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New methods are introduced for a quantitative evaluation of the dielectric
constant describing the interaction of a long wavelength test wave with
electrons in the presence of electron -ion collisions or small scale turbulence.
It is shown that the usual resonance broadening arguments of strong turbulence

theory do not apply.

Collisional effects on wave propagation have been investigated by many authors.
In the strongly collisional regime, w/v << 1, kA << 1, the dispersion relation
may be obtained from the two fluid transport equaﬁons.] In the weakly
collisional regime corrections to Landau damping have been found either from
the Landau collision term by iteration or using model collision terms such as the
BGK -or Fokker-Planck term with constant diffusion and friction coefficients.

In the case of ion sound and related modes where electrons of all speeds

V> Vop << v, can resonate with the wave such procedures become dubious on
two grounds.:2 The collision frequency for the dominant process, pitch angle
scattering by electron-ion collisions is strongly velocity dependent,

v(v) = v, (Ve/")a , and iterative procedures cannot be applied to resonant
particles.

The breakdown of iterative procedures for resonant particles is the starting point
of Dupree’s perturbation theory for strong 'rurbulence3 and related theories.

A principal result of Dupree’s theory, is the broadening of wave particle
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resonances w - k * v = 0. The broadening is estimated as Aw= [‘} szﬂ‘!
where D(v) is the velocity diffusion coefficient. Not even the solution of a
simplified diffusion equation for the ensemble averaged orbits has been obtained
however. By various methods or simply by ignoring the velocity dependence of

D(v) one arrives at

1

exp [ik + x(-t) ] = exp[ ik * (x = wt) -3k * D - ke ] (1)

wl

replacing the usual unpertubed orbits. Accordingly, the usual resonant
denominators are replaced by the Laplace transform of (1). Customarily even
further approximations are made fo replace  8(w - k-v) by a Lorentzian or
square function of width Aw . While such considerations are perhaps sufficient to
illustrate the origin of resonance brocdenin93 they have recently been reiterated
so many times that it becomes increasingly difficult to question their practical
use. The principal aim of this paper is not only to do just that but to introduce
new method for obtaining quantitative results. Rather than trying to reduce the
results of formal perturbation theory to a tractable prcblem we start from simple
physical concepts, making use of the analogy between collisional and turbulent
scattering of particles. That this is of more than heuristic value has been
demonstrated in two earlier papers. It is frequently necessary fo consider at the
same time both collisions and turbulence effects4 and it has been shown that the
modified turbulence theory, mode coupling included, may be derived in exactly
the same way as collisional modificafions? One perturbes the equation for the
average distribution function, linearizing in the fest wave amplitude but not
with respect to the background fluctuation spectrum. The test particle
propagator (conditional probability density) P(x,v,t | x",v', ') , t'>t, is the

Green’s function for the solution of the resulting equations. The modified




quasilinear dielectric constant, e.g., takes the form

e @ =1 - Jite; /0% [ dv N[k 0)k-6£/6y : 2)
J

where N(v ] k, w) is the Fourier-Laplace transform of the conditional

probability density for the test particle position x’(t")
L. ]

N(u|k,0) = [ dt [ dr [ av'PGe,y,tlxer,een,v’) ewpliGork - 0. O
! z

Note that we do not make the conventional approximation which neglects the
action of the propagator on §£/év . This has been accomplished by the use of
the adjoint propagctor4 which in our case (homogenous plasma) amounts simply
to an interchange of the v and v’ integrations. Use of the adjoint propagator
becomes even more important in the electromagnetic conductivity tensor where
k - 8f/8v is replaced by a much more complicated expression. In this case one
corr;putes V(v |k, w) the Fourier-Laplace transform of the conditional velocity
distribution. Generally, the method applies if one does not need to compute
F] (k , w, v) itself but only certain moments.

