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Abstract

A two-dimensional Lagrangean hydrodynamic code has been
developed for laser-produced plasma applications. In
testing the hydrodynamic part of the code the irradiation
of thin foils with high-intensity laser beams was
considered in a single-fluid single-temperature
approximation. The computed shock velocities, compression
ratios, velocity and pressure variations, etc. are in

good agreement with estimates stemming from analytical
solutions.




INTRODUCTION

The heating of solid, liquid, or gaseous targets by means
of lasers is characterized by the presence of rather
large spatial gradients in the substance interacting
with the laser light. In the case of unshaped laser
pulses the plasma parameteré may vary by four or five
orders of magnitude over distances not exceeding a few
per cent of the characteristic length involved. Still
larger are the spatial gradients if specially shaped
laser pulses are used as, for example, in the case of
compression by coalescing waves, etc. The use of
Lagrangean hydrodynamic codes, which are particularly
well suited to handling large gradients with one spatial
dimension, is most common in such cases (see, for
example, Kidder and Barnes [1], Clarke et al. [2],
Christiansen et al. [3], Goldman [4], Lengyel [5], or

the sources cited in the review paper of Mulser et al.
[6]). The assumption of strict symmetry (slab, cylindrical,
or spherical symmetry) is mandatory in claculations of
this kind.

However, in the majority of cases that can be realized
experimentally the boundary conditions are nonuniform
and thus the application of more sophisticated numerical
models becomes necessary. In some cases the existence

of certain uniformity or symmetry properties allows the
use of two-dimensional (2D) codes for modeling the
problem. When plasma production by laser is considered,
the assumption of axial symmetry may be a good approxi-
mation for numerous experimental situations (irradiation
of plane surfaces or targets with rotational symmetry

by a - single cylindrically symmetric laser beam, double-
sided coaxial irradiation of sheaths or rotationally
symmetric targets, etc.). Note, however, that if a

magnetic field is present,axial symmetry only exists if




the magnetic field is linear, rotationally symmetric and
the target is irradiated along the magnetic field lines
(beam axis coincides with the magnetic axis).

The question that may naturally arise is how well is a
Lagrangean mass-cell system suited to handling truly
two-dimensional problems, i.e. problems in which not only
deviations from one-dimensional symmetry conditions are
being considered. Most of the results published on 2D
Lagrangean laser-induced fusion calculations are con-
cerned with the destabilizing effects caused by deviations
from 1D symmetry conditions (see, for example, [7]).
Besides, no information at all has been available until
recently on the details of 2D Lagrangean codes as applied
to laser-rpoduced plasma calculations (see, for example,
[71,[8] or, more recently, [9]). Two-dimensional calculations
have also been performed in Los Alamos [10] (a PIC code,

the results are also described in [6]). A 2D ADI method
based on a fixed-grid Eulerian system has been developed

by Lindemuth [11]. It should be noted here that neither

the particle-in-cell (PIC) method nor a fixed-grid Eulerian
system seem to be particularly well suited to handling

the extreme gradients inherent in laser-produced plasmas.

It was thus decided some time ago to develop a 2D Lagrangean
hydrodynamic code [12] and test its applicability to
axially-symmetric laser-produced plasma calculations with
and without magnetic fields present. Some results obtained
during the test runs and pertaining to the burn-through

of deuterium ice layers irradiated from one side by single
laser beams in the absence of magnetic fields are reported
here.



MATHEMATICAL MODEL

An excellent treatise on 2D Lagrangean hydrodynamic
calculations was written by Schulz [13]. Readers
interested in details concerning the formulation of a
generalized 2D Lagrangean coordinate system and the
discretization of the conservation equations in the
coordinate system thus defined are referred to [13].
Schulz also indicated some of the difficulties one may
encounter while working with 2D Lagrangean codes (see
the computational example provided by him). Since the
computer code used in the present calculations closely
follows the method presented in [13], we shall omit here
the lengthy derivations and only outline the major
modifications introduced in Schulz's original system
(see also [14]).

