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Abstract

An energy principle for 2-d resistive instabilities has been found.

It leads to a necessary and sufficient condition for stability allowing
the use of test functions. One simple consequence is that the current
density in a plasma with arbitrary cross section should not increase
to the outside. Otherwise the plasma would be unstable against

resistive instabilities.




Resistive instabilities are important for the long-time confinement of
plasmas. It is difficult to study them because of the character and the

higher order of the equations governing a dissipative plasma.

We consider here the most general 2-d class of simultaneously resistive
and static equilibria. Around such an equilibrium we consider incom-
pressible perturbations which are also 2-dimensional, conserve symmetry

and are otherwise general.

Then an energy principle can be found in the form of a quadratic
functional. Its positiveness is a necessary and sufficient condition for

stability.

|. Equilibrium

The equations governing the equilibrium are:
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By is the magnetic field, p, the pressure and /Za the resistivity

assumed constant on pressure surfaces.




Equations (1), (4) and (5) exclude an exact zero velocity toroidal
equilibrium. For small flow velocities the torus might be approximated
by the straight case in many situations. The meridional current must
vanish because of {J.D,A_g - o in the plasma section. So using

Eqs . (1), (2) and (3) we obtain:
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\f/ being the meridional magnetic flux and €, the basis vector along

the ignorable coordinate.
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Il. Perturbations and Stability Equations

The perturbations around the equilibrium are indexed by 1 and the
displacement vector is called % . The perturbed equations of motion

lead to:
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If the perturbations do not depend on the ignorable coordinate z, then
it follows from eqs. (11) and (13) that
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where U and A are two scalars independent of z

Substituing these expressions as well as the expression for ’?1 from
eq. (14) in egs. (10) and (12) and then taking the curl of eq. (10),

we obtain
V.40 - B, V(VA) - vxjo VA - o
A+ g,.7u - 7 VA + "jo(e_,_,nvogo ,VUL) = o

In the derivation of eq. (16) the term - (& @) Al has been
omitted because the vector potential Ajcan always be redefined to

eliminate any gradient.
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If VA is taken f . (16 di ted i . (19),
is taken from eq. (16) ( /?o:'tO) and inserted in eq. (15)

we obtain the following system of equations in matrix operatorial form:
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and Qx& = ‘j e, « V% because of eq. (4)
9o 0 =

Equation (17) is the stability equation. Let us now investigate the matrix

operators of this equation.

lIl. Boundary Conditions and Symmetry Properties

The simplest set of boundary conditions is to let u and A be univalued
and u and A go to zero at infinity in the section of the plasma. We
prove now that all the matrix operators N, M, Q are symmetric, and

that N and M are positive definite.

For N and M we have
-fjv-@Vg av = [ V3. Tp av

the integral over the divergence term vanishes because of the boundary

conditions.
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v Bo <o and ’? = ’?o (k}") and the fact that £ and g

are univalued make the symmetry of M evident.

The positiveness of (Y’NY) and (\(‘| MY) is also evident. Similarly
it is possible to prove that the operator Q is symmetric. The

parentheses mean the integral over the volume of the salar product
YNy e Ymy

These properties allow us to use a theorem []] on the stability of
dissipative systems which states that the necessary and sufficient
condition for exponential stability is

Y. QY) z o (18)
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where the scalar product is defined by the integration in L space.

Viscosity would not alter this criterion but would modify the operator
M without affecting its symmetry and positiveness and hence would

only change the growth rates of instabilities.




IV. Explicit Criterion and Application

Using eq. (8) and /}Zo = %_\/%0 we can write (Y, AY ) in the

following form:
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Let us now distinguish two cases:

A

then (Y:QY) - [d"("jo% (g__,xv\y.vu)

‘jo - - ip_o is positive in a simply connected equilibrium.
dayY

If in any finite region in Y, ”Z:’ <o then it is possible to
localize ( € xVY. YU )z inside this region and the system

would be unstable.

It is easy to show that this instability is absent in the ideal MHD case.

To stabilize, the current density should decrease to the outside. This

instability might be responsible for the anomalous skin effect in a
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b) Let A#+o© and '"S>o . We then call e, x9IY¥.YU) =V
¥ R 22

and minimize with respect to V', which trivially leads to
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The Euler equation corresponding to the minimization with respect to

A leads to
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A is the Lagrange factor. If A 20 it is unstable. This is an eigen-
!
value problem whose solution depends on Lja o which . in

0
general is not trivial

In [2] the problem of neighbouring equilibria for the 2-d. Vlassov

equation was reduced to an eigenvalue problem of the same type.

The author is grateful to Dr. D. Pfirsch for fruitful discussions.
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