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Abstract

For an axisymmetric toroidal plasma of the TOKAMAK type a new set of
dissipative trapped-fluid equations is established. In addition to

E x B drifts and collisions of the trapped particles, these equations
take full account of the effect of E" (of the trapped ion modes) on
free and trapped particles, and of the effect of Vé: ( &o =
equilibrium fraction of trapped particles). From the new equations
the linear-mode properties of the dissipative trapped-ion instability
and the anomalous diffusion flux of the trapped particles are

|
|
derived. i
|



1. INTRODUCTION

The paper deals with anomalous diffusion in a plasma torus due to

the dissipative trapped-ion instability. Macroscopic theory (trapped-

fluid theory) is used throughout.

The purpose of and motivation for the paper are the following. The
macroscopic theory by KADOMTSEV and POGUTSE (1970/1971) of anomalous

diffusion due to dissipative trapped-ion modes yields the diffusion

coefficient

}) = (g; iIkt e éﬁj é;%i /
Vefp

where é% is the equilibrium fraction of trapped particles, L;gg ~

~
J?. . -
Lb » is the effective collision frequency of trapped electrons,

and

= C-T- ?irﬂﬂ
Z%B NP °

is the trapped diamagnetic velocity, N

Uy

P and "ﬂa= (S;preing the total

and trapped-particle densities, the remaining notation being standard.

The anomalous transport induced by the dissipative trapped-ion insta-

bility, together with other loss mechanisms, has been discussed in

connection with planned experiments (FURTH, 1973).It turns out that the

diffusion coefficient 1) of eq. (1.1) becomes uncomfortably large at

(a.n

(1.2)




fusion temperatures because.]) increases with the 7/2th power of —r ;

Because of the possible experimental consequences it seems useful to
look for effecté that could either increase or decrease ]) above or
below the value predicted by KADOMTSEV and POGUTSE (1970) and, thus,
to check the validity of the orginial KADOMISEV - POGUTSE theory. There
are many points that can bg and have been investigated for this purpose
(microscopic effects, impurity effects, geometric effects); but here

only the following items are investigated.

As a preliminary, two points are considered. Firstly, in the KADOMTSEV -

POGUTSE theory ion collisions have sometimes been neglected (KADOMTSEV

and POGUTSE, 1970). It then follows from the equations that the trapped-
particle loss would vanish for stationary turbulence. This point of
theoretical consistency is discussed and corrected in the present

treatment.

Secondly, the method used by KADOMTSEV and POGUTSE in deriving the

anomalous diffusion coefficient poses the following question. The

linearized theory alone yields, in a certain approximation, a negative

diffusion coefficient. The authors argue that, in order to have : ‘;
stationary turbulence, this negative diffusion must be at least compensated

by nonlinearities of the equations. Finally, for the effective diffusion
coefficient (i.e. the one to observe in experiment) KADOMTSEV and POGUTSE

use only the nonlinear, compensating terms and disregard the negative

contribution of the linearized equations. However, one could imagine that



the effective diffusion arises by a combination of both linear and
nonlinear terms. Another shortcoming of the KADOMTSEV-POGUTSE method
is that it does not determine to what density gradient (VNF’ V}’lojor
whatever) the diffusion flux is proportional, in the sense that
reversal of the sign of the first reverses the sign of the second. In

order to improve on these points an alternative derivation of the

anomalous diffusion coefficient is presented in Section 3. This derivation
has the advantages, firstly, that it determines to what density gradient
the diffusion flux is proportional and, secondly, that it can also be
applied to more general, more correct versions of trapped-fluid equations,

contrary to the method of KADOMTSEV and POGUTSE.

However, the main purpose of the paper is to include several effects in

the theory of the dissipative trapped-ion instability that have been
omitted by KADOMTSEV and POGUTSE. These effects are due to E7é; and to
the influence‘of E“ (of the instability) on the free and trapped -
particle motion and on the collision terms. Inclusion of these effects

leads to new trapped-fluid equations and to new diffusion formulas, which

will be discussed.

