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ABSTRACT

The stability behavior of a class of exact tokamak equilibria is in-
vestigated in the context of ideal magnetohydrodynamics. The equilibria
have an almost constant volume current in the toroidal direction and also
a poloidal current which produces a diamagnetic or paramagnetic current
distribution. The plasma cross sections are roughly elliptic. The plasma is
surrounded by a vacuum extending to a perfectly conducting wall.

Stability is investigated by means of the energy principle. Suitable
test functions are used to detect unstable perturbations and to determine the
respective growth rates. The calculation involves no approximations, and
so all parameters of the equilibrium solution can be arbitrarily varied. In this
method only the stability limit is undetermined. With a free plasma boundary
instabilities occur below and above the Kruskal-Shafranov limit for every
aspect ratio investigated (i.e., e_l > 5). Equilibria with highly elliptic
cross sections generally involve more instabilities than those with circular
cross sections. In order to attain a high degree of accuracy, extensive alge-
braic calculations are done by computer using the REDUCE programming

language.
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INTRODUCTION

This paper treats the stability of a class of exact axisymmetric plasma
equilibria of the tokamak type in the context of ideal magnetohydrodynamics.
The equilibria discussed have an almost constant volume current in the toroidal
direction and a poloidal current which produces a diamagnetic or paramagnetic
current distribution. In addition, there is a toroidal magnetic field generated
by an external current. The inverse aspect ratio € is variable. The plasma
cross sections are roughly elliptic having arbitrary ratio of half axes. The
Garching belt pinch with an ratio of half axes of 10 to 1 can be approximately
described with these equilibria. A very interesting question is whether
shaped cross sections in tokamak discharges afford an advantage in form of an

improved stability behavior, a higher value for the plasma beta, 3 or a

T’
higher current density in comparison with the circular cross section used so
far. The physical system investigated consists of a plasma surrounded by a
vacuum extending to a perfectly conducting wall, the wall-to-plasma distance
being varied.

First, the results of previous stability investigations relevant to our
problem are discussed. The energy principle [1] to [3] often used here which
implies minimization of a functional § W (variation of the potential energy), is
equivalent to solving the linearized MHD equations.

In [4] the possibility of stabilizing a circular cylindrical plasma with

a uniform axial magnetic field and a perfectly conducting wall is investigated.

The axial magnetic field in the plasma and vacuum may be different. In an




equilibrium with surface current complete stability can be achieved if the

wall is sufficiently close to the plasma and the magnetic fields are appro-

priately chosen. This is no longer possible in an equilibrium with constant
axial volume current. The best that can be accomplished is a reduction of
the instability ranges and of the growth rates of the perturbations.

In [5], cylindrical equilibria with elliptic cross section, uniform
axial magnetic field and constant axial volume current are treated. In the
limit of low pressure and long-wave perturbations a general solution is found
by using the energy principle and introducing elliptic cylindrical coordinates.
Increasing ellipticity then produces more instabilities.

For toroidal equilibria with surface currents the energy integral can
be converted to a surface integral over the plasma-vacuum interface. It is
then possible to compute the minimum of § W and hence the stability limit
[7]1, [8], [9] by computer.

In [7], a plasma with circular cross section that is surrounded by a
perfectly conducting wall is investigated. The equilibrium is numerically
calculated by an iterative method. The stability ranges are plotted for various
values of the plasma, wall and torus radii. The closer the wall is to the plasma
the more stable are the configurations.

In [8], the equilibrium is also determined for a circular plasma cross
section, by means of an expansion in € . If BT/E exceeds a critical value,
instabilities occur above and below the Kruskal-Shafranov [20] limit. In

this case the toroidicity has a destabilizing effect for long-wave perturbations.




A perfectly conducting wall concentric with the plasma then has a stabilizing
effect only if it is very close to the plasma.

In [9], only straight systems are dealt with. The method can also be
e)_ctended to toroidal configurations by means of an expansion in €. Equilibria
with various cross sections, including the belt pinch, are investigated, the
stability calculation being restricted to long-wave perturbations. The cross
section most favorable for stability is the circle.

In [10] , the effect of the toroidal curvature on the stability of tokamak
configurations is investigated with an expansion in €. This shows that the
toroidal curvature intensifies the instabilities. It is only when a perfectly
conducting wall is located immediately at the plasma that the torus improves
stability.

The energy integral is used in [11] to derive a sufficient criterion for
stability to perturbations which do not affect the plasma boundary. The
application [12] to axisymmetric equilibria in the vicinity of the magnetic
axis (i.e., for small €) shows favorable stability behavior for D-shaped
plasma cross sections with a diamagnetic poloidal current.

