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ABSTRACT. The stability of helically symmetric finite - g ,¢ = 1 magnetohydrostatic
equilibria with arbitrary pressure profile and vanishing longitudinal current is in-
vestigated by means of Mercier’s criterion, a sufficient criterion by Lortz, Rebhan and
Spies , and Shafranov’s condition for a high - 8 magnetic well. The new finite -8 effects
are that (1) a magnetic well is created throughout the plasma region for 0.2 < § < 0.95
and 0.3 < a1 < 0.6 (a plasma radius, 1 torsion of the magnetic axis); (2) the mean
magnetic well extends out into the vacuum region for 0.75 < 8 and bT <0.6

(b wall radius); (3) with the exception of a very narrow region (< 0.1 a 1) around the

magnetic axis, the Mercier criterion is satisfied for 0.75 <3 < 0.95 and 0.12<aTr<0.3.




1. INTRODUCTION

The stability of helically symmetric finite - ¢ =1 magnetohydrostatic equilibria

with arbitrary pressure profile is investigated by means of Mercier's criterion [l] "

a sufficient criterion derived by Lortz, Rebhan, and Spies [2], and Shafranov’s:
condition for a magnetic well [3] . The calculation of the equilibrium is made

using a perturbation method whose small parameter ¢ is #/ T, where n is the
curvature and 1 the torsion of the helical magnetic axis. In Sec. 2, a non-dimensional
form of the helical equilibrium equation is given. In Sec. 3, we re-write the equilibrium
problem in Hamada coordinates because this facilitates evaluation of the stability
criteria mentioned above. Section 4 lists suitable forms of the stability criteria for the
case of vanishing longitudinal current, which is investigated here. In Sec. 5, we dis-

cuss the numerical results using 8 and the slimness of the configuration as parameters.

2. NON-DIMENSIONAL EQUILIBRIUM EQUATION IN HELICAL
SYMMETRY

We start from Mercier”s [ 1] coordinates p, ¢, s which are associated with the mag-

netic axis, are a right-handed system, and have the metric tensor
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where » and 1 are the curvature and torsion of the magnetic axis; » , Tare constants
and /05 = O forsingle-valued functions in helical symmetry. The contravariant

-
and the covariant components of the magnetic figld B are
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where § = (8 + %) /L, & and y are the longitudinal and transverse fluxes
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of the magnetic field, L is the helical period, and f (1) is the second (besides
the pressure p ( q;)) free function in the equilibrium problem. The equilibrium

equation is then
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Introducing a non-dimensional flux function T, a radial coordinate x , f(T) and
p(T)by
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where B, is the magnetic field on the magnetic axis and 4 the rotational transform per period

on the magnetic axis, we obtain the non-dimensional equilibrium equation
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with e=u/1 = Ry, h, where R is the radius of the cylinder on which the

helical magnetic axis lies and h is related to the period L by h=2r /L.




Thus, we see that the equilibrium equation contains only two non-dimensional para-
meters characterizing the configuration: ¢ describes the effect of the curvature of

the magnetic axis, and ¢ is related to the longitudinal current. In the case of
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vanishing longitudinal current (J(T) 2 0), wehave 1 =(1+¢*)“ =1 forane=1
equilibrium, so that, in this case, it is convenient to omit the factor (1 + 1) in the

normalization of T, y= B, T/2 ¢ , and use the equilibrium equation in the form
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which contains only ¢ as non-dimensional parameter. From Eq. (1), we see that one
possible approximate treatment of helical equilibria is obtained by using ¢ as the only
small parameter. This expansion in ¢ is refered to as old Scyllac ordering [5] . (I1f
one rescales the radial coordinate by introducing X = x/ ¢ and keeps the plasma-f3
finite, the so-called new Scyllac ordering [4] is obtained. This ordering leads to finite

distortions from the circular form of the flux surfaces and is not considered here )

3. EQUILIBRIUM DESCRIPTION IN HAMADA COORDINATES
We describe the equilibrium using Hamada coordinates [6) V,8 , ¢ as independent
variables because this is advantageous for evaluating the stability criteria. The co-
ordinates § + ( are angle-like coordinates increasing by unity once around the
short way and per period, respectively.
Therefore, § +( is a single-valued function on the lines ¢= constant for a left-hand
helical magnetic axis. Since in helical symmetry any single-valued function is con-

stant along the lines ¢ = constant, § + ( is constant along these lines. Thus, in



helical symmetry, allsingle-valued functions are functions of © +& alone (2/39:9/28),
Introducing the non-dimensional arc length ¢ =2ms /L and volume V = VTV L,
we can therefore express Mercier's coordinates as functions of the Hamada co-
ordinates as follows

x=x (V,8+¢C) )

p=2m(0+¢) +(V,0+C) , (2)

o=2n( +?(V,e+ c) .
where X, ©,0 are periodic functions in ¢ + ¢ . Using the expansion introduced
in Sec. 2 and observing that it is sufficient to calculate first-order quantities to
evaluate the stability criteria in leading order (see Sec. 4), we specialize Eqgs. (2)
fo

x = x o e;(ﬁ) cos2m(g+ ) + 0 (¢?) .
p=2m(g+¢) + eo®sin2m (@+¢) + 0(e)
o= 2m¢ + ¢0 (%) sin2m(g+g) + 0(ed)
where x is used as independent radial coordinate instead of V. The equilibirium

is then a pure ¢=1 equilibrium in leading order with flux surfaces symmetric to

the osculating plane of the magnetic axis.