In Section 2 an extended version of the trapped-particle fluid equations

of KADOMTSEV and POGUTSE is introduced and briefly discussed. In Section 3

the original KADOMTSEV - POGUTSE diffusion formula, up to a small

numerical factor, is rederived from a critical-mode, mixing-length model

for small-scale turbulence. For large-scale turbulence a new diffusion
R - g
formula is derived, with :D « BT T ¥ . In Section 4 the theory




is further extended to include the effect of the spatial gradient
of the loss-cone angle. In Section 5 it is shown that several

electrostatic effects are lacking in the KADOMTSEV - POGUTSE theory;

these effects are calculated, and new, corrected trapped-fluid
equations are derived. In Section 6 the new, corrected dispersion
equation and critical-mode properties are derived. Finally, in
Section 7, the new diffusion formula (for the case of small-scale

turbulence) is presented. Section 8 gives a brief summary.



2, EQUATIONS OF THE ORIGINAL KADOMISEV - POGUTSE THEORY

We introduce the following version of the trapped-particle fluid

equations used by KADOMTSEV and POGUTSE:

d-’h; _ 6'14;

—

At ~ ot

E\ﬁ? = 3 v Un - g (e M) ks

+ U Um, = - Yooy (Mi-No) Sl

B/, = A\_/ (’ML—%?_) (2+3)

A & CT (2.4)

The version chosen takes account of both electron and ion collisions.

Equations (2.1) and (2.2) are the continuitz equations for the trapped-
particle densitiesW1L and W% in two-dimensional space. The right-hand
sides describe particle transitions (free €—> trapped) due to collisions.
The velocity:g is a pure E x B drift, given by eq. (2.3). The electric

potential Qb is derived from the quasineutrality condition, viz.

¢ = o ((Wiar W), 2.5)

The quantity N, is the trapped-particle equilibrium density, determined
by field geometry and by the total particle equilibrium density A¢==P15+AL
where h% is the free-particle density in equilibrium; l4ﬁ£ and lﬂ#?

are the effective collision frequencies for trapped ions and electrons,




B is the magnetic field strength, and T = 217: /(T; +7:.-).

The operator \/ is defined as

(2.6)

A
_\_/ = :%XV = -—';(\’Bg +\j (a,\»)
where X,g are Cartesian coordinates in the two-dimensional space
considered, and ® spans the third dimension, over which some short of
average has been taken in order to arrive at the above equations. The
gradients of B and of (T/NP) are neglected, hence V_Q' = Q0,

At one place KADOMTSEV and POGUTSE use N‘,: NP“'VI,_, instead of NP

in their equations, see KADOMTSEV and POGUTSE (1971). We shall see in
Sections 5-7 that actually neither choice is correct, but for the present

we choose the version employing NP N

KADOMTSEV and POGUTSE use a slab model in which the equilibrium quantities
T' NPI N, depend on the Cartesian coordinate X only. Another

simple possibility would be to use a cylindrical plasma with B = const,

where T’ N“‘no only depend on the radius ¥ . A more realistic cylindri-
cal model would take into account B* const and the dependence of M,
on both ¥ and e . In this paper we shall use the Cartesian slab model
with U_;ﬁ ) U‘f{ = consl . In a more realistic model the dependence
of the collision frequencies on T, NP ; My should also be taken into

account.



A different form of eqs. (2.1) to (2.3) reads
o4+ v Un = -U (m-n,) +L 0 2.7)

Qe F L“"d ((“"“-)-*)/‘gg (2.8)

—

Ny = A -l—/f (2.9)

il P ey %()’x,e; V), Va = %(Vaﬁ,e“l’«#) j S08S
%\(’Vl‘-ﬁ'hg_)} f :%i‘he . This form shows explicitly that the E x B

drift is directed along the lines g = const, and it has the advantages

that eq. (2.8) is a linear equation ing and("\/l‘no) . A more explicit

form of eqs. (2.1) to (2.3) is obtained by introducing the quantities

&:L = "H."'- ’l’lb ’ &9’ = ’he-—’}’lo ) ?'—‘f , and by inserting

'\_)’ Vfrom eq. (2.3) in eqs. (2.1), (2.2), viz.:
?3{’;1”{, = \3'03.3 §' ¥ A{’ﬁ},ﬂ’a} +k‘ﬁf 1':{1 = O (2.10)
aﬁﬂ'a_ e _UbaH? +A{%;iﬁ€f _[.y%;ﬁa =0, (2.11)

Here ‘\‘)’0 = A 8»'}’1_0 , and the curly bracket is a commutator, viz.