The conservation equations are written in a one-

temperature ideal gas approximation:
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The symbols annd q; represent artificial viscosity and
laser flux intensity, respectively. Introducing a pair
of generalized curvelinear coordinates a, b and defining

ol

a vector 3 by a clock-wise rotation of the radius vector
? over an angle of ®/2, the transformation formulae from
the o0ld cylindrical coordinate system (r, z) to the new

curvilinear one (a, b) may be written as follows:
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Applying the transformation to the conservation equations
we obtain the following set of Lagrangean equations:
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The rate of change of the total energy per unit mass is
given by
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A
In the above expressions, the subscripts of s denote
derivatives with respect to the coordinates indicated.
As one may notice, the scalar artificial viscosity g



appearing in egs. (1.2) and (1.3) has been replaced by a
tensor artificial viscosity E appearing in egs. (1.10) to
(1.14) , which is characterized by the following relations:
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Such a definition of § is necessary for assuring the
continuity of the velocity component parallel to a shock
front (only the normal component should be affected by the
artificial viscosity).In general, dp and qp may be

specified as functions of the respective velocity gradients.

Schulz used the product of the first and second derivatives
of the velocity components for defining dp and dg. Such an
approximation seemed tedious and rather approximate at the
boundaries of the region occupied by the fluid owing to
the difficulties associated with the discretization of
second derivatives in generalized coordinates at a fluid-

‘=yacuum interface. Hence only combinations of the first
derivatives were used for defining E in the present
computations. The resulting numerical system functioned
well also with rather large cell deformations.

Note that equations (1.10) and (1.13) differ from the
respective equations of Schulz. Splitting the artificial
viscosity into individual constituents, i.e. the arbitrary
replacement of a scalar quantity by a tensor one has the
undesired effect that eq. (1.13) is no longer invariant
with respect to Galilean transformation, i.e. it is no
longer an exact analogue of eq. (1.3). For preserving

the invariance of the energy equation with respect to
Galilean transformation Schulz changed simultanesouly

the structures of egs. (1.10) and (1.13) in a rather
arbitrary manner, but still conserving the total energy
per unit mass, i.e. leaving eq. (1.14) unchanged. Following




Schulz, egs. (1.10) and (1.13) should be written in the
following form:
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In this representation, the invariance of the energy
equation is assured.

For the sake of clarity, computations were performed
following both approaches, i.e. by means of egs. (1.10)
to (1.13) as well as by egs. (1.16) to (1.17). The
results were found to be qualitatively about the same

in both cases (the shape of the expanding gas cloud,

the form of the crater developing in the ice layer, etc.),
but the quantitative difference between the local gas
parameter values amounted to 25 % to 30 % in some cases.
Since, as shall be seen, the application of egs. (1.10)
and (1.13) yielded results that are in good agreement
with theoretical predictions, it has been decided to use
these equations irrespective of their Galilean trans-
formation properties.

In the computations described here 100 % laser energy
damping was assumed to take place at a particular gas
density value, i.e. in the last mass-cell whose density
is just below a given threshold value (following the
direction of propagation of the laser light). In most of
the calculations this threshold value was defined in
terms of the electron density at which the laser beam
frequency is equal to the electron plasma frequency,
i.e. W= wr=(M¢ Qt/mtﬁo)\h’ . In a fully ionized
deuterium plasma, the electron density may then be replaced
by the respective gas density, i.e. Mg = ?/Ml_p . In the
case of deuterium gas, guﬂ/‘;o* \/s0, where Q, denotes



deuterium ice density ( Qo & 0.196 gr/cm3, measured value
[15]). Such gp approach made it rather simple to discretize
the term V'¥ﬂ appearing in the energy equation.

In a series of calculations performed, allowance was made

for heat conduction, i.e. the term

-V-zw = Cm3,~ did’('é?tamﬂe) ‘, D e%‘ (1.18)

has been introduced into the energy equation. Owing to

the temperature-dependence of 9 , heat conduction was found
to affect primarily the high-temperature expansion fan of
the gas blob produced: at sufficiently high laser flux
intensities the expansion fan became nearly isothermal.

In the low-temperature shock-heated gas region ahead of

the absorption zone the conduction effect was found to be
negligible.