For the numerical treatment of two-dimensional equilibria it is assumed
in [13] , [14], and [15] that the plasma boundary remains unperturbed. This
yields a simplified problem without a vacuum region. The energy principle is
again used in [13] and [14]. An expansion of the perturbations into a complete
system of functions in one [14] and two [13] variables is made to formulate
an eigenvalue problem which is solved by computer. These two methods have

only been successful in the respective simple special case so far.




The stability of cylindrical plasmas is studied in [15] . For this purpose
the linearized MHD equations are numerically solved by computer as an initial
boundary value problem. The method is applied to an equilibrium with axial
volume current and rectangular cross section. An arbitrary initial perturbation
is taken as a basis to find the dominating instability which overrides all stable
oscillations after a certain time. The instability regions and growth rates of
the perturbations become larger as the axis ratio of the rectangle increases.

Good numerical methods are available for calculating axisymmetric
equilibria, €.g. [16]. Required then is a method of determining the insta-
bilities for every equilibrium thus calculated. This is the aim of the methods in
[1ail., [14], and [15]. In two-dimensional stability investigations, only possible with
large computer s,the computing accuracy is decisive for their basic feasibility.
Using the energy principle one requires for the functional &W , which assumes
mainly positive values, the regions with negative values and, for marginal
stability, the zero. Difficulties occur particularly with instabilities having a
small growth rate because very small differences between very large numbers
are calculated.The more complicated the equilibrium and the more extensive
the minimization procedure the larger is the error due to cancellations. Similar
difficulties are created by the rounding errors in a numerical calculation of the
MHD equations by a difference method, e.g., [15]. The error in a numerical
calculation is never smaller than that in the input data. This means that the
error in the equilibrium solution which is calculated numerically or by an

approximation method may already be too large for the stability calculation.
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Toroidal equilibria with volume current have so far only been approxi-
treated. In order to establish whether the results of the studies dis-
are valid for the tokamak, let us state the critical points:

1. Validity of the surface current model.

2. Restriction to perturbations with fixed boundary.

3. Perfect conductivity of the wall.

4. Validity of the expansion in the inverse aspect ratio.

Here it should be noted:

A volume current is needed in the tokamak because of the Ohmic
heating. The significance of the surface current model rests in the
large number of configurations treated, not in the realistic description
of the tokamak.

The plasma boundary can be maintained with a wall or limiter, these
being destroyed, however, on contact with the hot plasma. This
produces impurities in the plasma, thus cooling it. From the ex-
perimental point of view it is desirable to have configurations which
confine the plasma just with magnetic fields, and which therefore have
a free boundary. In general, instabilities which change the boundary

have the highest growth rates and are therefore the most dangerous

in practice.
As the wall has only finite conductivity, stabilization is less favorable
than in the idealized case (see [17]), particularly for long confinement

times. Calculations with a perfectly conducting wall allow to estimate



the growth rates for the finite-conductivity case according to [18] . -

At a large distance from the plasma the wall has no influence.
Re 4. Despite the known MHD instabilities it is assumed that the tokamak

can be operated in a regime not far from marginal stability, in so-

called stability windows. Owing to the accuracy required for a small

aspect ratio and small growth rates it is not clear whether expansion is

permissible and in what order this expansion has to be truncated.

Critically speaking, no sufficiently reliable solution of the stability
problem has yet been found for the tokamak.

With a limited objective we will now derive results valid for the tokamak.
This means that the stability investigation for the exact equilibria given has to
be performed in such a way that none of the restricting assumptions 1, 2, and
4 is used. According to the energy principle the detection of instabilities with
so-called test functions which make &W negative [2].; [3] is exact. The use
of suitably chosen test functions considerably simplifies the stability problem.
Only the stability limit is then undetermined. The instabilities found occur in
the tokamak experiments. In this way we see which equilibria have particularly
poor stability qualities. These results may, furthermore, improve our under-
standing of the causes of the MHD instabilities involved.

This report represents a continuation of the stability calculation made
by Kilppers, Pfirsch, and Tasso [6].

These authors treat an exact axisymmetric equilibrium with circular

plasma cross section, almost constant volume current and free boundary. The




test functions are taken from the cylinder solution [4]. The extensive alge-
braic calculations are performed by computer using the programming
language REDUCE. It is proved that instabilities exist above and below the
Kruskal-Shafranov limit.

The equilibrium treated in [6] is contained in our class of equilibria.
To achieve a high degree of accuracy, coordinates adapted to the equilibrium
are introduced as in [6] , thus allowing analytic integration of § W in two
dimensions. The metric tensor can be expressed with simple functions if non-
orthogonal coordinates, perpendicular to the toroidal direction, are used. All
quantities then have to be written in covariant form. The extensive algebraic
calculations are done by computer using the REDUCE program system [28]
and [29] .