{(P!\F} = yﬂvK’ = BX?'B%Y —~3}f-9ﬂv. (2.12)

Equations (2.10), (2.11) have the advantage of showing explicitly which
terms are linear or nonlinear in the perturbations. From eqs. (2.10),

(2.11) the following linear equations follow:




(fa{: & y‘-ﬂ{i )? == (yaf’f _V-ﬁ) ”);11 (2.13)

(a++”4ﬂﬂ)§ = (Vapﬁ—lf;gg) M (2.16)

~s ~ A3
which relate g to ’Vli or N, . From eq. (2.8) or from eqs. (2.13) and

(2.14) the following relation for time-averaged quantities follows:

))_:ﬂ (’1_’2,_-_‘ —’Vto) = ))efﬁ (/}:(_?_ __’ylo). (2.15)

The equilibrium solution of the trapped-particle fluid equation is

=M 5 ’]4 5) f =0 . The dispersion equation for linear
perturbations proport1ona1 to EXP[("LL\J'FdV)t + 4 alj]
is

a.
) 5 . 2
—ittp = =4 At (14 q‘““;iz ”44)4;9 2.16)

with (,00 = Ky \)‘0 . It can be shown that the growth rate )) of
the unstable mode is a monotonically increasing function of ILJ,,I

or IK\Jl . In the limit [600[ < D&Pﬂ one has the unstable modes

—th+)y X tw, + U# ﬁ'fg/l (2.17)

and the damped modes:

(2.18)

—~4'.L\J+¢L" ~ =1, —

g



while for I(A)ol >> )/p_ﬂﬂ

~iwry x b (2] UW% (44 Sign ) G

is obtained. The stability condition is given by

U, = g 05
qﬁﬁyzﬁg = )Jljg(+U 0o,

Thus, in the hypothetical case the instability is

(2.20)

eliminated. KADOMTSEV and POGUTSE (1970) have derived the macroscopic
dispersion equation only for the case U,‘lfg{ = 0 and f K\a [
small, i.e. on‘ << y‘-f—’l . In addition these authors give the

dispersion equation following from microscopic theory (KADOMTSEV and

POGUTSE, 1970, 1971).

Consider a slab model with periodic boundary conditions for, say,

\é = O and y = -@- , and with a reflecting boundary, say, at X =()
an absorbing boundary, say, at X=C . The equilibrium quantities depend
only on X , not on 3 . It follows from the fluid equations that

the trapped current in the X -direction vanishes identically in X

and‘t:
&

Ingo\\.&gv*:—(jo\\égfd% = O, (2.21)

This means that trapped particle transport is ambipolar. Provided the

symmetry of the equilibrium is not broken by the turbulent processes,
even the time average of the local trapped-current density in the

W -direction vanishes identically in stationary turbulence:




<}’*‘> = 8% > = —,g_<Ix> =0. (2.22)

The same relations hold, of course, for the average velocity in the

X-  -direction, i.e.
4
S g o\\ér = O (2:23)

Q
and

(2.24)

<'U—>c> L

1

If we introduce the trapped-particle fluxes in the X -direction:

r(}) @’d . e (2.25)
X = Yy Mj Uy / 4

0
then in stationary turbulence the time averages obey the relations

r(j) *: i — (2.26)
g >=‘fdx°fdg %,f(mj—mo). '
0° 2inig

In the case of conserved equilibrium symmetry the local relation reads

s
: e, . / Mmoo (2,27)
{miv s = job( Yy (fna m.,).
0

Hence it is seen that putting Lﬁ#?:z O » as done by KADOMTSEV and

(4) v
POGUTSE (1970) would lead to the exact result <: [; /;> = <\44d-U};>-__ ()

for the case of stationary turbulence.

