Konstruktion einer Verteilung

aus ihren Momenten werden in dieser Arbeit nicht diskutiert.




1. INTRODUCTION.

The need for theoretically determined range and energy distributions
for light ions in solids based on few, simple and well established
assumptions has been steadily increasing during the latter years.
Especially within disciplines like plasma wall interaction in

fusion reactors these functions may be valuable. Classical works

in the field are by Schigtt /1/ and by Sigmund and Weissmann /2/.

In this note the scheme of these authors is followed but new and
more accurate approximations are used. It should be stressed

that the program présented here is based on analytical calcula-
tions. Simulation programs, such as MARLOWE /3/, are more flexible
and at many points more physically relevant but are on ‘the other
hand limited in accuracy by statistics and the interpretation of

the results is made difficult due to complexities in the assumptions.

In the following the physical problem is described and the formu-
lae necessary for the evaluation are presented. The note ends up
with a detailed discription of all subprograms contained in the

RADELT sample program.

The program is designed only to calculate the moments over the
distributions. Several methods to construct a distribution from
its moments are available /4/, /5/, /6/, but as the problem of a
suitable choice of construction method is not fully understood
and more or less a question of intuition, it has been decided

here only to present the objective information contained in the

moments.




More details concerning the mathematical approaches used and
comparisons with the results of ref. 1, 2, and 8 will be pub-
lished later. A comparison with moments obtained with the
simulation program MARLOWE, and applications of the RADELI

results may be found in ref. 18, 19, and 20.

2. DESCRIPTION OF THE PROBLEM.
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Schematic picture of the creation of a recoil atom in an
elastic collision, the basic process leading to the depo-
sition of magnitude F(x)dx in a slice of material of thick-

ness dx at depth x. See the text for the notations.




Consider a monoatomic, isotropic, homogenious, and infinite medium,
consisting of resting atoms with mass M2 and atomic number ZQ, and
with the density N. Let X be an arbitrary axis and let an ion of
mass Ml with atomic number Z1 start in x=0 in the direction e

with energy E. (consult fig. 1.)

We want to calculate: 1) the probability that the ion gets stopped
in the slice (x,dx),that is /7/ the ion range depth distribution
(IR), 2) the energy deposited in atomic motion by the ion and all
recoils in (x,dx), when transport of energy no longer takes place
over finite distances, that 1is /u4/ the deposited nuclear energy
distribution (DNE), 3) the energy deposited in electronic exci-
tations in (x,dx) assuming these to be stable, that is /8/ the
deposited electronic energy distribution (DEE), which is the
complementary quantity to (DNE), and 4) the sum of 2) and 3),

that is the deposited total energy distribution (DTE).

Transport equation

Let the desired quantity be F(E,é,x)dx. The linearized Boltzmann

transport equation describing F is (refs./u4/, /97)

aF oF — — —
-cosbz— - NS _(E) =% = Nfdo{F(E,e,x) - F(E-T,e',x)- G(T,e",x)} (1)
where cos® = cos(e,x), do=do(E,T) is the elastic scattering cross

section for a binary collision in which an energy T is transferred
from the ion with direction e to a previously resting target atom
now moving in the direction e" as a recoil. The new direction for

the ion is e'. It is assumed that the elastic and the inelastic

energy losses are separable, the latter being summarized in the
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electronic stopping power NSe(E). G(E,e,x) is a function descri-
bing the corresponding deposition by recoils only,and may be de-
termined by substituting F+G in the above; the so called
equal mass case. Implicit assumptions concerning the derivation

of eq.(1) may be found in ref. /4/, and /9/.

Light io0on case

The special cases of interest here are ion-target combinations

for which p = M2/Ml >> 1. As the maximum energy transfer

T, = YE = bu(1+) " 2E (2)

is then much less than E, an expansion in T of the second term

in the bracket of (1) is adequate, and to the first order we get

F(E-T,e'x) = F(E,e'x) - T (3)

e
il

Moreover the range of recoils is much shorter than the range of
the ions which means that deposition by recoils may be regarded

as strongly localized to the collision region, or that
G(T,e",x) » G(T) &(x) (4)

where 6(x) is the Dirac delta function. For the (IR) case the
recoils do not contribute and G should be set to zero.