N(v |k, ) has to be found from the kinetic equation with the appropriate
turbulent and particle-particle collision terms. The procedure (approximation)
depends on the specific problem to be considered. There seem to be no short
cuts, such as suggested by (1). Generally, it is not useful to attempt an
approximate solution for the complete test particle propagator P but as much as
possible one should apply approximation methods to the required moments of P.
This will be illustrated by the specific case to be considered now, which we

think is one of the simplest physically interesting and consistent problems. We

study the interaction of electrons with a test wave in the presence of an isotropic
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low phase velocity, v 158 . Y turbulent spectrum, for definiteness e.g. both ion
P
sound test wave and spectrumé. The dominant effect of such fluctuations is pitch

angle scattering just as that of electron-ion collisions. ( Ve =

T, (W/nTe) (welkvg ). The equation for N takes then the form

8 . 2 SN
E‘X_.(LHIV)'GV.‘-I (4)

v (v)
2

-i(w-k * ¥) N(v|k,w) =

which is obtained by v’ integration and Fourier-Laplace transform of the back-
ward Kolmogorov equation for P describing the pitch angle diffusion process.

We restrict the test wave to low frequency and long wavelength for two
reasons. Firstly, collisional effects are strongest in this case as may be seen

by writing (4) in dimensionless form, N = IQ(G,&,u)ﬂ(V, v = v/ky,

o =uw/kv, u = kv /kv , or by comparing correlation and diffusion times
in (1). Secondly, in general, the collision term would depend on frequency w
and wave number k of the test wave. Eéqn.(4) is valid for k<< k’ ,

w=-k* ve< k'v where o', k’ are typical frequency and wave number of the

background spectrum. The inelastic scattering processes lead to the establishment

of a Maxwell distribution in the classical case and to a selfsimilar distribution

£ly) = Es expE-(v/vo)5 1 (5)

in the turbulent case. The effect of inelastic collisions on N may be neglected

(take Z + « in the classical case).

Eqn.(2) and (4) are written in terms of spherical coordinates v,0, ¢5 cos 0=y

~
~A A

with k as polar axis. N(v,w,u ) is expanded in Legendre polynomials P1 (u),

since they are eigenfunctions of the collision operator.
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NG, &)= ] (1F@11) [G1-2)1/(50T] (PIN,G P 6) (6)
1=0
From (4) it follows that fl-N1 1/ satisfies
- & = Fi
£,-(1/£,_)+8g,=0 1=1,2..., 7)

where g, = [ i$+-%-01 (1 + 1)]% @+ [ G -%): / (%1”:[2

1=0, 1, 2... . For an isotropic distribution (2) becomes

ee(k.w):- e/k [fdvadnv(sf/sv)[1+ia N©,6) ] (8)
Yo RGE) =2 [awRG, aa) =2 N (5,3)

No can be written as a continued fraction, N_ = (1/g +) (1/g M) G,
which was evaluated numerically by a simple algorithm. The first two

iterations yield in the strongly collisional regime v >>1, o,

2 (/30 + id :
N == 9
o T &2 ¥ (1302 _ )

In the collisionless limit v -+ 0+
o_ 1 ! i -~ i 146
No = T f du :m—u+ 10+ = H(w) + s o 1-w ’ “O)

-1 L
where H(w)=1, & <1 and O for o > 1.
w = 1 is the boundary between resonating and nonresonating particles.
In the weakly collisional regime v << 1 the differential equation(4) may be
solved by the methods of singular perturbation theory. For resonating particles

@ < 1 we introduce the stretched variable n =(&-u)/e e= 51/3  and find

ﬁ(ﬁ,tﬁ,n) = (1/¢) f dt exp I:in'r - (1-32)<3 /3]]:1+ eF](I,,T)...:[ (11)
o



where Fl( w, 1) are polynomials of degree 51 int. (11) should be compared to (1).
The resonance function (3) can be expressed in terms of Airy-Hardy integrals

Ei3 or Lommel functions. All we require however is the angle averaged resonance

A a
function N(v,w) which can be obtained much more directly. It can be shown
+eo . o _B-1) /e @ A
that ¢ [ an N =r thus  NGo,w) = (/2) - (/20 T [ + [ ann]
le —o (1) /€

where outside the resonance region n =0(1){4) may be solved by straight

forward iteration. The result is

N (¥a) = N2+ [29/3r(1-0%? I [22i 97 n(1-07° IG(0)+.., (12)

)

where G2 is a polynomial of degree 6 in o .