Note that in view of egs. (1.5) and (1.6) the right-hand
side of eq. (1.18) consists of eight second-order
derivatives, four of them being of the mixed-type. The
recurrence formula for the internal energy of a particular
mass—-cell contains terms with the internal energies of the
eight adjacent cells. In view of the temperature-dependence
of the thermal conductivity the finite difference version
of this equation can only be solved by means of rather

crude approximations. In the present calculations, an
explicit time-splitting scheme was used and the temperature-
-dependence of R was accounted for by an iterative
procedure. Since the computer time required for such a
solution was found to be rather long and the yield rather
low (the distributions computed with and without thermal
conduction showed no other difference than the one described
above) it was decided to abandon thermal diffusion until a

more effective way of computing it is found.




RESULTS

A deuterium ice layer of thickness ﬂJz, density Qa, and
temperature T was heated by a cylindrical laser beam
whose diameter was equal to the ice thickness: DJ= Lo /£
The radial (lateral) dimension of the target-layer R,
was chosen so as to assure complete burn-through before
the bow shock reaches the lateral side of the ice layer.
The ratio Ro/[,0 = 2/1 was found to be satisfactory in
most of the computational cases considered. For simulating
absorption at a certain "critical" density value, an
expansion fan was attached to the side of the ice layer
exposed to the laser beam. The thickness of this layer
was Qqﬁ.as well. The density was assumed to vary cubically
in the expansion fan from zero to 90 . The initial para-
meter values were selected to correspond to measured data:
qo= 0.196 gr/cm3, and Co® 2 X 105 cm/sec (density and
sonic velocity in deuterium ice [14]). Hence assuming a
total ice thickness of Q°= 2004P' the characteristic time
associated with the propagation of sonic disturbance over
fu is Mo= 100 ns. The dimensionless times dispalyed in
the plots that follows are given in fractions of this
time (all computations were performed in dimensionless
coordinates by means of reduced variables). The dimension-
less quantity Q¥ appearing in the figures is related to
the laser flux 0 by means of the expression
0= Y("‘”(Q"/Aam)(%/?m)4&/&0' where ¢o= QQCB and Ag\acb
denotes the "absorption length". Note that different
combinations of initial values may yield the same input
parameter Q¥.
The plots shown in Fig. 1 correspond to (bl =5 x 1012 W/cm2
and tpulse = 200 ps. The pictures in the left-side column
show the cell deformation, i.e. the development of a shock
wave in the undisturbed material,and the rapid expansion of
the gas cloud on the vacuum-side of the surface irradiated.

The plots in the right-side column are vector plots
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representing the momentary velocity distributions. Note

that the first plot displayed corresponds to a time i
instant well after the pulse end. As can be seen, a shock
wave propagates into the solid at an average velocity of
approx. 5 x 10° cm/sec. As long as the shock wave remained
quasi-steady the density increase across it (along the
symmetry axis) was found to be identical with the

classical value that could be predicted from the Rankine-
Hugoniot relation. In about 5 ns the shock wave reaches

the rear face of the ice layer and the gas starts to stream
out on the back-side as well. Note the approximately

linear dependence of the velocity on the radius (measured
form the explosion center) in the asymptotic phase of the
expansion. Such a dependence is characteristic of the
asymptotic phase of spherical expansions, irrespective of
the initial energy supply rates [16]. The absolute wvalue

decreases rapidly at any fixed radius as time goes on.

The pictures shown in Figs. 2a and 2b correspond to a

laser flux intensity - pulse length combination of

¢u =5 x 1013 W/cmz, tpulse = 100 ps. Since ¢ﬂ is now

ten times larger than in the previous case, the initial phase
of the expansion is characterized by considerably larger
velocity values. The shock wave reached the back-face of

the ice layer in about 2 ns in this case.

It is interesting to note that none of the sample
calculations performed showed any mass-retardation at the
symmetry axis as computed by Clarke [10] using the PIC
method (the results are displayed also in [6]). It seems
that this mass retardation in [10] was not caused by gas-
dynamic effects.

The actual size of the gas cloud shortly before the
moment of burn-through and shortly after it is shown for
a representative case in Fig. 3. In this figure the fine
structures of the respective craters are also given (the
plot-scale has been changed). Note the good stability of
the numerical system also at the relatively large cell

deformations observed.



Q"= 4 x 107

Tpulse = 0.001

11

T =0.014

Crater formation in a deuterium ice layer.
_ 13 2 =

¢£ = 5 x 10 W/cm®, tpulse = 100 ps.