The ansatz for the test functions is chosen by analogy with the eigen-
functions of the corresponding cylindrical equilibria [4] and [19]. The solution
[5] is not used since it was not known at the beginning of this study and since
the elliptic coordinates used in [5] are not suitable for our calculation.

Compared with [6] the test functions are modified for ellipse-like
cross sections and generalized with a Fourier series. A number of free
constants are introduced and determined by minimization of § W with respect
to these constants. We thus improve the ansatz for the test functions with a
minimization.

We give the growth rates of the unstable perturbations, which can be

estimated with the energy principle.




The accuracy required of all calculation steps for the concluding
numerical calculation is taken into account. In this way we want to find the
conditions for an extended minimization of § W and for the solvability of the
stability problem in general, also with respect to other equilibria.

Very little experience in handling extensive algebraic calculations by
computer is as yet available. A good deal of the work is therefore concerned
with the programming of the problem.

The equilibrium and the related quantities are derived in Sec. I.
Section II describes the ansatz for the test functions and the performing of the
stability calculation. The results obtained are presented in Sec. III.

The description of the computational program is given in Sec. II. 4.
For more details on the code see [21] . Reference [21] puts the emphasis on

the algebraic manipulation which is fundamental to calculation.
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I. EQUILIBRIUM
I.1 Derivation of Equilibrium
For the derivation of axisymmetric, magnetostatic equilibria it is
convenient to use cylindrical coordinates r, ¢, z. Because of axisymmetry
all terms are independent of the toroidal direction ¢. Furthermore, the
magnetic field B is expressed by the flux function Y and a quantity T:

I.1 T

B, -r,

¢

1.3 B = VoXVY+TVo .

—

For the current density T we get from the Maxwell equation T = VXB the
following expression:
o 2 . 2
1.3 j={r" div(vy/r )} Vo+ VIXVe .
It holds that the pressure p and the quantity T depend only on the surface,

i.e., p=p(y) and T =T (¥). The static equation of motion is

2
.4 oy Loy, o’y | 2dp 4T

d
81‘2 r or 82,2 dy dy/

Making the choice for p and T

1.5 el - ! 1
P=p_-P'V¥ .,
2 2 p' '
1. 6 T =T 4 2y Y p,p'sa T , v are constants
o} 2 o o
1+ o
with p'> 0, |
we get a particular solution of Eq. 1.4 [6] |
2 a2 o 2 2.2 P’
L7 ¢y o= [27(c"-v)+ = (£"-R")"] —m——
4 2
2{1+a )

Where R is the distance from the symmetry axis to the magnetic axis, For

the stability analysis with these equilibria a coordinate system which uses
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the flux surfaces as one coordinate and the toroidal angle as another coordinate
is especially adapted.

While it is very difficult to determine the appropriate orthogonal

coordinates, we are able to give non-orthogonal coordinates Xl, XZ, X3 as
in [6] .
2 1/2
1 2 2 o 2 22,1
1.8 X:{[z-(r -y)+—4'—(r-R)]—2}
o
X2 =0
2 1/2
3 2 z(r -y)
7 = Arctg (a > 5 )
r - R

1
The innermost surface X = 0 describes the magnetic axis. X3 denotes the
angle on the flux surfaces in a plane X2 = ct. The following outline illustrates

the situation:




-y .
2 e 3 .
Using r = X +y , we can express X, X , X by x, y, z and vice versa,
1/2
2 1 3 2
x =1 cos X r =(2X cos +R )
y=r sinX
1
aX sinX3
%= e
2 1/72
(r -y)/

For evaluation of all metric quantities and of the covariant and contravariant

components of vectors respectively, we need the

b, = &= i, k=1, 2, 3

In a known manner [6] and [22], we obtain for the covariant components of

the metric tensor:

2 2.1 2.3 1 2.3
¥ = 1 [r - cosZX3+ 0!2 sin2X3+ a X sin X (X cos X ) ZCOSXS)] ,
11 2 2 2 2
r -y r r -y r -y
B2 "8 =0
1 2 AN | 3
X 2. T = . 3 3, o X sinX . 2.3 2.3
g13*g31: > {(a -—ZX)SIHX cos X +——2— [(s1n X -cos X )
r -y T r-v
Xl sin2 X3 cos X3
I.9 - 5 ;
2 Ty
g22 " F o
823 =83, 70,
(Xl)2 'rz-y . 2.3 2 2.3 a?xlsin®x> 3 Xlsin®x’
g33 = > > sin X~ + o cos X + (2cosX +-—-——-—-———~) )
r -y r r -y r -y
1