Defining the moments over the distribution F as
FME,e) = [ x™ F(E,s,x) dx (5)

— 00

and expanding the angular dependence in Legendre polynomials P2

F'ME,S) = ¢ FE(E) P,(cos0) (6)

eq. (1) with (3) and (4) reduces to an equation for the coeffi-

cients FE




n n-1, n-1
S+1 {2 Fﬂ-l(E) + (2+1) F2+1(E)}

d

{NSe(E) + 11(2,5)} IF

n n
FR(E) + IQ(E,E) FQ(E)

-N [ do(E,T) G(T) §, 6

no (77

where
I,(1,E) = N [do(E,T) T P,(cos¢") (8)
I2(1,E) = N [do(E,T) (1 - Pg(cos¢')) (9)

&' being the scattering angle given by

1 -
cos¢' = (1-T/E)X? + 3(1l-up) T/E (1-T/E) * Ll D)

Scattering integrals

Equation (10) may more conveniently be written

M=

1
cos¢' = (l_YT/Tm)2 + 1 (1-u) YT/Tm(l—YTle) Led.)

where T/Tm € [0,1], and remembering our interest in small values

of 1/u, we write to the first order in this quantity

1 - s m _ 2 2
cos¢' =1 - 2.T/T_+ 4/u (T/T_ - T?/T2) (12)
and
2 K 2% "
P, (cos¢') = I a (cosp')™ =L ¢ (LT D (13)
3 et IS i B m
The scattering integrals Il and 12 then reduces to the simple
forms
% k+1
I,(%,E) = T kEOCQk N [ do(E,T) (T/T_) (14)
2h-1 k+1
I,(8,E) = =2 cp 1 g N [ do(E,T) (T/T ) (15)



scattering Cros s section

For the elastic scattering cross section do, we use the Lindhard
expression /10/, which makes it convenient to transform all

quantities into reduced units:

p ]
_ Yo dt 3
N do = —_Y ;m f(t2) (16)
where
t = T/T €2 = T/T_(Ee )2 (17)
m - m fe)
e = w((1+u)Z.2 e2)-1 a (18)
o) 172
= Nﬁa2 (19)
Po s
with
. B} 218 o B8 =172
/10/ a=a = 0.8853 a, (Zl +Z2 ) (20L)
. _ 1 1 ,-2/3
or /17/ a = a_, = 0.8853 a (7Z + 7 ) (20F)
F o) 1 2

a, being the classical Bohr radius and -e the electron charge.

1
For the function f(t®) we use the Winterbon-approximation /11/

F(2) = A €27 (14(2at1TMyqy"1/q (21)

which reduces the scattering integrals to

P p
"o 1-2m L o T 1-2m
(@] (o]
I(L,E) = = 20 ¢™2M 30 ¢ o S(K,e) = 0 5 (g,e) e 2m (23)
gytete = TG 2,k+1 204 = 5T Ept e
where

1
slk:e¥ = | yk m(l+(2)\r—:2_2my:L ma, l/qdy (24)

O

For sufficiently small energies we find

Sikse) = S0k = Elsk-ah (2ua)
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In equation (1) it is assumed that the net result of the inter-

action projectile-electrons, apart

dE

from nuclear charage screening,

is only an energy loss per unit path length e PR In reduced units

and using

Lindhards expression /7/,

€ €

o dE _ _O _ de _ -
=—=ls = 5 NSJLE) = 52 = kv/e = s _(€) (25)
o o
where the electronic stopping konstant k is
2Ly
_ _ 1 2.3 (l+pyla .3/2 1/6
k = k; = 0.0793 ( i ? b eme Z1/ (26)
o
For the equal mass case we get
_ _ 2/3 -3
k = k2 = 0.133366 Z2 M2 L2d)
= _ .3 -1
€, 5 €gp T 11.5034 22 (keV ™) (28)

For u >> 1 the Lindhard k is not always in accordance with
experimental results. Therefore we introduce a factor kg so

that k = kka for cases where k has been measured.

T h e function G(E)

As mentioned above G=o for the (IR) case. Otherwise G(E) repre-
sents the total amount of energy deposited in the specified case
(DNE,DEE,DTE)by an ion bombardment in the equal mass situation.

