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Abstract

For a sharp-boundary, constant-pressure plasma model of axisymmetric
equilibria the MHD stability problem of axisymmetric perturbations

is solved by analytic reduction to a one-dimensional problem on the
boundary and subsequent numerical treatment, using the energy
principle. The stability boundaries are determined for arbitrary aspect
ratio, arbitrary Bp and elliptical, triangular and rectangular plasma
cross-sections, wall stabilization not being taken into account. It is
found that axisymmetric stability strongly depends on the plasma

shape and is almost independent of the safety factor q.




1. Introduction

The sharp-boundary model - plasma with constant pressure and surface currents
surrounded by vacuum [1] , [ 2] - is, from a mathematical viewpoint,
especially suitable for the study of ideal MHD stability owing to its relative
simplicity. Although many of the interesting subtleties of more realistic plasma
models are certainly missing in this model, the most dangerous and important
ideal MHD instabilities (those which push the whole plasma towards the outer
wall) are present and are believed to be fairly well described by it. Besides

its application to stellarators and related configurations, for which cases
special complications arise with other models, this model has also been

extensively used for the study of axisymmetric devices such as tokamaks.

Concerning axisymmetric sharp-boundary equilibria the stability analysis

for nonaxisymmetric perturbations has a long history. A straight approximation
with circular cross-section and toroidal topology was investigated in Ref. [ 3],
In Ref. [41 a general outline of the method in toroidal geometry was

presented and applied to plasmas with circular cross-sections in the limit

of infinite aspect ratio. Finite aspect ratio but only circular cross-sections (i.e.
as far as explicit results are concerned) have been studied in [5} , [6] ,
while finite aspect ratio and rather arbitrary cross-sections were considered

in [ 7] .

Axisymmetric perturbations have long been wallflowers in the stability




theory of axisymmetric equilibria (step profile model and others), the reason
probably being twofold. Firstly, the use of material plasma limiters in
experiments has either prevented or concealed the appearence of external
axisymmetric perturbations, while sufficient stability criteria [ 8]

show that internal axisymmetric perturbations are stable in many cases

of practical interest. Secondly, experimentalists have long been shy

of departing appreciably from circular plasma cross-sections. According

to the results of this paper, external axisymmetric instabilities have thus
been avoided and, consequently, no pressing need to deal with

axisymmetric perturbations emerged from the experiments.

Recently, the interest in plasma containment without material limiters

and promising physical and technical features of plasmas with non-

circular cross-sections have led to a growing interest in axisymmetric
stability. Special simple perturbations such as rigid vertical shift

[ 9 - 13_] were considered as well as general axisymmetric perturbations
in the limit of infinite aspect ratio and on the assumptions of usual tokamak
ordering [14 . 15 16_]. In [17]” was demonstrated for the sharp-
boundary model that so-called slip instabilities, which are the most
dangerous axisymmetric perturbations in the limit of infinite aspect ratio,

are definitely stabilized by finite aspect ratio.




In this paper, for the sharp-boundary model with various shapes of the
plasma cross-section the full axisymmetric stability problem of axi-
symmetric equilibria is solved using the energy principle, and thus a
gap left in earlier investigations has been closed. As in Ref. [17] ,
the external conductors necessary for confinement are assumed to be

permeable to the perturbational field.

In Section 2 equilibrium relations are summarized. In Section 3 the
plasma contribution fo 8“W is minimized and combined with the sur-
face and vacuum contributions. In Section 4 numerical results are pre-

sented.

2. Collection of equilibrium relations

We consider the same equilibria as in Ref. [17] and the following
relations are copied from there (all quantities being dimensionless).
With the notations of Fig. 1 the plasma surfaces S considered are
F(R,2,2) =
2 2 2.2 - 1 _ A2 _ai_2 . e?
e*(R=1)* + (1+73 ) 2*- 247, (R-1)2* -A*7, (R-1 2" = =
A
where A = aspect ratio, e = elongation of cross-section, and T4

and T, describe triangular and rectangular deformations. We consider

lr
only the cases T, 40, T, =0 and T, #0, T,=0 . For
T,= U, T, - 1 the cross-section is a rectangle; for T,= 0, |'E3|= 1

it is almost a triangle (two sharp angles are limiting a straight section in

the 2 -direction). In Fig. 2 a selection of typical cross-sections is shown.