A2

The contravariant components of the magnetic field and of the current

density are:

1
B =0 ,
2 1
B =— T(X) ,
2
r
3 ap' 2
B=_——Ez—r-y, T =R*B ; B =ct
1+a [e] (0} (o]
1.10
1 Y P'
too, g o AT

2 ol ’

J p(l r2(1+a2))

PeTr, 2P 4
¥ it+a®

Since the pressure vanishes on the plasma boundary described by

1
X = X. = constant, we get an additional relation between the constants,

b
2
2 (1
pr= o 2L 5

1
4 o 1
o Xb

The ratio of small and large plasma radius — the inverse aspect ratio — is

Ar
I.11 €= | °

FUNI U‘N’_

if (X;/RZ) < 1/2 is assumed. For X}IJ/R2 near to 1/2, it has the value

ZXt’
€ = — =~ 1.

2
R
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Near the magnetic axis the quantity @ is connected with the ratio of half axes

of the flux surfaces

2
1.12 e = — if we set v = 0R

We call the current distribution in I.10 diamagnetic if the toroidal
magnetic field increases with Xl . Then configurations with positive values
for y =6- R2 are diamagnetic, and those with negative values for y para-
magnetic.

An analytical solution for ¥ in the vacuum region fulfilling the
boundary conditions for ¥ and B on the plasma boundary cannot be given.
For cylindrical equilibria, however, the solution is known [23]. The singu-
larities of gvac determine the position and the value of the currents being
necessary to maintain the equilibrium and flowing in additional conductors in
the vacuum.

We assume that the plasma is surrounded by vacuum and a perfectly
conducting wall. It is possible to use the energy principle even if the wall is
not a magnetic surface in the vacuum region. We, therefore, assume that the
wall is situated on a surface Xl = const = Xb . The exact solution for the
vacuum region can give an upper limit for the possible distance of the wall
surface X1 = const from the plasma boundary. For inside this surface, there
cannot be a singularity.

2

The coordinates Xl, D, A X3 can be used only in the region

0= X = XGr , since otherwise there exist poles in the gij (see 1.9). The
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boundary surface is determined by the stagnation points of the magnetic field.

In cylindrical coordinates these points are given by the formulae

a_lk = 0 and M

or 0z ,
with
1-6
r=RANG and z =+ R-@ —
: . 1 2
if 1>§= 0. The boundary surface is givenby X, _ = (1-§)- R /2.

Gr

The following diagrams 1 to 3 show flux surfaces and stagnation points
with different values for the constants & and §. While the parameter @ influences
the ratio of half axes of the cross section, the parameter § varies the surfaces

into a D-shaped form.

1.2 Evaluation of g and B

We evaluate the safety factor q=q (¥) = (2n/i)

where 2wy is the azimuthal magnetic flux, and x the longitudinal flux

through a flux surface 1
X 2m

&
1 A 3 aX' i o
X(X)—S dX S‘ dX —W—Z—r - °

o) o (r

Expanding the denominator into a Taylor series we can perform the integra-

tion with respect to X3 analytically
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R =R ANI1-5

Y
X1 1 p
1
K = ELE g axtxtTxl) [1+ \ i (—-—~X, ) J
R°R_ Yo L oy
0% v=25d, 60 v
being tvz 0
For §=0, we get:
| ZX1 2
R €=0.1
5 = 0.5, we get:
4X1 2 2
¢ - 0.875 ( b) = 7.10°
2 2 RZ €=0.1
tually we get
2 1 1 v
gy = T&E) T, Yy ¢ (X))
o 'R RZ /[ v Xl
V=2, 44 % b

e magnetic axis Xl = 0, the exact result is
1+ a° By
10 = =g T

p'R"N1-5

j, =N g5 j‘2 and e = @ /N1-0 , we can express q also in the following

q(0) = R -
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The last equation shows how the values of e and j can be varied

for a constant q. Especially the current j¢ can be increased compared with

the current in the circular cross section.

The ratio of kinetic pressure of the confined plasma and magnetic

pressure of the toroidal magnetic field is

[pdT _ [ pdT
1/2 j(BO)ZdT 1/2 | (T/r)2 dr

T

On the magnetic axis, we get

1+012 2, 1

Br(0) = = € 7.
q (0) o
The exact BT is:
8 . & .2
1/2 B (0)[145 (-5 ) ! - (1 )2
B. = L P .
L (].+C'€Z) (1_,_66'1'(0} 2 1—6 8 |
2 (1+a?)