For (DTE) it is obvious then that

G(E) = E (DTE) (29

For (DNE), G(E) (normally called v(E)) has been evaluated by



Sigmund, Matthies and Phillips /12/ and by Robinson /13/. We

have here for convenience chosen the Robinson-expression

3

G(E) (DNE) (30)

E(1+k, h(ez))_

3.40082z1/ 640, 502442374, (31)

where h(z)

*E 1is E expressed in reduced (M2+M2) units and k, is the

£0"€02 2

corresponding electronic energy loss constant, see (27) and (28).

From (29) and (30) it follows that for (DEE)

k2 h(ez)

G(E) = E Tk, h(e,) (DEE) (32)

For sufficiently small energies we find

1 (DNE) (30a)
G(E) = E - y3-u008e,% bk, (DEE)  (32a)
1 (DTE) (29a)
Method o f solution.

In solving the differential equation system (7) it is convenient
to introduce dimensionless quantities and to use a scaling which
makes it possible to solve the equations analytically in the low

energy region. We define

f(e,e,t) d1 = F(E,e,x) dx (33)
fn(s,g) = f (e, e, 1)dT = pge;r g bl FY(E,e) (3Yy)
n _ N _-r -p-2mn _n
fg(e) =P, Es E FQ(E) (35)
with
T = X p_ E
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and fMe,e) = I fg(e) P, (cose) (37)
220

Introducing (22), (23), (25) and (35) in (7) yields for n#0

2m-1 : dfz n
{s (e) ¢ + 11(2,5)} {e e 8 (p+2mn) fQ(e)}

1 % n

+ = 12(2,5) fg(e)

2wl guel Loy & Copd) 0, L4ed) (38)
2041 -1 2+1

and for n=%2=0, with
s () = 2172 S(o,e) = i (o,e)eet ™" (39)

being the nuclear stopping power in reduced units

daf®

{se(e) + sn(e)} { e EEQ + p fg(e)}

1
- e, r-1 €2 p-2m % [y m(l+(2k62 2m y1 myq, 1/q GéT) dy

6]

r-l b 5 (e) (40)
o n?2

11

E

where T = yy e/eo.

Recalling (24a) we get for sufficiently small e and form > 1/4

that the electronic energy loss may be neglected and obtain for n#¥0

n
7] gz Cok 1+i~m € dz .
k=o ‘ ¢
2% 28-1
N 1 oA 1 1 Nee)
+ ‘[ (p+2mn)—2 C - Ty z C = fQJ(E
2 . 2k l+k-m 2y Vosmies 2 ,k+1l l+k-m
- =0 o™ Ly 4 e £7°1 (o) ) (38a)
20+1 -1 2+1
and for n=2=0
@)
daf
o o _ ~P=1 1P g -m G(T) !
g + p fo(e) = Eg € (1l-m) f Y T dy (u0a’

and using (29a), (30a) and (32a) we see that by a proper choice

of p it is possible to make all fE constant in this low energy limit
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We set
(IR) : r=o, p=o - f2=1
(DNE) : r=-1, p=1 Pofosl
1/6
(DEE) : r=-1, p=7/6 : fg=6/7 3.4008(Yy eoz/ao) .
o = K
7/6-m 2
(DTE) : r=-1, p=l : £o=1 (41)

The scaling used here corresponds exactly to the one used in ref. .4
where electronic energy loss is neglected over the whole energy
range, yielding for a given power cross section a universal
function for F in the variable T.
Generally the summations in (6) and (37) reduces to the range

.QJ = qk = 2j 5 j=05011,% (Ll?)
due to the recursion relations (7) and (38) and the fact that F°

has no angular dependence.

3. PROGRAM DESCRIPTION ,

The following is a detailed description of a program (RADELI) set
up to evaluate the moments Fn(E,E) over the functions F defined in

the previous chapter for the special case:
A =1.309 ,m=1/3 , q = 2/3 (u43)

For details concerning this choice see ref. /4/, /11/. The region
"sufficiently small energies", used in the previous, means in this
Situation

€ << k ° =y 10 (LL)
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We shall start up with some remarks concerning evaluation of inte-
grals included in the calculations. Apart from the already mentioned
ones we shall evaluate the total range which in reduced units is
given by

sl = ] £e (45)
T @]

se(e) +,sn(e)

With the special values (43) it can be shown that

sn(e) = %a—l {ln(a+Jl+a§) - = } (L46)

1+a

and we write for convenience with (25)

pple) = fE 9 -3 2 dxz a
o ktg X {1n(a+Vﬁ+a ) = s } (47)
dl+a
with a= (2l)l/3 x8/9 N (2)\)1/3 Eu/g

P is used for comparison with the mean values F1/FO for nostalgic

reasons.