T TSI




3.REDERIVATION OF THE KADOMTSEV - POGUTSE ANOMALOUS DIFFUSION

COEFFICIENT

We consider the average particle flux densities in the X -direction,

'S <
3))(1) = <MJ \)x_> . Because of eq. (2.22), y;}:JJiQ)z)/x )

i —A<’;’L3 3?§,>' (3.1)

Inserting eq. (2.13) or (2.14) yields

~ - A =0 5
(Y*”“;;{_-<%e37"93§) )

since <§"B§ g)-> = (] . On introducing for ? a mode representation

3%2)

b= = o (1) exp (it +ik, y)+ ce. @D
8=z < % p y 4

)

with a slow time variation of the amplitudes_gK(X}f) assumed, the

random phase approximation yields

(3.4)

Vx %;fzgka t, <lgklz>

By using eq., (2.13) the square amplitude of yk can be replaced by that

of quK :

2
. (3.5)




We now employ a critical-mode hypothesis} i.e. a certain number of modes

with similar values of KJ and &m are assumed to contribute

overwhelmingly to )&, . Hence

P ® 2, <[%m! > (3.6)

,_ﬁ-l—wk

where kg and Cok are now the critical wave number and frequency, to be
determined later, and Egk is the number of critical modes taken into account.
The square amplitude of the critical mode is assumed to obey the

mixing-length hypothesis, viz.

?k l’(>:<|’“4k(z> ~ ]v’m{z. (3.7)

If in addition, isotropic'strong turbulence is assumed, we may put

2
~ k\a’ in eq. (3.7). Then

(3.8)

A V,_,:z Wy ]VMO(Z

K (Veﬁg*wk)

where the number é?k of critical modes has dropped out. Equation (3.7)

Ix

provides that the root-mean—-square velocity amplitude is of the order of

the phase velocity of the small-wavelength modes.

The critical mode parameters can now be determined. We shall assume that

"] obeys the linear dispersion equation, Wy, = w (K . Then
K y K bl
the right-hand side of eq. (3.8) is a decreasing function of K ’

B K

and the maximum contributions come from small l KHI'

However, ambipolar diffusion can be carried only by modes with ]DJK\ )P‘e{{ :




The reason is that for [(A)KI < y]ﬁ the trapped eclectron density
relaxes towards the equilibrium density ‘N, , but because of eqs. (2.23)

or (2.24) only density deviations from equilibrium contribute to diffusion.

This relaxation argument is supported by the relation of the density

amplitudes as derived from eqs. (2.13), (2.14), viz.

oy, ~
2 k '
<|'hw\> Pnkui iy <|M,;K[). (3.9)
Kpais il
Hence [Cvk[:: P@g is chosen for the critical modes. The critical wave
. number follows from eq. (2.16), viz. ID\J , lKH \;‘I = s J/% ;

with C\)I‘/L( { () for the unstable modes and C\)k/K > P8O

for the damped modes. It follows that a definite result for the diffusion

flux can be obtained with this method only if the damped modes can be
assumed to have negligible amplitudes. On making this assumption one

finally obtains the flux

4 A\) A wr (3.10)
N o q,] —— S Wikncl v I8
é and the trapped diffusion coefficient

A ’\5‘0 _ CTV%D ?
TS Vg VS Yy e BN,/ -

(3:11)
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The result differs only by a factor 4/ V5  from the original
KADOMTSEV - POGUTSE result. The derivation is valid if the critical

wavelength is smaller than the plasma radius (case of small-scale

turbulence).

It is amusing to observe that, according to the above derivation, a

negative diffusion coefficient could be produced in principle, if the

damped modes could be sufficiently overpopulated by pumping.

Next, we consider the case of large-scale turbulence. Then the wave-

length of the critical mode is of the order of the plasma diameter,i.e.

7r//| Kﬁj A a , say. It suffices to consider the limiting case

1 60| >> ‘lﬂy? . Then from eq. (3.8)

x

R

AV | Up |2
‘<% Wy

By using eq. (2.19) one obtains

(3.

12)

: 4.
yyf = = BX‘M—O (%) (?jjlf’f h}o]) - (3.13)

or

A
BN ST | 12 T -
D, = (“%) = .;% N:L < BT

As in the case of small-scale turbulence the trapped-particle diffusion

(3.14)
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coefficient I%_ is of the order of 3)//k3? , taken for the critical
mode, This case of large-scale turbulence occurs at higher temperatures
than the small-scale turbulence case. Whether this form of diffusion

is observable depends on whether in this temperature range also the
collisionless trapped-particle mode occurs and whether it does in fact

lead to BOHM diffusion, as forecast by KADOMTSEV and POGUTSE (1970).
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4, EFFECT OF SPATIAL DEPENDENCE OF THE LOSS—CONE ANGLE

If the loss—cone angle and, hence, the quantity A;=M,/MP depend

on space coordinates, then the KADOMTSEV - POGUTSE equations, egqs.
(2.1) to (2.3), are not correct. In this case, when the trapped
particles move around as a result of E x B drift, some of them

become untrapped, and drifting free particles may become trapped,

by virtue of the spatial dependence of the loss-cone angle and of 80 .
This implies that the E x B drift of those few free particles that

get trapped by the ‘7(S°—effect is now also taken into account. For
the bulk of free particles the E x B drift is omitted as before.