1
1.14 BT':: > BT(O) =

Accordingly we get a poloidal B for the poloidal magnetic field using the
P

definition of Grad, Morgan [24]

2
dT 1+ o l1+e (1-08)
1.15 B = “; ~ - >
P j'de'r 1+a -6 (1-6)(1+e)
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Diagram 2. Flux Surfaces

and Stagnation Points + of Equilibrium I.7.
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- aY @=l,5;




SRR
e i P o M P

RO RIa

L1 wntaqiumbg jo + sjutog ﬂo,ﬂ.mnmmum pu®e ‘juB}suod =/t sadBIING u.BHrm ‘¢ weidei(qg




o &

II. STABILITY

II.1 Energy Principle

In the linearized approximation of the MHD equations all perturbations
of the equilibrium quantities in the plasma can be expressed by the displacement
E. (—;, t) of the plasma and the perturbed magnetic field in vacuum GEV by a
vector potential _aa.—(?, t) . The time dependence of the perturbations can be
iwt

separated with an exponential function e~

The energy integral for the plasma vacuum system consits of two parts.

The contribution due to the surface integral vanishes since there is no surface

current.
OW = GWPL + GWV
II.1 W, =75 Q" +E(QXj)+ V- EE-Vp+kp(V-E) ldT
Plasma

02 6 = WX (Zﬂb X E) denotes the magnetic field perturbation
in the plasma
k is the ratio of specific heats

II.3 W =+ S (68 )% dr

v 2 v
vacuum
II.4 GEV = vV Xa is the perturbation of the magnetic field

in vacuum_expressed by the vector
potential a .

—_—

According to the energy principle [2] and [3], test functions —gb (r) and _a.(_r—)

Which make & W negative are sufficient to prove instability if the following
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boundary conditions are fulfilled:

a = - (_I'I--TE.-) B-=- £ 11‘3’ at the plasma boundary

1.5 7 X

®

11.6 naXa=D at the wall

n denotes the normal vector at the plasma boundary, resp. at the wall. For

the wall situated at the plasma boundary the boundary condition is
1. 7 n.E =0,

and the solution in the vacuum is 5B =0.
v
The growth rates of the instabilities can be estimated to be [2] and
[3] :

2 2 6w 1 —2
I1.8 |w|2|w0|:-—1\—1- ; N=—Sp.§ dr

For the proof of stability it is necessary to determine the minimum of 8§ W

with min (§ W)= 0.

I1I.2 Ansatz for the Test Functions

The minimization of §W is very difficult for the considered two-
dirﬁensional equilibrium. We do not try a complete minimization of § W with
respect to T{ and a but use the eigenfunctions or approximated eigenfunctions
of the corresponding cylindrical equilibria [4], [19] as an ansatz for the test
functions in the toroidal system. With non-zero integers k (k, m being the

wave numbers, the long and the short way round the torus) we have
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. : .
i .1 .2 .3 ikX2 imX° i 1
E(X,X,X)—Zze e gk’m(X),
k m
10755)

ai(Xl’ %%, x3) - Z Z eikXZ eimX3 B, m) (X))
k m
Because of axisymmetry we can treat § W for each k separately. Alike to
the solution of the straight system we take the real resp. imaginary part of
the exponential functions. In addition we multiply this ansatz with a polynomial
Ko in u = (ZXI/ RZ) cos X3 the relevance of which is shown in section II. 3.
In the series II.9, we take the functions depending on X1 only for
one m=m = 0 in analogy to the solution of the cylinder. Calculations with
this Fourier component alone have indicated that the ansatz for the toroidal
system cannot be improved further on.
We then take into account the components with m =m + 1. Itis shown
by the qualitative investigation in section II.3 that for m = m the functions
depending on X1 are about one order of magnitude smaller than the corresponding
ones for m=m . We therefore assume the additional functions to be proportional
to the corresponding one with m =m. With respect to the boundary conditions
We introduce for the plasma-vacuum system ten free constants and for the fixed
boundary case six free constants. These constants are chosen in such a way

that 5 W reaches its minimum value. We thus improve the ansatz for the test

functions by minimization.
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The stability calculation, however, is performed as general as
possible. Then there exists the possibility to put in other or more Fourier
components in II.9, and to use a more complicated minimization procedure

in a following calculation.

Plasma
In the plasma we get with k = 0 for gl:
1 1 1
£ =2 f (X)cos(kX2+mX3)-K(u)
/ m o
m
I1.10 52:2 & sty il b R s B T
m o
m

g3 =Z ffn(xl)sin(kx2+mx3)-}<o(u)
m

For m=m # 0, the functions f;n (Xl) are chosen in correspondence to the
cylindrical case [4], [19] (B=ct).