To solve the differential equation system (38) and (u40) the inte-
grals il’ i2 and S.2 have to be known for arbitrary e. A special
procedure is used to reduce computation time at this point. For
the special eg-values: €= j-lOi, J=2,3,...,10, i=-4,-3,...,2,the
integrals are evaluated using a Simpson algorithm. A cubic spline
function is assigned to the points and the splines are used to
interpolate between the special e-values. The same procedure is
used for Pr (47). As the functions S(k,e) (24) are universal, they
are evaluated once for all. Further it can be shown that for large
k (> 8) a Winterbon-formula-approximation to S(k,e) is very accu-

rate. It takes the form

- A 1 k 2-2m,q.-1/q
S(k,e) = T ( 1+(2X i icm E )*)

V-
J\+

(u8)
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From the pre-calculated values of S(k,e) for k < 7 and from (u48)

for k > 8, il(ﬁ,e) and iz(l,e) are evaluated using (22) and (23).

Detailled description of RADELTI

(Version moments of range and deposited energies in keV-A units.
Moments or moments relative to RT or Rmean')

COMMON blocks used:

fHERB/S AA(12412); CCL12,25)

/SPEC/ AK,AMY,GAMMA ,EPS@ ,RHO@ ,NMAX ,MMAX ,NDEF ,MART ,MREL,LEPS
/SNEPS/ SN,AK22,EPS2@,SN2(70,4 JEPSMAX,ASN2 ,NSNT

7INKO/ AI1(12),AI2(12),AKI1(12,70,4),AKI2(12,70,4),E(100),ME
/RTOT/ RT(70,4),UU0(100) ,RMAX ,NRTT

/OUTP/ P(8,12),RMEAN(600),ESRCH(100) ,NR,NUMB,LNUM,NTH,NSRCH

SUBROUTINES used:

HERBI(NMAX)

INIT(NMAX,EPS,C) [C(u0)]
FRT(K,EPS,X)

FSN(K,EPS,X)

USIMPCE XK EFS 55 B PROCICTER MSTER - UD M )

SPLSMO(N,X,U,Y2,P,A,B,C,D) [X(100),U(100),Y2(100),P(100),A(100),
e, B(100),C(100),D(100)]
DIFFQ(X,Y,DY) [Y(40),DY(40)]

OUTPUT(EPS,Y,DY,IHLF ,MMAX ,PRMT) [Y(40),DY(40),PRMT(7)]
DRKGS(PRMT,Y ,DY,MMAX,IHLF ,DIFFQ,QUTPUT ,AUX)
[PRMT(7),¥Y(40),DY(40),AUX(40,40)]

IBM=-SSP subroutine.
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Language : FORTRAN

Variable length: REAL(8),INTEGER(Y4)

Core usage : 240K bites
SRS 0 untidi n e HERBI ( NMA X))
Evaluates the coefficients a5k and Cox for £=0,1y.4s5 NMAX
k=0,1,....,2, where
[ 2421 . ~
P,(x) = 1% (—)”‘(I’i)(2 o) Kt
27 m=0
A
= I a0k xk
k=0
see eq.(13) and /14/, and
2% X
Psleogd') = E e X
g k=0 *K
where
cos¢' = 1 - 2x + 4/y (x-xz)

see eq. (12) and (13).
The value of u=AMY is given through /SPEC/ and the values

a9y = AA(L+k,k+1) and Cox = CC(2+1,k+1) are returned through /HERB/.