The first-order equilibrium equations are (for the derivation, see Appendix)
4
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where ''=d/dx and




We choose a simple two-parameter pressure profile

p=8exp [ - « X2 - (0(22)#]
where B =2p(0)/ Bjac and « determines the half-width of the pressure
profile. The first-order equilibrium solution is obtained by numerically solving
Egs. ( 3) with the boundary conditions at x=0. % ¢ 0 )= (20 )= 0%
For the vacuum case ( K' = 0), the solution x  and G can be given
analytically in terms of Bessel functions I, (x), I (RX)
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The solutions x ( x ) and & ( X) are shown in Figs. 1 = 2 for various pressure
profiles and various B-values (B=0.15 : ® =3 and & = 8I;

B=0.95 : & =3 and * = 81). Two different effects are obviously observed,
namely the strong dependence of the functions x and o on B and on the
finite periodicity number of the helical magnetic axis. The function x ( x ) re-
presents the displacement of the magnetic surfaces with respect to the magnetic

axis. For small g-values (g=0.15, X = 3) the displacement
is small and opposite to the direction of the normal of the magnetic axis; for inter-
mediate B - values,the magnetic surfaces near the axis are displaced in the direction

of the normal and the remote surfaces in the opposite direction; for high 8- values

(g=0.95 )/ the displacement is large and in direction of the normal.

4. STABILITY CRITElyA
4.1. Sufficient criterion.
A sufficient criterion for stabilty has been obtained by Lortz et al. [2] . In terms

of A, (v = d/dV)
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the sufficient criterion reads: Stability holds if a single-valued function A exists

which satisfies the inequality
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Since our equilibrium solution is expandable in a small parameter, A is expandable:

A starts with a non-vanishing first-order term A(/')(A = AL4)+o’(e'7‘) ), whose mean value
is of second order. Under these conditions, the solubility condition of the inequality

(4) reduces to
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Here, because of the helical symmetry, the brackets ( ... ) indicate f(. ..)ded¢.
Thus, the mean value of A has to have an upper negative bound related to the first-
order term of A. Inequality (5) can only be satisfied for vanishing longitudinal

current on the magnetic axis.

4.2.Necessary criterion.

The necessary criterion of Mercier [1] is, of course, less restrictive than the
sufficient criterion. For vanishing longitudinal current (J (V) = 0), it reads
Is +(GY/IWVIE Y= CIWVI*AY =<0, (6)

4.3. Magnetic well condition

Shafranov's magnetic well condition [3] for finite=g configurations is given by

(2pe+-B%9r = PRl S @PEG/RP S 7)




For equilibria with vanishing longitudinal current, it can be shown that inequality (7)

is less restrictive than inequality (6) (for the proof, see Appendix).

5. 'RESULTS
By means of the first-order equations (3), the criteria (5) - (7) can be reduced to

the following form
|
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(for the derivation , see Appendix). Note that Mercier's criterion is reduced to a
form without derivatives and without explicit pressure dependence. Since K'> 0,
the sufficient criterion is more restrictive and Shafranov's condition less restrictive
than Mercier's criterion.

Near the magnetic axis, the solutions are of the form

=28 +0(X3), x= 0(%*), o= 0@

which shows that Mercier's criterion is violated on the magnetic axis ) whereas the
g ’

magnetic well condition is satisfied for

9B -
-8 > 1.

Figures 3 - 6 show the stable and unstable regions according to the criteria
(8) = (10) for various pressure profiles. The results may be described in terms of the
three parameters 8, a7 , and bt , where a and b are the plasma and wall radii,

respectively. For low B~ values, smaller than or of the order of 0.1, and not too

])As has been shown by Correa [ 7] , and Mikhailovskii and Shafranov [10], it is
possible to satisfy Mercier's criterion in the neighbourhood of the magnetic axis for
helical equilibria with finite ¢ = »/ 7. ‘




small values of at (20.3), there is hardly any effect on the vacuum result,
which for all of these criteria is just the unfavourable value 5< 0 of the
helical ¢ =1 vacuum field. Figure 3 shows the result for a1 =~ 0.3 and

a somewhat higher g-value: B = 0.15. We see that Mercier's criterion is hardly
affected, whereas the magnetic well condition is already satisfied throughout the
plasma region, i.e. the plasma creates its own magnetic well. This property holds
for all B -values above 0.15 and a ¢ of the order of 0.3 (for g =0.15) to