1/2

2
1 1+ 1 mfg-1 mfB+1
= R J
fm B k( 2 2. 2 ) ( 2m Jm+l(y) 't 2m m-l(y))
m 3 -1
2 1+af2
II.11 fm:k 5 Jm(y)/m-R
2 1/2
3 1+ o 1 mB-1 mfA3+1 A
= . J s J }\
frn RE ( 2 mZ 182 1 ) ( Zm m+1(Y) 2m m-l(y} )/

Jm (y) are Bessel functions with the argument
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2 1/2 1
1400 2 2 kX
= (m B -1) ——
(% )
Bi(\fgél)
v -§ =—g—— = 10 (&) is of the order e¢.

 The plasma is not assumed to be incompressible in contrast to [4], [19]. With

' Z=1,2 and values of m_ in the interval (Mo’ Ml) (Mo, M. being integers)

1

we introduce

'- S12 p_ = kXZ + m X3 and get with 98 = - from II.2:
3 z z P p
o X
i ' - =i ipq m _n
" = 3¢ = .
L 2a Q= [VX (£, xB)] =€ Bp(eqmniz B)
€ pg’ eipg denote the contravariant and covariant components of the anti-
symmetric € tensor in curvilinear coordinates.
E !
' In the new coordinate system we get for GWPL from Eq. II.1:
1
Sy Xb 2m 2m
1 ’ 1 2 3 ij
WL =5 Z S dx S' dx g dX Ng IgijQIQZ
M © o o
S5 RS
+£i Qk A n ai(ﬁgl) ‘EJ 5. p
| 1 €ikg 27 Vg 2 ’j
o WEE) 8 WEE)
5 P B jNE5

T3P N3 ) Ng )l

Ndices occurring as subscripts and superscripts indicate summation from

L to 3,




II.14

II.15

Vacuum

. Ly -

Analogously we get for the integral N in Eq. II.8:

1
M, X, 2w 2
1 T 2 3 i ]
N == Z ‘dejdx ng NE (8.8 E.) .
2 1j°1 22 'p
M (9] o] o
e Gt ™

The density p is chosen as follows:

Ly 1 2 3.5
p = p, - (x'/xl )2y

The outline shows the function

p/po in dependence of Xl/Xllj

—
The covariant components of the vector potential a we choose in

analogy to the straight system as follows [25]

II.16

a 11
1 g = a_
22
a2 g N az
a 33 _
3 V& T2
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The solution for the cylinder is valid only for a circular cross-section @ =1,

1-5 - 0. By introcuding a factor

2 172
C - ( -6+ ) / i
2 o
;'thich represents an average value of 8117 833 with respect to X3 and

B 1+c¢!2 le
Y=V 2

R

:as the argument of the Bessel functions we get from II.16 with p = kXZ +mX3
1 Bl B?_
m = Ee [Cle_l(y)-C _1(y)+-;- Km(y)+7 Im(y)]Ko(u) sinp,

R-C Zlm

a, =-R[C/K_(y)+C,I (y)]K () cosp ,
x! B, BZ
a, = goc [CK 1N -Cl [+ K (y) +—I' (y)]K (u)cosp .

;"In, Kn are modified Bessel functions, ' denotes the derivation with respect

to the argument y . Cl, C Bl, BZ are constants. The boundary condition

2,
- at the wall reads (II. 6):

eﬂkak:o i =1,2, 3
W
1 1 CZ B
" Froma_ =0 for X =X follows == = ean and
B A W W
1 I
m
» ' . mC, (K | cz/clx )+B1K'
from a_ =0 for X =X -B. = -
3 w 2 T W
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The index w denotes the value of the function at the wall. Defining the functions

W W
K _
L7 koK (-2 1 (y) - el /) I
’ 1 m-17" " N m-17 [ y
m
C,
k= + —
5 Km(y) Cl Im(y)
&
W 2 W !
C K P
oK -t . m G e O
3 m-1 G -1
1 W
I
m
K (y) KV 1 (y)
_ m m
a| y v y
m
1 K
' _m '
€3 " m (K (y) - W I (y))
m
we get
= 2 i K (u) (C.k.+ B. g.)
3 * R.c sinp- K (u) (C Kk +B g),
az=-R cosp-KO(u) Clk2 s
-l
a3 = R. C cosp * Ko(u) (C1k3+ B1g3)

The boundary condition at the plasma boundary reads (II.5):
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ol

This implies C,=-—— CA, with CA =
1 b

Rk, 1+

1
S the index b

 denoting the value of the functions at the plasma boundary. Furthermore, we

2
have a3=£1B Ng for X1=Xt which implies
O!T(Xl)
1 3 1
B = (—5— R-C-f, -Clk )4
E g
3
-~ 1/2
r = (r—'y)/