The magnetic fieldsB, and B, inside and outside the plasma are given by

By = Ares , B, Ave, +BL, 2.2)
R R
where t = nxey n = VF/IVFI , &a- RV4 and

B - [4+Fp(vﬂ4q”ﬁ. 2.3)

4
R
Here ?’P - lP/(Blazf: Y* and B is normalized by BI wag = 4

so that
P = EE
l‘ .
A, and A, are related by
2 2
PSR R N 2.5)
The equilibrium is limited by the condition
* A®
< = . (2.6)
Bes b = 727
The safety factorq on S is given by
= A‘D’ € = i d’l
9 ——%A ) P e el 2.7)
the line integration extending along S in the R, z plane. With the
5 s - 1 p2
definition 13 P /(F+ . BPL[ fe ) we have
F’ - __h
14 A‘E" ’ (2.8)
T3
1A
B, s 4+ At




Finally, for the stability calculation it is useful to introduce a parameter

® by

" (2.10)

which is related t01 and p, by

Kl:i[’ 1e A L) _ 4 (2.11)
]

according to eqs. (2.4) - (2.5) and (2.7).

3. Stability

For a plasma with constant pressure and surface currents according to

Ref. []8] §*W is given by

§*W = SW, o+ SW, o+ 8V

' (3.1)
SV, _:L o {eurl MExB) + 2PV ] 3.2)
1 f 2 1 5t
—,;§ ((pn)n7(L8,-280)7 @)
-4 (de (3,78, (%n) . (3.4)
PR

The surface integral representation of SWU_ in eq.(3.4) is obtained
from the usual form by Gauss’s theorem using the assumption of

completely permeable external conductors. Following the general




minimization procedure described in Ref. []7] , for¥.m givenon S,

§:n = §. s e
we shall first minimize SVyt and calculate 8".’5* SVV . Then, W will be

minimized with respect to ¥

a) Minimization of gl'/p[

Introducing unit vectors e . and e, in the R and z-directions, we write

§ = few *Jes +9e . (3.6)
For axisymmetric perturbations we have ©@F% /0y = 0 and with this

we obtain from eq. (3.2) using egs. (2.2), (2.4) and (2.10)
SV =

(3:7)
5 ¥ o2 x* _F o2
;WF‘PH R(¥x + 1. + 3 ) e (5t 1. = ) ]dRdz.
The subscripts at§ and  mean partial differentation with respect to R
and z respectively. Variation with respect to ¥ and 7 yields the Euler
equations
R*-x* [ ¥
(§ ), *+ (— ) -0
& 71 . R"+x* \ R /R
(3.8)
Raec* F
+ . m— = g'
( z . 72 R*+x* R )r. )
which have the solution
(x*+R? ; o
E ) Go? -F )
(3.9)

2 L_pi (l 112 '
AR G L~ N LR S




Here, f and ¢ are arbitrary functions of R , and primes denote differen-
tiation with respect to R . The prescription (3.6) on S amounts to a
boundary condition for the Euler equation which allows the functions {* and

a to be determined. As in Ref. [17] , wesplit §_ for this purpose into

s a (3.10)
gm = gm ;3 gm )
[3 s a (.3 .
where §“ l-; = E“ l: and fﬂ l_z a - Eﬂ lz . With the
representation R=R(L), =z=z(l) of S(4£=arc length according to
Fig. l) f( R) and g(R) may be considered on S as function of £ , and we

have n-e, = 2 n-e = - R ) where dots denote differentation

)
with respect to [ . Splitting eq. (3.5) into its symmetric and antisymmetric

components , with eqgs. (3.9) we readily obtain

§ (3.11)
5

R

S = -

(3.12)

uZ.sal.é)F_wé* bot R

- T

— ﬁ -
R (a®+R*)* (x+RY)* z

NN

o

Ons, g s uniquely determined by eq. (3.11) as a function of £ . Since

x*+R* R

for the plasma surfaces considered here (eq. (3.1)) ! is a unique function of
R for z > 0 and since both ‘5':' and R(ﬂ) are antisymmetric functions,

g is also uniquely determined as a function of R . It is shown in the




Appendix that by the differential equation (3.12) for f (#) and by the
condition that f(ﬁ) is symmetric with respect to the =z = 0 plane the
function f(R) is unequely determined as well, and that ghfrl assumes

its minimum for the values § and 7 thus obtained.