We shall take this V(S;-effect into account in the linear approximation
only. This effect will change the continuity equations, the dispersion

equations, and the diffusion formulas.

Assuming that S = CS\O(X‘) , but still B = const, we may write the

corrected version of the trapped-fluid equations as:

%"’L’» 43 Vmy = - ){‘#(M;—’Ho) o NP v Vd, 4. 1)
I,
ot W M, = - gﬁ,(me-n,) & NP v. V4 4.2)

or

'aifm;v & &ov_-VNP +‘}_r.Vq7f£ +)j"'ffﬁ‘: = 0 (4.3)
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B.E(hg_ -+ é\o __'Q_' VNP -+ 1_)_" V’I'ZR_ + p'eff ;y\;e = O. (4.4)

In order to obtain the new dispersion equation and the new diffusion
formula the quantities \% and COO of Section 2 must now be replaced
by

v o= A é\o ’BkNP = z%%—- a}er (4.5)
P

and ) = k\a 1)4 in the formulas of Sections 2 and 3.

In the case of small-scale turbulence the new diffusion formula is:

Yorn = 4 Av | U, |* _=d, AZWM,,J_Z

2 VE: LQ%? Z.VE: )iif

3N,

2
Jiine; A vo (S; a N (4.6)
2VS Veﬁg s X

It is seen that the effect of ‘76; is important. The diffusion formula

of eq. (4.6) contains E%IV;, while eq. (3.10) contains 2&)10. While eq.
(3.10) would predict inward diffusion of trapped particles near the
magnetic axis, the correct formula, eq. (4.6), predicts outward diffusion,
if 15X Nﬁ <0 . At the same time, comparison of eqs. (3.10) and (4.6)

shows that the present method of deriving an anomalous diffusion flux does

indeed determine to what density gradient the diffusion flux is proportional,

contrary to the method used by KADOMTSEV and POGUTSE (1970).




In the case of large-scale turbulence the new result for ]C\)’

>> U_n# is now:

CTJ/
Ye = ( [V, l) IV%I Q_BN 5‘) Oy N 4.7

instead of eq. (3,13). Again ))J(‘ e B T g .




21

5. NEW TRAPPED-FLUID EQUATIONS WITH ELECTROSTATIC CORRECTIONS

The KADOMTSEV - POGUTSE equations do not account correctly for all the

effects of the electrostatic potential (P of the trapped-particle modes,

even in linear approximation. Hence we now consider new fluid equations

that include these " @ - effects" correctly to linear order in ¢ :

This order suffices for deriving again the dispersion equation for the
modes and the anomalous diffusion coefficient, by way of the mixing-

length model.

The electrostatic effects to be -included are now the following:

E x B drifts of trapped particles as before (E x B drifts of free
particles are, in the main, again omitted); perturbation of ion and
electron distribution functions,f;}e by E, (the component of E parallel
to B ); change of the loss-cone angles of ions and electrons by E, s
and change of the (instantaneous) collision terms by E" and by E x B

drift. In linear approximation these effects enter the new trapped-fluid

equations in the following way:

~+

tht . o= — ). .- Eyh;
a_t & l—j V’Ht ))_‘# (/Ht- ’hio) i NPE' Vg; * (“—"‘)Cp

'a'ne . i o ‘ Me
e+ U, = =1y (e Neo) + Ny U4, +('at)¢

N, () +mi = N () 2, = N, (Y,

(5.1)

(5.2)

(5.3)




Here N'L,e (‘b) are the instantaneous free-particle densities. The
potential ¢ influences N v1a E" by changing 4 o ("f-effect")
and the loss-cone factors, 6;48 ((b)) (" 5 -effect") The same
holds for the ¢ —-corrections to Bn,-_,e /E—)t on the right-hand

sides of egs. (5.1), (5.2). In the collision terms there are now

¢> -dependent instantaneous equilibrium densities of trapped ions
and electrons, ’VL{O (dD) and MED (d)) . J’They come about by

variation of the plasma density, NP“) NP (f) » eq. (5.3), and by
variation of the loss—cone factors ({': o We shall give formulas

!/
for all of these terms below.