Eventually we get the following ansatz for the vector potential for m = m = 0:

1
T (X))

alza-sinp-Ko(u)[-CA-(j)l-FrT;— 1"1] )

11,18
a, = - cosp - Ko(u) CA-(bZ ;
T(le)
a3:a-cosp-Ko(u)[-CA¢3+ 5 1"3] s
r r
with the functions: . kb Xl fl
b = (_l By b b
‘ 1 b~ b b 2
11,19 k, k8, R
g
11
== 1%
g3
k
2 1 1
¢2 - kb Xb fb
2
b
_ % BN, x! !
¢3‘(kb'kbb)ch b
2 2 3 ’
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g
8 1 1
B, = £ 5K
g3

The general ansatz is according to Eq. II.9 given by summation over m with

free functions for m # m

(X7, I. (X, el 2.3 j=13

Then the vacuum integral reads (II.3, II.4):

M, x1 2 2m
W
.20 §W = = 2 S' ax’ g ax’ S b (g..elkﬂa a
vz x! o o H kg (m, )
rnl,mzzM0 b
jk'¢ 3

k'aﬂ'(mz) )

For the Fourier components m= m + 1 in Eqgs. II.10 and II.18, the functions

depending on Xl read:

£ (xXH)=c¢ -f. (X) for i=1, 2, 3

" w5 ° o
I1.21 ¢1(m) (Xl) = Cfn . ¢1(1"1:1) (Xl)

Dy X0 = Co e Tay (X0
The functions ¢Z(m)' ¢3(m) and I‘3(m) have because of the boundary

conditions the factor C
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Comment
Ranme” -
In a similar way an ansatz for m = 0 can be determined. Since then
instabilities appear for values of q «close to 0 this case is not evaluated.
It is known that such perturbations can be stabilized.
Interesting, however, are perturbations with k=0 and r‘r\a:t 0 causing
a shift of the whole plasma [26] . This case must be treated separatly, because

Z 3
~ the integration with respectto X and X° in 6 W are different.

Description of displacement

1 e
The £ component is the most important part of ¢ . The physical

1 1

component f & =& \g,, has the form (Eq. IL.1l and I.9):

- 2.3
g"l = K_cos (kX% + mX°) £ (Xl) B S— -\/;inz x° ¢ & 2 coat X |
RNI1-% o

. 3
Neglecting the dependence on X~ of Ko' i€ K =1, we setat the beginning

2
X =0 and get for a fixed value of Xl:

*1

1 3 3 1 3
3 ='ﬁ—'cosz H((X") = gcosz

T |

3 2 2.3
We examine H(X):'\/(e -1)sin X" 41 for e< 1l and e> 1,

A H(x?)




At the vertical half axes X3 = n/2,

for e>1 and reduced for e<1.

o

3m/2 the displacement £>.=1 is enlarged

~
J'/ A Y
[ \

I

— -
' i
\ )
“ r

~ -~

m= 2
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; 2
Wwith increasing values of X these perturbations are shifted helically

j-round the torus.

1 1
In nearly most cases the constants C . s C. have values with
-1 m+1l

< 0.6 and -0.6 < Cl.\ 2 =0y
m

3 1
g.1< c +1

m-1

In the fixed boundary case these values are reduced by a factor 30

II1.3 Discussion of the Ansatz

We want to get a general view of the realization of instabilities. By

and II.18 and to estimate the virtue of the ansatz. The influence of the

:roidicity decreases with ¢ . However, we must not take ¢ alone as a

2
2 - 'Oo oap'

¥ == g > with CA:—p?

R” (1- §) CA 1+

= . . 2 .
‘being interpreted as a normalized growth rate. Yo represents the ratio of
.=|1__:he velocity of the perturbation and the Alfven velocity with the poloidal mag-

netic field.

2 1.2 2 .2
,  wp (X /R) w L
Y ~ = 3
o (3*3)2 2
A

E with L, =X1/R being a radial length inside the plasma and B*3 = B3 N C

that we are able to realize the significance of the polynomial Ko(u) in Eq.II.10
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In the following discussion we have to separate the cases with free and

fixed plasma boundary.