Method:

Ay is evaluated using the recursion scheme

L .1 ()
S My M % N

and

& - a (2-2m-1)(8-2m) (=)
2,8-2(m+1) = “g,2-2m (28-2m-1)(m+1) 2

2 geom-1 - 0 5 m=0,1,...,[2/2] -1



Coy 18 evaluated using
2% ;
I Cop < =1 a0y (a+Bx+6x2)k
k=0 k=0
2 k i i
= X a%k ak z (E)(ﬁ) z (j)(é) xl+3
k=0 j=0 \I/\¢d 5 o\1/78
where

(3)7 TG = BGALED
j:O,l,ngngNMAX, i:O’ljvvigjg

is determined using

(3)- (g) -1 ane (1) (32 (37)

for 0<i<j 3 o =1 , B = =-2+4/p and 6§ = =-4/u

Subroutine INIT(NMAX , EPS ,C).

Evaluates fE in the "sufficiently small energy" regions where

they are constant, using the formulae (38a) and (41). The value

1/6 1-m ~ _
2/E ) m k2 = ASN? are trans

ferred through /SPEC/ and /SNEPS/. EPS is a dummy variable.

of y = 4-GAMMA and 3.4008 (ye_

f? are returned through the parameter C(i) where only those fg

not trivial equal zero are stored in the following order:

2

1 2
fg,fl,fo,f

23

I

3 .3 .4 Y
B o B B e

Funection FRTH( K ; EPS ¢ X )

Evaluates

§ ol 2 a -1
FRT(X) = 2 {k+§ % ( 1In(a+ Yl+a“®™) - }
1+a

i
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where

8/9 3

a = (203 x , for X > 10~

=1

and FRT(X) = 2 { k+3/u4 X for X < 10~

The value of k=AK is transferred through /SPEC/.
FRT is used for evaluation of the total range pp. See eq. (47).

K and EPS are dummy variables.

Funetion FSN(C(CK,EPS , X ).

Evaluates the function

FSN(EPS,X) =

(1+ (2AEPS2™2Mm yydy-1/q (1+k, h(Y+EPS*e_,/e_ X 1=myy 77

The values of YEOQ/EO = EPS20 and k, = AK22 are transferred through

/SNEPS/.

FSN is used for evaluation of the integral s K is a dummy var.

n2’

Subroutine gusIMPC(CF , K, EPS A ,B;FROLC ,

ISsTEP MSTEP,UD, M)

Evaluates the integral
B

UD = [ F(x,EPS) dx
A
using a Simpson method with auéomatic step halving until,with
M stepssan accuracy better than PROC percent is reached. The interval
[A,B] is initially divided in ISTEP subintervals and UD is returned

to the calling program when the wanted accuracy is reached or when

the number of steps exceeds MSTEP. K is a dummy variable.



Subroutine S PLSMOECN s % s s ¥ 2P 558258

C ,D)

Evaluates the 4N-U4 spline coefficients A,B,C,D to N given points
(X,U). The actual routine is a smoothing spline procedure using
the N weights P. Y2 is a working storage. SPLSMO is described in

ref /15/.

The value of the spline function is
3 2
A(n) z° + B(n) z°= + C(n) z + D(n)

for X € [X(n),X(n+1l)]land with z=x-X(n).

Subroutine I NKOEF(NMAIX)

Manages the evaluation of the coefficients A(I),B(I),C(I),D(I),

I=1,...,63 in the cubic spline approximation corresponding to the
energy intervals E(I) = j°10l g demlo v w2 5 J5 05 snsulll TOF The
functions

8.5 3 Pp 3 1l(£,s) and 12(2,5)

Further,the constant values of il(E) and iz(ﬁ)for small energies
are calculated. (22), (23), (24) and (2u4a).
The values of s, and pg in E(I) are directly evaluated by inte-

gration (USIMP,FSN and FRT). i, and i, are evaluated in E(I) using

1
the formulae (22) and (23).
For k=0,...,7 the values of S(k,e) in E(I) are precalculated and

read in. For k=8,...,2+NMAX S(k,e) is evaluated using (u8).
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The coefficients A,B,C,D,renamed 1,2,3,4 (parameter J),in the point

E(I) are stored in

s SN2(I,J) /SNEPS/
n? :

o RT(I,J) /RTOT/

il(L,e) :  AKI1(f+1,I,J) /INKO/

i2(2,e) : AKIZ0L+1.] ) /INKO/

il(ﬂ,s << 1)+ ATI1(2+1) /INKO/

iz(ﬂ,e << 1) : AI2(2+1) /INKO/

E(I) is returned through /INKO/ together with the max value of

1 = Kl.

