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Abstract

A subroutine for Taylor series solutions of systems of ordinary
linear differential equations is described. Tt uses the old idea
of Lie series but allows simple implementation and is time-saving

for symbolic manipulations.

Taylor series for solving systems of autonomous differential

equations can be obtained by Lie series constructed by iteration
[

of the Lie operator corresponding to the system of equations.-— -

The iterations of the Lie operator can be very tedious for

general systems.

For linear systems of differential equations with variable

coefficients
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it is found more efficient to leave the system non-autonomous

and iterate in a more appropriate way, as is described here.

For one differential equation

|

y =uy
it is known that

y' = u'y + u?y,

and, if y = ak(x)y,

k+1)

then y( =(a1'( + aku)Y,

so that the Taylor expansions of the solution can be constructed

using the recursion formulae:
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This can easily be extended to a first-order system
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and the recursion formula (2) becomes

(3) Ay =U, A TA AT,




where the Ak are matrices.
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The recursion formula (5) is verified by the following algorithm

in Algol-like notation:

read (m) number of differential equations

matrix (A,U,Y) I:l m,1: mj vector Z [I m:[

read (p,xo) order of the Taylor series, starting point
read (U) matrix elements

A:=U; f:=(x—xo); Y:=ﬁ¥sub(x=xo,A);
for ki=2:p do begin
f:=f(x-xo)/k; A:=AwU + df(A,x)
Y:=Y+f¢§Ehjx=xo.A) end ;

read (Z); initial wvalues

Y:i=Y&Z

write(Y); output

It is assumed that matrix operations, substitution and differentiation
operators are implemented. The computing times are stated in the

examples.

In the case of a single equation of n-th order

=1
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* Z uky ) . o the corresponding system
k=0

will possess a rather sparse matrix



but the iterations Ak will be rapidly populated.
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The following examples were calculated with REDUCE 2 L}:] on the
IBM 360/91 computer at Max-Planck-Institut fiir Plasmaphysik

(Garching). REDUCE is slow for matrix operations.

pesee s ue (o))

let us expand around x, = oup to order 9.

Computation time for symbolic manipulation: 3 sec.

Example 2: Bessel equation
x2yn i xyi + (XZ_nZ)y = o

for n = o, X = 1 up to order 9.

The Taylor series obtained is evaluated in double precision with

Fortran. For X, = 2 y is approached up to the seventh decimal.

Computation time for "symbolic" : 9 sec
D

Computation time for "numerical: 6 milli sec.
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