(Q, T - dimensionless gquantities, o= 100 ns).
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Fig. 3 The size of the expanding gas cloud
relative to the thickness of the
deuterium ice layer. The fine structure
of the developing crater is shown on

the right side.
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In a number of test runs, the effect of the assumed initial
conditions (the form of the initial density distribution,
the location of the critical density layer, etc.) on the
dynamics of crater formation has been checked.

Figure 4 shows the effect of the location of the critical
density layer: the three pictures on the left side
correspond to a case where the critical density layer is
located at about 4/10 of the total layer depth and the
pictures on the right side correspond to an absorbing
layer at 2/10 of the total depth. The second case is
characterized by a smoother initial density profile (a
nearly linear one) as compared with the first one.

( h = 5 x 10'3 w/em?, tu1se = 100 PS).

Absorption by a deeper-located critical density layer,
i.e. energy deposition in the immediate vicinity of the
high-density cold core, is characterized by a rounder
crater geometry. Note the massive peripheral gas outflow
appearing in the second case. The same effect can also

be aobserved on the corresponding velocity vector diagrams
shown in Fig. 5.

The effect of the energy deposition rate on the flow
formation is shown in Fig. 6, where the time variations
of the maximum temperaturempressure, and density in the
crater are shown for two flux intensities associated

with two different pulse durations. Note, however ,that
the total energy deposited (the product of Q* and T ¥ )

pulse
is the same in both cases.

In the first case (&Q-z,1013 W/sec, tpulse = 1 ns) the
cell deformation is relatively small during the pulse
time, and the temperature and pressure maxima coincide
with the cutoff moment of the laser pulse. The compression
lags considerably behind the pressure rise (density

change is associated with cell deformation). The density

build-up signalizes shock wave formation.




Q = 4x 107
tpu[se'—' 0.001 b

o

T =0.0061

T =0.0150
-
-
i
i

T = 0.0160 T =0.0350

Fig. 4 Effect of the location of the absorbing layer

on the form of the crater. Left: absorption
at the surface of the dense core, right:

absorption in a layer close to the vacuum
surface.
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Fig. 5

il

-
%

Effect of the location of the absorbing
layer on the velocity vector distribution.
Left: absorption at the surface of the
dense core, right: absorption in a layer

close to the vacuum surface.




1/

2

In the second case ( ¢lt:101 W/sec,

t = 10 ns)
pulse

notable gasdynamic motion (i.e. cell deformation) sets
on before the end of the laser pulse. The peak
temperature and pressure values start to decrease
before the laser pulse is cut-off. The temperature
maximum reached is considerably lower than that in the
previous case. There is no time delay between pressure

change and density build-up.

In both cases, as soon as the shock wave formation has
been completed, the density increase behind the flat part
of the shock wave is in exact correspondence with the
Rankine-Hugoniot value as long as the shock wave motion
remains quasi-stationary. In this quasi-stationary phase,
the pressure decays exponentially with time. The

exponent characterizing the pressure decay is in good
agreement with the analytical value given for spherical
explosion waves ( = 1.2).

The relation between the assumed laser flux intensity
and the peak temperature value obtained in the crater
is shown in Table 1 for two pulse durations ¢L= 1 Ps,
Q* = 4 x 10°

can be seen, in the case of short pulses, where the

corresponds to +£= 5 x 1011 w/cmz). As

effect of gasdynamic motion is negligible for the
duration of the laser pulse, the temperature peak varies
in almost direct proportion to the flux intensity.

In the case of longer pulses characterized by the
onset of gasdynamic motion before the pulse end the
exponent of the temperature variation reduces to about
0.67.

It can readily be shown (see, for example, the
dimensional analysis performed by Bobin [17]) that the
analytical value of the exponent relating the temperature
to the laser flux intensity is 2/3 if only heat input

and gadynamic expansion are taken into account.
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TEMPERATURE PEAK OBSERVED IN THE CRATER AS A FUNCTION
OF THE LASER FLUX INTENSITY FOR TWO DIFFERENT PULSE

LENGTHS.

— % % Q/\A %
exp = RAA (e5 / el)peak 7 (Q

5
4 x 10 2.10 x
8 x lO6 3.99 x
-3
10 9
2 x 10 9.86 x
4 x 107 1.84 x
5
4 x 10 1.16 x
8 x 105 1.84 x
-2
10 6
1 x 10 2.13 x
4 x 10° 55 37 %
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