Using the Euler equations (3.8), the expression (3.7) for Shfrl may be

integrated by parts to yield the surface integral

Swy - %r[l,, 6 et £ g8 L

Note that there is only a contribution from f: to the minimum of SVPL

b) Calculation of W, , 3% and minimization of %W

We now have to calculate 5% and SUV for given f-ﬂ . Since in
the treatment of slip motions the corresponding problem is formally
identical, we may quote the results from Ref. [l?] . With

Ng =M€y = z eq. (4.16) of Ref. [17] reads

U, = v QA f(sn )+ (5 ][ s B

where

(3.13)

(3.14)

(3.15)




is the curvature of the poloidal field component in eq. (2.2).

Furthermore, from Section 4c) of Ref .[l7]we summarize

Sw, = 8wy «+&w,

)
(3.16)

A T&dﬂRB}’:y‘ , SW, = 1T(§AQRB§°5“,

"

where Hs and 56 are the symmetric and antisymmetric constituents of the
ity g = £-58,.
Hs and 3"’ are both to be determined from an inhomogeneous integral

equation of the form
1 I !
= — & KL, L)y dl L dLeed. G
3 21'. § ' g ’ .?Jr é\ G

s

Furthermore, > must satisfy a side condition:

§‘“ [R‘Vﬂs +RB}: Lrcurl v] =10, (3.18)

Since here we only want to summarize the structure of the problem, we do

not repeat the lengthy expressions forK(!, Y, L, 1), & , v and curl i
The reader who is interested in the details is referred to Ref. [17] :
According to eqs. (3.13), (3.14) and (3.16) 5*W has separated into contributions
coming from g; and 5:

B‘lw - S‘Vs(gllg:n) " S\l‘/‘(f:,gi). (3.19)
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Since according to eq. (3.13) the plasma contribution in §W®is zero, W * |
is identical with the corresponding expression for slip motions in Ref. [17].

Thus we have the result that for the most general axisymmetric pertur-

bations which are antisymmetric with respect to the z= 0 plane the

stability boundaries coincide with those obtained for antisymmetric

slip motions.

Turning to oW ?* , the remaining minimization problem with respect to
Ei‘ is essentially identical with the corresponding problem for slip
motions and solved numerically. The only difference is that here for
calculating the plasma contribution (3.13) the differential equation
(3.12) must be solved. For the numerical treatment eq. (3.12) is
converted into a finite system of linear equations by using the method
of trigonometric interpolation in keeping with the methods used for

solving egs. (3.16) and (3.17) in Ref. [17] ( see also Ref. [19] ).

We conclude this section with the remark that in the two limiting cases
A finite, g0 and q finite, A= oo the stability boundaries for
symmetric perturbations coincide with the corresponding slip motion
boundaries as well. This follows from the fact that in both of these
casesone has according to eq. (2.11) ax*—> o0 , and that slip motions
are characterized by the vanishing of the expression in parentheses

following o* in the integrand of eq. (3.7).



11

)

. +
4. Numerical results

We have seen in Sec. 3b that general axisymmetric perturbations have the
same stability boundaries as slip motions quite generally when they are anti-
symmetric, and, for the special cases q—> and/or A—» oo , also when they
are symmetric. In Figs. 3a, b and 4a, b, the stability boundaries for general
axisymmetric perturbations are shown for q = 1 and several values of 4 and B,
respectively, Figs. 3a and 4a representing triangular and Figs. 3b and 4b
representing rectangular plasma cross-sections (see Fig. 2). The regions inside
the plotted eye-shaped boundaries, which consist of two intersecting branches,
correspond to stable plasma behaviour; outside there exist either antisymmetric
or symmetric unstable perturbations or both. The upper branches of these stabi- |
lity boundaries (for clarity all branches are truncated at the intersecting points)

are due to antisymmetric instabilities and hence also apply for slip motions. For

plasmas whose shape parameters correspond to points above these branches the

minimizing antisymmetric perturbations are unstable slip motions. Typical

examples are presented in Ref. [17] . The lower branches of the boundaries

are due to symmetric instabilities and pass slightly above the corresponding

slip motion boundaries. However, the distance from these is so small that it

is not visible on the scale chosen in Figs. 3a, b and 4a,b. The symmetric

instabilities minimizing §*W which occur below these branches were found

to be almost slip motions, the difference being almost invisible, a result which

. The following results were partly reported at the 7th Europ. Conf. on Plasma

Physics and Contr. Fusion [20] . Owing to a mistake the curves presented
there deviate rather slightly from the corresponding corrected curves in this

paper.
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may not be concluded a priori from the nearness of the boundaries.
Because of this close resemblance the reader is again referred to Ref. [17]

for details about these symmetric instabilities.