Subroutine D IFEQECX Y «aBX )

Evaluates,for given values of Y:fE and X=e,the differential quotient
defined by eq. (38) and (40)

df
de

3

DY

n=0,...,NMAX , £=0,...,n.
The values are given and returned through Y,X and DY in the se-

quence given in INIT. F. ex. f2 = Y(M) where

where all the divisions are integer evaluated.

The start values are given from the INIT program and are evaluated
according to eq. (38a), (40a) and (u4l).

For sufficiently small e the equations (38a) and (40a) are used
otherwise equations (38) and (40) are used.

Further DIFFQ evaluates sn:SN and pT=RMAX in X, these values are

returned through /SNEPS/ and /RTOT/.
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Subroutine GUTPUT(EPS ¥ DY , JHRLF ;

MMAX ,PRMT).

Output routine managing the different modes of output.
EPS,Y,DY,IHLF are returned from the differential equation solver
DRKGS, EPS being the actual energy, Y and DY the corresponding

n
values of fz and dfl and IHLF specifies the number of subsections

de
of the initital interval of solution (see description of RKGS /1b6/),
MMAX the total number of evaluated functions fg (the dimension of

Y and DY) and PRMT contains 7 parameters specifying the interval

(see MAIN program).

The routine writes subheadings on each second page of output and
write for each of the NSRCH specified energies ESRCH an output
subsection for that EPS for which |EPS-ESRCH| < ESRCH+10"° or if

NSRCH=0 for the energies j+lo’ (keV), 3=10,11,...,100, i==U4,=3,...,1.

Each output subsection consists of NTH lines, one for each of
the specified bombardment angles THETA. If NTH=0 only one line for

THETA=0 is printed.

NSRCH,ESRCH(1i),NTH and Pg(cos(THETA(j)ll = P(j,2+1) are transferred

through /OUTP/.

The different modes of output are specified by NDEF, MART, MREL
/SPEC/

NDEF=0 gives (IR) output,

NDEF=1 gives (DNE) output,

NDEF=2 gives (DEE) output,

NDEF=3 gives (DTE) output.
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MART =0 results in the following output line
energy E, Fn(E,THETA), n=0,...,NMAX, S(E), where S 1is Sn for

(IR) and (DNE), Se for (DEE) and Sn+Se for (DTE).
MART=1 results in

for NDEF=0

E,RTOT ,MEAN,SIGM,MEAN/RTOT ,STRAGREL ,SKEWNESS ,KURTOSIS,EPS

for NDEF=1,2,3 and MREL=0

E,EFRACT ,MEAN,SIGM,MEAN/RTOT , STRAGREL,SKEWNESS ,KURTOSIS,EPS,S

for NDEF=1,2,3 and MREL=1

E,EFRACT ,MEAN,SIGM,MEAN/RMEAN,STRAGREL,SKEWNESS ,KURTOSIS,EPS,S

where E is the energy, RTOT the total range, EPS 1s the € cor-
responding to E, S is as defined above and RMEAN is MEAN for
NDEF=0, or the mean range. The left parameters are all taken in

E and are defined as follows

EFRACT=F°/E

MEAN =F1/F°

J F2/FO-(MEAN)?

SIGM =
STRAGREL = (SIGM/MEAN)?

SKEWNESS = (F3/F®-3F2/F° Fl/FO+2(FL1/F°)3)y/(s10M)3
RUREGSTS = (P /e -uE JF Blir%eee® FE® £rE®Y 2- st 159

/(SIGM)u
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All parameters are primarily evaluated in reduced units
€5 Py Pps S f" . For LEPS#R (in MAIN program) these are trans-

formed to (keV-A) units using E=E/so, x:p/po, (34) and (u4l1).

MAIN Progranm

Reads in specification values and controls the calls of sub-

routines.

First data card read
IDENTIFICATION= up to 72 letters or numbers used for the heading

printed on the first side of output.