The modified trapped-fluid equations proposed by HORTON et al. (1974)
and LAQUEY et al. (1975) ¢o not agree with eqs. (5.1) to (5.3). The
reason is that these authors omit the terms N U Vcc and (Bn /af)

altogether and incorrectly evaluate the terms N (‘b) and ’MPO (¢)

as will be explained below.

Let us first consider the loss-cone factors S‘; g In the absence of
!

¢ one has the well-known relations for the local 5(\{‘,9)

tokamak geometry:

.| :(_.__B__) L b
= el B Rtvces0/ 7

where locally R - (g for any isotropic distribution function. As an

p
approximate average over e susually &ON ;?'/e is used. In the

(5.4)
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presence of an electrostatic perturbation (b , the critical value
of ]@I'/U’l at the boundary between trapped and free particles becomes
dependent on CP y particle charge, and energy. An elementary calcu-

lation, using energy conservation, and ¢ =0 at B= Bmax’ yields

81_ 2ﬂ§b %

L\ } _‘EI_I 4 ™V
e b cwt A= 4___'2 cb;- ’
v,

. 1 2 3 .
with \Bo = 3 4 2(14)//“/1 , and 0’2 to being the charge of ions or
electrons. The assumption ¢ = (0 at B = Bmax follows from microscopic
theory (see COPPI and REWOLDT, 1974) and is consistent with the new

quasineutrality condition in its final form [see below eq. (5.22)_] :

In linear approximation in Cb one has

2
3., = § F ;dbﬁz"/{_g_‘g )

[

an approximation that formally breaks down for 8‘9 O . This will not be
of concern, however, because for é\")O the contribution to anomalous
transport vanishes, in a fashion such that the validity condition for

eq. (5.6) remains satisfied by the mixing length hypothesis, for 8* 0

Next we consider the linear perturbation of the ion and electron

distribution functions by E alone; with collisions, etc., neglected.
s

The linear 4-dimensional Vlasov equation(in the limit of vanishing

gyroradius and without E x B drift) reads:

(55)

(5.6)
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%%L T ’é; + W “f% e

3
where the magnetic moment/& is constant in time, and W”' U obeys

(VZ)' _ %?—U" 9% . (5.8)

oz
In the limit of slow time variations, i.e. for I C\)l << K ”
and for {0 = Maxwellian, the solution is ?/\ = - {0 ﬂp (b/T;) ) J):t:, 8)'
hence

Q

¢
:gl“ Q (Ah‘ %T,L) (5.9) (

o~ L (a+ )

which agrees with the linear approximation of the Boltzmann factor.

The free particle density can now be calculated, viz.
2
oo 4- e N 41
N. =wn dW | dX (—= * £ (5.10)
i{e Ass A e )
5 :
with \A}= '\.'72, A= (’\J‘_\, /\J‘),‘ SD and {J’ being given by egs. {

(5.6) and (5.9), respectively. The result is

M) = N, + 255 2ld T e

N (@) =N, = /Ioté\ Q'._l\r{q) N, +2T 9 . (5.12)




® @m
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Notice that the (g-effect predominates over the f-effect, so that

the sign of the perturbation is the reverse one compared with the linear
approximation of the Boltzmann factor. The elimination of q) by ? in

eqgs. (5.11), (5.12) follows from the quasineutrality condition, eq. (5.3),

and qqi-— 112 _ gP . The free-particle densities used in the quasi-
neutrality condition of HORTON et al. (1974) and LAQUEY et al. (1975) do

not agree with eqs. (5.11) and (5.12) because these authors neglect the

predominant (g -effect.