In order to see where the slight influence of q on axisymmetric stability |
becomes largest, we consider the stability boundaries in an e, EP

plane for several triangular and rectangular cross-sections in Figs. 5a
and 5b. The stable region is between corresponding curves on the left
and right; an upper limit of [3P is provided by inequality (2.9) owing

to nonexistence of equilibrium above this limit. For g—» eo this limit is
identical with the limit Bp= B: defined by eq. (2.6), and for q = 1

it is just not quite visibly below. While the boundaries for antisymmetric
perturbations on the right are independent of q, the boundaries for
symmetric perturbations on the left show a slight dependence on q which
increases with increasing BP' Only the two cases q = |1 and q = @

(slip motion limit) are plotted, the boundaries for intermediate q values
being in between. In the very neighbourhood of the equilibrium limit
the symmetric boundaries for q = 1 bend to the right and depart more
markedly from the q =eo boundaries until they reach the equilibrium

limit at the point indicated by an arrow.

in Fig. 6 the inset shows the stability boundaries for two different tri-
angular cross-sections in an A,e plane. On the scale of this plot the

g-dependence of the stability boundaries for symmetric perturbations is
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invisible. It is made visible by the blow-up in Fig. 6 and is seen to
increase slightly with decreasing A. For rectangular cross-sections

equivalent results are obtained.

Owing to the Kruskal-Shafranow limit, the interesting range of g-values
is limited by q % 1 (see Ref. [ 7] for sharp boundary plasmas with non-
circular cross-sections), and in our stability diagrams for all intermediate
q values the stability boundaries run between the boundaries for q = 1
and q =oe . Since these deviate from each other more markedly only

for values of B, which are so close to the equilibrium limit that they
are uninteresting, we may summarize that, at least for the sharp boundary
model, the influence of q on axisymmetric stability is practically

negligible.

Recently interest in tokamak-like configurations with strongly elongated
cross-sections (see, for example, [21] ) has grown. We have therefore
pursued the stability boundary for symmetric perturbations beyond its
intersection with the boundary for antisymmetric perturbations up into the
region of stronger elongation. For triangular cross-sections the result, a
closed curve, is shown in Fig. 7. For rectangular cross-sections qualita-
tively equivalent results are obtained. Since the stable region for
symmetric perturbations lies inside these closed curves, there exist both
symmetric and antisymmetric instabilities beyond a critical elongation.

Examples of those are given in Figs. 8a and 8b respectively, the




14

parameters being chosen to resemble the parameters of the Garching
Belt Pinch experiment [ 22] . While in this experiment the anti-
symmetric instability was observed, there was no experimental
indication of the symmetric one which, on the time scale of the
experiment, is probably suppressed by wall stabilization due to a
cylindrical copper shell which confines the plasma in the radial
direction. A different argument for not observing the symmetric mode

may be derived from the following paragraph.

The occurrence of a symmetric instability beyond a critical elongation
which is larger than 1 is maintained in the limit A= co and provides
a stringent difference between the sharp boundary model and a smooth
pressure constant current model of plasma in this limit. That is, for
the latter it was shown in Ref. [15] , assuming elliptical plasma
cross-sections, that for e > 1 all symmetric perturbations (even poloidal
mode number m > 2) are stable. Closer investigation, which was
restricted to elliptical cross-sections, showed that it is the constant
current model which behaves singularly in this respect and not the
sharp boundary model. The reason is the following: owing to the
constraint of incompressibility, obtained from minimizing §*W  for

A - oo on the assumptions of usual Tokamak ordering, the m = 0 mode,
which is the only unstable symmetric mode for the constant current
model, must vanish exactly, while it does not have to vanish for the

sharp boundary model and for other smooth current distributions.
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According to the foregoing it may be expected, that the occurrence,
structure and growth rates of symmetric instabilities in highly elongated

tokamaks will strongly depend on the current profile.