Second data card read

Z1=7 AMl:Ml, 22=7 AM2=M D2=N in g/cm3, NSRCH=number of out-

1’ 272 2°

put energies wanted, NTH=number of bombardment angles wanted,
LF=parameter for choice of Lindhard a, (L) or Firsov ap (F)
(see eq.(20L) and (20F), FAKTOR= factor on the Lindhard value
of k in the electronic stopping (eq.(25) and (26)) ke, LEPS=

parameter for output in keV-A units (blanck) or reduced units

(e:EOE, p:pox) (R )

Third data card read

NART=parameter specifying moments (M) or relative moments (R)
for output. NREL=parameter specifying (for deposited energies
only) relativity to total range (T) or to mean range (M).

For NART=M,NREL is dummy, NARTand NREL are separated by a dummy
character. NMAX= the maximum order of moments to be evaluated,

for NART=R NMAX is set to 4,
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NSORT= up to 4 letter pairs separated by commas specifying

the deposition modes : RA=(IR), EN=(DNE), EE=(DNE), ET=(DTE).

Fourth input card read
THETA(I),I=1,...,NTH, values of bombardment angles (degrees).

For NTH=0 THETA(l) is set to 0 and NTH to 1.

Following input cards read

ESRCH(I),I=1,...,NSRCH, values of the wanted output energies 1in
keV for LEPS=blanck and in reduced units for LEPS=R. For NSRCH=0
standard values are used, see OUTPUT.

On the basis of the input values p, Yy, € k2, Py and k

o’ %o2°
are evaluated and printed in a heading together with the

IDENTIFICATION.

Pg(cos(THETA(i))) = P(i,8+1) is evaluated using AA /HERB/
according to eq. (13), for i=1,...,NTH and 2=0,...,NMAX.

The differential equation solver DRKGS is called with initial
intervals {le €y 10j+leo],j:-9,... divided initially in

100 subintervals. The values of the start and end of intervals and
the length of subintervals are transferred through PRMT(1,2,3).
PRMT(4) is the sum of acceptable error on the evaluated fg,

and is here chosen to be < 1 0/00 max. for each. This is done

by proper choice of PRMT(4) and the initial value of DY, see

description of DRKGS /16/ for details.

A warning is given if the wanted accuracy is not reached within
10 halvings of the subintervals, the warning contains NDEF,

PRMT(1) and IHLF, the error parameter of DRKGS.
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The program terminates the solution procedure at e = 103

at the largest given ESRCH value less than 103 e/eo

Limitations and restrictions,

Max number of given output energies (ESRCH) 100.
Max number of bombardment angles (THETA) 8.

Max order of evaluated moments (NMAX) 11.

The values of A S(k,e) for k=0,...,7 and E=i°10], i=2,..

2

or

.»10

j=-4,...,2 has to be supplied before the mentioned data cards,

one € on each card with format (8D9..4).

Compilation time : 12 sec.

Execution time : 1 min per (IR), (DNE), (DEE), (DTE)

on an IBM 360/91

Examples of input cards to MAIN program, indicating the fixed

formats used:

I |IDENTIFICATION-FIELD, MAX 72 CHARACTERS. -»
2. |ooo.oopoo.odooo.odpoo.ocboo . odpooefjooo . ooh
3. lAi LAIOOI,P\AMAAI,F\AHAA'

4, |ooo.ooboo.ooboo.odooo.ooboo.ooboo.ooboo.ooboo.od

= pooo.oooopooo.oooobooo.oooobooo.oooqoooo.oooopooo.oood

| - booo.oooqoooo.oooq coe |

5b. - " -




2 1.00 2.00 6.00 12.00 2.35 102L 2.13

Bombardment D = C, 10 energies and 2 angles, factor 2.13 to
the Lindhard k, and Lindhard scaling (aL) used.

25 | 1.00 2.00 6.00 12.00 2.35 102F R

Same but with Firsov scaling, factor 1 and in reduced units.
3. |MOMO7,RA,ET,EN

Moments Fo,...,P7

of (Ik),(DNE), and (DTE).
3. |RMT ,EE,EN,RA

Moments relative to total range (max 4) of (I[F),(DNE), and (DLE).

3. |RMM ,EE,EN,ET,

Moments relative to mean range (max 4) of (DNE),(DEE), and (DTE).
4. ]90.00 .25 0.00

Values of THETA, NTH must be specified to 3 in this case.

5. | 0.015 150.0000

Values of output energies, NSRCH here 2.
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