In a similar manner the ¢-contribution to am,,/af, V= ‘i/ ey

are calculated from

¢

The result is:

T, T TR AN R N

TS BILriges g P

Next the variation of the collision term with cb is considered. As

mentioned above, the instantaneous equilibrium densities of the trapped

particles are influenced by the varying plasma density and the varying

o A )
) = S faw [ (%)% 4 -
A S A6,

13)

-él‘_&_) _ _ 2l 9b _ 4. T[U beoid ag_ (5.14)

) _ .f__Q_NL :aj_@__ = T A ’s (5.15)
b




loss-cone factors. The equilibrium densities are obtained by

L /
M, (b)=7 d\d jdl - A)Z{O[W) ﬂ;\}}__(ﬂ (5.16)
NV EERIC) "

where # N /N represents the isotropized true distribution

function () = i,e). In linear approximation one obtains:

o A-§*

My () = SN (¢ +7rfo\wfcn - H) 0. o

By evaluating this expression the following corrected collision

terms are obtained:

" I__. (5.18)
i (i tio) = g (8B - wgy 5 ¢ '”’

y ( X ) _ ( _ ) A l (5.19)
ol (Me-Weo) = Ve (4-9) A, +J/,,fg£27;f

The collision terms used instead by HORTON et al. (1974) and

LAQUEY et al. (1975) do not agree with eqs. (5.18) and (5.19)

because these authors again neglect the J-effect and, in addition,

any changes in the total plasma density that arise fromE x B

drifts.

The local (S‘('f, 9} was used for the above calculations. In order
to obtain average results relevant for all € and for a definite

value of v, c,‘; should now be identified with the e—average

(go(”r) %I"r/P *
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By inserting the above expressions into eqs. (5.1) to (5.3) the

following new set of trapped-fluid equation is then obtained:

o (m:-crp) + 40 VN, +0 3, — g = NLT.

1

'3,6(4'3'&+C95?) +d v VN, + i, + e ¢ = N.LT.

T

i e 2e N, A-4, it

= CT . é\'c. V
28BN, 1-3, <%

'\>=A \/ =
od 1_%
with the abbreviations:

4 I
E A"J\o IZT-E,Q

(43,

e = Vi,
i

}Aifﬂ- = l{4ﬁ£; ofp -EEFTE:Q .

It is worth noting that the relation between(P and 9 [eqs. (5.22),
(5.23)] differs from the original KADOMTSEV - POGUTSE one not only
in magnitude, but also in sign. Nevertheless, on account of the
other q>—corrections, occurring in the continuity equations, it
will turn out that the linear dispersion equation is modified only

to a moderate extent,

(5.20)

(5.21)

(5+22)

(5%23)

(5.24)

(5:25)

(5.26)




6. NEW DISPERSION EQUATION AND NEW CRITICAL MODE PROPERTIES

From the new trapped-fluid equations, egs. (5.20) to (5.23), the

following dispersion equation is easily derived:

(“{(AJ+C)))2+ Y (—éwgz) -4,V + )/32

\
O

or

a.
' 2. (7]
ity = ;ﬂq{%f(“ %wz;ﬁ#%)
41

Vo = g igg)(1-4,)
v = = (vgp-vg) (1-8,)°/6,

i = Vg Yy (1-4,)°
TE(AN, /3x) g

“Z"KHQBNP(/(_SD) e i st

2

Asymptotic expressions of eq. (6.2) are, for large kS}(With LQFF

neglected):

-iwep =ty (1-8)]F (1 +isima,)

(6.

(6.

(6.

(6.

(6.

6.

(6.

2)

3)

4)

5)

6)

7)
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and for small K3 (unstable mode):

2

. . @, 3 e
ey = via <[ sga)], e

Qq{being given, as in Section 4, by

_ ijﬁ é; (?)hél/ﬁalf)
= k‘& 2eB N, (41-4,)

It is seen that the dispersion equation is not modified much by the

(6.9)

“(p -effect" except for 5Lﬁ>’4 ; still, the dissipative trapped-

particle mode is somewhat more unstable (larger growth rate) than

predicted from the earlier theory.

Next we consider the critical modes and their properties. As in

Section 3, we choose as the critical mode frequency the largest
eigenvalue of the collision terms. From standard algebra the largest

eigenvalue is found to be: VMM?& y"’ﬁf (A—A\O) , where D"ﬁ has

been neglected; hence the critical-mode frequency is

W, = %g(/fw;;) : (6.10)

Inserting this into eq. (6.1), the quantities)} and CUZ are easily

determined. In the limit V3->O (i.e. J{‘ﬁ“é O):

pos() eel]F -t s Bty rg) e

R)a

ra 3
0, = - Y(Virled) =+VE§OV% e

X8




for the unstable modes. In terms of C‘JA )