This section is concluded with a discussion of the stability limitations
onB . For convenience only elliptical cross-sections are considered.
Figure 9 shows the stability boundaries in an e,R plane obtained for

q = 1. In the stable region, curves |3P = const are drawn which are
obtained from eq. (2.8). The curve far to the right determines the
onset of symmetric instabilities beyond a critical elongation as discussed
in the preceding paragraphs. In the lateral flanks of the stable region
a lower limit of B appears, while in the left flank there is additionally
an upper limit below p = 1. However, a comparison with Fig. 5a
shows that the appearence of the upper limit is restricted to [BP values
near the equilibrium limit. The dependence of the lower and upper
B-limits on q is shown in Fig. 10 for a typical situation. Again,

curves l3p = const are drawn in the stable region.

5. Summary and conclusions

Investigating the sharp boundary model we have found that axisymmetric
stability is, on the one hand, practically independent of q and, on the
other, strongly sensitive to the plasma shape. This result is in rather

strong contrast with the properties of non-axisymmetric stability, where
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strong q-dependence is combined with the possibility of stabilizing any
plasma with fixed B, by sufficiently large q, regardless of its shape.
Specifically, in the limit A+ e all cross-sections, except for circles,
are unstable with respect to axisymmetric perturbations. Only for small
A do appreciable deviations from circular shape become possible, large

values of b, in addition being favourable.

For the sharp boundary model, the boundaries for axisymmetric stability
may be approximated with practically sufficient accuracy by a slip
motion analysis owing to their weak dependence on q. For plasmas
with smooth pressure profiles such an analysis [ 23] implies an enormous
simplification relative to the full axisymmetric problem, and from our
results we would deduce that it yields a good approximation also in

this case.

Wall stabilization, which was not considered in this paper, will cer-
tainly lead to an increase of the stable regions, as it does in the

limit A—=oco (ReF.[M] ). However, if the confinement times are long
enough, the practical realization of wall stabilization by copper shells
will only lead to a reduction of the growth rates and leave the stability
boundaries unaltered. Concerning the question whether a limiter could
stabilize an axisymmetric instability it appears possible that the plasma
is pressed against the limiter by the instability and pealed off layer

by layer.
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AEEendix

We shall first prove the existence of a unique solution of eq. (3.12).

For this purpose we write it in the form

.

£+ af «bOF = el . (A1)

According to its definition f (£) must be symmetric with respect to

the z= 0 plane, and, since for symmetric funcrionsf (£)=0
at z=0) we may restrict ourselves to the interval 0 ¢ L< L
between the two intersections of the boundary with z= (7 and consider

the boundary value problem

floy =fwy - 0. (A2)
By Taylor expansion about 1= 0 and §= L it is readily seen thata ( £),
b (L) and ¢ (£ ) remain finite and continuous, so that the problem

is regular.

Let us consider the homogeneous boundary value problem

fra®f +bf =0,  fO =fW-0. (A3)
With )
Al = [t (Ad)

0

the differential equation in (A3) may be written

-A(p, A\
a2 Bt - -1,
With this it follows that for any solution which satisfies the first boundary

condition F( 0)=0 we have
. L
fi = (altnfun dl, (A5)
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where

g (0] = —blgy LSATADT (A6)
Since b(L)=- 4o R*/(a+ k)", we have g (£,0) =g (L, L) =0

and 3(1’ l')> 0 for 0< L'<L and therefore according to (A5) a

solution with £ (L )= is impossible. Thus, the homogeneous problem

(A3) has no solution except Forfs ¢ , and according to a theorem in the
theory of ordinary differential equations the inhomogeneous boundary

value problem (A1), (A2) has a unique solution (see, for example, Ref. [24] ).
With this and egs. (3.9) and (3.11) it is shown that the Euler equations

(3.8) have a solution.

We may now prove that this solution provides a minimum of SVPL

Denoting the solution by &, we consider an arbitrary § with

SIS A

and write

§=§o 7.

Obviously,l must satisfy S 0. Using this and the fact that ¥,
satisfies the Euler equations (3.8), after integration by parts it is

easily seen that

oW, (E,§) MR IRYA (7.7).

Sw,, (¥
Since according to eq. (3.7) SVPI (_'lz,l) is positive definite,

our statement is proven.
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