For the boundary layer |0 - 1]= 0 (:)1/2) between resonating and non=-
resonating particles the expansion parameter is V12 The decay of the
correlation between wave and particle is no longer exponential as in (11) but
algebraic, since for y ~ 1, i.e. E[ |v a‘ small deflection in angle does not
move the particle out of resonance.

From (11) and (12) we can draw the very important conclusion that the
modification of the dielectric constant does not arise from resonance broadening.
Replacing, as is frequently done, the real part of N by a Lorentzian i.e.

W+ + 1Aw in (10) does not reproduce (12) to any order. (The second term
in (12) would require Aw < 0 ). The important modification of /I:I@,J; )
comes from the n >> 1 region where Re T\AJ(\NJ ,u,n) goes negative.

Our analysis also, does not support earlier contentions Gr 2 8 based on

estimates of the resonance function from (1), D =v (v) v2/2, that the effect of

pitch angle scattering is a cutoff of the linear resonance for v(v)> 1 and thus




a reduction in damping. On the contrary, we find that the weakly collisional,
5 < 1,and the collision dominated region,v > 1 , of velocity space can make
contributions of the same order to Ime , c.f. Fig. 1. The strong velocity
dependence of the collisional effects requires in general numerical integration of
the dielectric constant (8). A Simpson scheme with adaptive step size was used.
One has a continous transition from Landau damping to collisional damping (or
growth in case of a drift u> w /k) as 1/(k)\)=ve/kve increases, as shown in
Fig. 2. We also disagree with earlier claims that the correction to Landau
damping is of order (1/kx )2 in the weakly collisional regime(?. Our problem

has a close analog in neoclassical theory of transport where it also has been

. .. 1
shown later that a plateau does not exist as the collision frequency decreases 0.

From Fig. 1 and (8) it follows that collisional effects become much weaker for a
distribution which is flat in the low velocity region. In the turbulent case where
quasilinear "flattening" leads to (5), corrections to the quasilinear dieleciric
constant ¢0 are indeed very small. The corrections to Re e® and Im €©

have a very similar kA dependence but the correction to Re € is much
smaller, cf. Fig. 2. Computer simulation of ion sound turbulence verifies the
validity of quasilinear theory for the wave -electron inferaction.7 To complete
the theory for this case we have shown that modified mode coupling terms
(perturbation of collision operator by test wave) are also small, using the
methods developed here and in an earlier pcpers. The investigation is of
particular interest since we have shown that (2), if expandable in powers of
W/nT, which in our case it is not because of resonances, already contains part
of the standard nonlinear Landau damping 'rerm5 and since this term becomes

comparable to the linear term at very low fluctuation levels 1, 6. The new



theory removes this difficulty and demonstrates the nonanalyticity in the
expansion parameter W/nT. Mode coupling and details of the collisional or

turbulent modification of the dispersion relation will be discussed elsewhere.
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Fig 1. Resonance function No( ®,9 ) Vs. v2/2v62; o= (1/kx ) (ve/v)4,
o = w/ky; w/kve = 0.03 , 1/kx = 0.02. Collisionless theory N: and its

cutoff in earlier theories.
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Fig 2. Collisional Modification of Dielectric Constant. Im B = (1+ Dlm)lm e:

w /kve = 0.03. Re £y = (1-D, ) Re EZ (not shown) where DRe = 0°06Dlm (A),
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for (B) and the same parameter range.
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