= s ds
Whe Bl Sopet —ny,ﬁ, (4-3,). (6.13)

This is to be compared with GJOC:"'VE:J/% in Section 3 and &)dc
— US’ y-eﬁ in Section 4, respectively. Again, the critical
mode properties are not significantly modified by the " @ ~effect",

except for (S: -> 4,

.
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7. NEW ANOMALOUS DIFFUSION FORMULA

The derivation of the diffusion flux density is analogous to

Section 3. Now, however

o= <Miu> = - A, <A
Inserting

~ T A J
.o~ ~ . DN V.
s [/‘ 2T, (1-do) g (1-4)° f}‘f

which follows from eqs. (5.20) to (5.23), and observing the

periodic boundary conditions in g yields

S T T
e VE; (/1—80) < 1 3§>

2
= - A &3<a~&3"3\3?>,

with, again, A= C'T/ZQ,BN . Using once more a mode represen—

) . tation and the random-phase approximation leads to

_ A d ;
Pr = ;;; %C*Jkg m<1§l<[>

From eq. (7.2) one obtains

(7.1)

(7.2)

(7.3)

(7.4)




gt Iy, 1* > (93)

This, together with the critical-mode hypothesis and the mixing-

length hypothesis for isotropic, strong-turbulence (see Section 3)

now leads to

 Jo
Y = A”*ﬂfk(a‘)(cr

2
(/(-J;)z | Vm, [, (7.6)

It can be shown that the amplitudes determined by the mixing-
length hypothesis satisfy the validity condition for linearizing
(¢) for typical machine parameters in a wide range of 50 .

including 80—5' O . The validity condition itself has the form

e I(p’ < 3 &272 - Inserting the critical-mode parameters
/

leads to the final expression for anomalous diffusion:

2
Vo 4
Ve = - 2/1”__5_ N, - K (é\o ’ {)} 7.7

“f

with
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2y T R, 2]
= 2 (s Ff ] e

e

The correction factor }<4 is defined in such a way that eq. (7.7)
agrees with eq. (4.6) for KA:/I . It. is seen that k,“")O for
8;-% C). However, in a fat torus the relevant values of 5; are
between, say, 0.3 and 0.7, if the corresponding partial volumes
are considered. In this range ‘<4 falls between 2 and 6 for

Wl f;'T;., as is seen from Table I.

In conclusion of this Section, even though the electrostatic

corrections considered drastically change the trapped-fluid
equations (they are in fact not "corrections', but an essential
part of the physics involved), the final expressions for the
dispersion equation and the diffusion flux are not altered in

order of magnitude in the range of physically relevant values of

So

—
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8. SUMMARY

The diffusion coefficient induced by the dissipative trapped-ion
instability has been rederived by a method that is able to determine
to what density gradient ( ‘7A¢ ) Vnho , or whatever) the diffusion
flux is proportional (a result that cannot be obtained from the
method used by KADOMTSEV and POGUTSE, 1970), and that can be applied
to more general, modified trapped-fluid equations than the ones

introduced by KADOMTSEV and POGUTSE.

The validity of the original KADOMTSEV - POGUTSE trapped-fluid
equations has been investigated. Terms accounting for effects
omitted from the original equations have been added, and, thus, a

new set of trapped-fluid equations has been established. The

additional effects accounted for refer to vgo)and to E“ of the

instability.

From the new equations the anomalous diffusion has been derived,

and it is found that the new result exhibits a different dependence
on 80 as compared to the KADOMTSEV - POGUTSE formula, but does ﬁot
deviate in order of magnitude in the range of relevant values of 5;.
This order-of-magnitude agreement of the two diffusion coefficients
is not a completely trivial one, in view of the fact that the two

sets of trapped-fluid equations differ drastically from one-another.

Acknowledgment: The author thanks Dr. P, Griff for an interesting

discussion.
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x)? R

(o | o
0.01 10.0
0.02 7.07
0.04 5.00
0.06 4,08
0.08 3.54
0.10 3.16
0.12 2.89
0.14 2.67
0.16 2.50
0.18 2.36
0.20 2.24

Table I. Numerical values of the correction factor K4 for the

anomalous diffusion flux density [see eqs. (7.7), (7.8)] "



	IPP_6_133 Deckblatt
	IPP_6_133 Text