0.64 (for B= 0.95). Figure 4 (8 = 0.55, « = 27) shows a tendency for Mercier's
criterion to be satisfied in the region of maximum pressure gradient. Figure 5
(p=0.75, <« =8l)andFig. 6 (B = 0.95, % =8l) show that the Mercier un-
stable region has shrunk to a quite small neighbourhood (<0.1 aT ) around the
magnetic axis [ 1 1] . They also show a second finite-g effect: the magnetic well

extends out into the vacuum region. This means that, if one puts a wall at a point

0

x = bT  where the magnetic well vanishes (<§ (bt) = 0), the plasma is then
surrounded by a region of increasing mean value of B” which extends to that wall.
}
Since this effect scales
(2)* - B
a (bt)* (1-8/2

for small b and flat pressure profile similarly to the wall stabilization term of the
m= 1 gross mode (4] , we presume that the wall stabilizat®n is connected to the
vacuum magnetic well confining the plasma. The experimental values proposed [91
for the wall-stabilized high-beta stellarator in Garchingare ah=~a 1 = 0.125,
B,2.0,76.(.0.5, 1y, 09 )and (b/a)exp_ ~= 2.5. This situation is approximately
represented in Fig. 5 (B = 0.75) (and Fig. 6 for g= 0.95) which yields a ratio

b/a ~ 2.0.
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APPENDIX

Here we prove that inequality (7) is less restrictive than inequality (6) and re-
duce the criteria (5) - (7) to the form (8) - (10). In case of helical symmetry
(/56 =d /& ) and for vanishing longitudinal current ( J (V) = 0), the equili-

brium equations written in Hamada coordinates (see e.g. [8] ) reduce to

(« £ d/dVv)
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The mean value equations ( f(. 2 )d@sdog v=i i) )
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Thus, Shafranov’s condition (7) becomes 4

5+ 6 p (1/RB* >0. (A.3)

On the other hand, Mercier’s criterion (6) is equivalent to
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the proof is completed by observing
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The reduction of the criteria (4), (8), (7) to (8) = (10) starts from the following ex-

pansions and first order relations
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1) 2 ) 4 1)
9ye =9y * 0(e® )i 9, =g, +0(e*), g, =gy +0(e?),
_ (9 _ 10 (1) (2) 3
9o =90 TO(e ) 9o = 95 T Y T 9 +0(e?),
(9gy> = (95g> = O
0y = L@ 9) " _ 0
@S = e, (gdy= o,
() = 4 59 gy = 5@ O O “- o
95 = Sggr (@ e 5t Yve Ve
where the order is indicated by upper indices in parentheses.
Mercier criterion (A.4) then becomes
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2 (o)) 2 (2) 1 1
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and Shafranov’s condition (A.3) reads
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The quantity A" oppeoring in the sufficient criterion (4) is given by
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Withthe help of the first order results
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the equations (3) and the terms modifying the Mercier expression in Egs. (8) and

(10) can readily be varified. Finally, the second order result
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leadsto the expression in inequality (9).
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FIGURE CAPTIONS

Fig. 1. Displacement x(%) of the magnetic surfaces vs % (labelling coordinate)
for various B-values and pressure profiles: 8= 0.15 : % =3 and %= 8l;

g =0.95 : « =3and =8I,

Fig. 2.First-order quantity g (%) vs )%()?labelling coordinate of magnetic sur-
faces) for various B-values and pressure profiles: g =0.15 : ® =3 and

® =81;8=0.95 :&=3and *=8l.

Fig. 3.Pressure profile ( ===), Mercier criterion ( —- — ), sufficient criterion
( — ) and Shafranov’s magnetic well condition (- —-) vs x for g=0.15
and pressure profile o =9 . A magnetic well exists throughout the
plasma.

Fig.4.Pressure profile (—), Mercier criterion (—.— ), sufficient criterion (=),
and Shaﬁfonov's magnetic well condition (——— ) vs x for g = 0.55and

o = 27. The Mercier criterion is satisfied in the boundary region.

Fig. 5.Pressure profile ( — ), Mercier criterion (—.— ), sufficient criterion ( — ),
and Shafranov’s magnetic well condition ( ——— ) vs x fora high 8 =0.75
and a steep pressure profile (% = 81). There is vacuum magnetic well surtounding

the high- plasma column.

Fig. 6.Pressure profile (— ), Mercier criterion (—.— ), sufficient criterion (— ),

and Shafranov's magnetic well condition (- — - ) vs x for 8=0.95and % = 81.
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