Free boundary

With one Fourier component m=m we get the magnetic field per-

turbation in the plasma from Eq. II.2 and II.2a with the indices c, s denoting

2
the part proportional to cosp respectively sinp and CE =y (ap'/l+a« )2

3

3
Kl (u) = a—uKO (11) .
Ql’s = -f K (u) CATk(q-"/k)
II.23 1 2x!
: 875 = g4 Kij(u)CAr - — . sinX
2
R
2,s 3.9 3 O K 2
Q = _CAT X sinX (rz 2 @+r°/TK - — (2qf +2f ))
Q% - _cAT (% -K (@-m/k)- L ¢ (24:2/% ) K cosX
_______( _____ cl_q_-_”___ rZ m o
2 3 X' g
+K,/R 2q cosX” f + CE = K )
1 m 2 o
gr r CA
3
Q7%= o
3,c_ ~ 3 2_ 3 1
Q7'%= car (kfm K (q-m/K)+ = cos X Klfm)

R

The terms of order § () in (V- E’)z and §£.Vp V- E’ also contributing
to 6 W are not given, since they partly cancel each other and since their

influence is small first of all for small € s
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Using the following relations:

k o
Pt 505 = Iy

9,6, + k¢, = mT|

mIy -9 I = 'k(lﬁ 81‘1’3'¢’1)

we get for the perturbation of the magnetic field in vacuum from Eq. II.4

1 kI13 m

5B’° = _CAT (g-—)-K
1 k o]
X ___
yC ~ 2sinX
6B = CA r 5 ¢2 K1
: R
1I.24

2,v 3,2 q r2 2q

6B ' =CAr sinX [—z¢1K1+7 I (2+=)K - = I‘l-Kl]
R r r R

Z2;¢ k 1 m q 3 r2

6BV = CAr[-r—n-—(qu)s-(pl)—l(q—i— )Ko+—2 cos X (2+~—2)
____________ X _______r r
K . .
P3 o 5 cos X qul‘ ]
R
B3,s -0
v
T 3 0

3 L] k 2 X

R N N N IRt
M X R x

Instabilities occur in the cylinder if

1'r1—i =kg=m.

m B

The constant 3 is determined by the boundary conditions.
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Generally, we have
2m
2 1 1 1 1
—_ =1 i 1.
— 1 (xb/xw) if xb/Xw#

For the elliptical case there are similar relations [5] and [19] .

The quantity y=kq-m has values with [ y| < ;n% in most cases
I y I <1 . This means that the perturbations follow approximately the field
. =43 prag . 2 _
lines. Q and (")BV are proportional to y . The current termin § W
being proportional to y can predominate and gives W a negative value.

. 2 . : 2 2

The maximum value of Y0 is given by max (YO ) = (1/mp)” .

In the toroidal system, we find the cylindrical terms again which are
underlined in Eq. II.23, II.24 . The additional contributions resulting from

2~ 2
derivatives of the expression (1/r r)(~B Ng ) may have large values. We

2, .3 : :
demonstrate this fact with Q c '\/gzz containing the following expression

2
9 . r ~ 1 . , 1
r.— £ (2+.2)K cos X~ = 3q(fm)2y1 Ko 3q(fm)Zy1.
T r 6=0
K =1
o

This expression does not become small if ¢ goes to zero. The polynomial

Ko (u) is defined in such a way that these inconvenient terms are compensated.

We make with

e

"For m different from m the value of | y| is not small. In order that 6 W

can have negative values, the functions gl(m (Xl) and a, (Xl) in II.9 have

) (m)

to be an order of magnitude smaller than the corresponding ones gtr;) i ai(r-;])
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3 2 .
;_..25 Ko =1+ dlu £ dzu with
1 1
dl—2 (2 + _]_.-—6) = 1,5
6=0
| ]
2 1= 4 S 4
6=0

1 . 2
these terms proportional to € .

This holds for all components of the perturbed toroidal magnetic fields

“in plasma and vacuum.

The toroidal contributions to § W still remaining are proportional to

- 1
—tz = ZXI/R2 - cos X3, 2X1/R2 + sin X3 or X /RZ, we take into account

the g.. and the constants R within the definitions of = y 0.
S i

, I'.. At the
m i j

plasma boundary it holds that 1:Z ~ 2¢, and the wall tZ ~ 4¢. Thereby the
iacuum interval is especially enlarged.
If the stabilizing wall has a great distance from the plasma, this being

valid for X1 = ZXl
. w b

, the dependence of the constant [ and therefore of the
pi
normalized growth rate yi on € is weak. We have to compare tZ with | y'

‘at the point of the strongest instability, i.e., for | y! =1/2:

The requirement that the toroidal terms are small reads

I1. 26 t = 4e < 2.

1
1-6
_‘_0111' ansatz will give good results, if Eq. II.26 is fulfilled, i.e., (1) for an

;nverse aspect ratio € smaller than 1/8 with §=0, (2) for small € and

- Degative values of §.
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Inconvenient in view of this ansatz are an enlargement of €, a positive

value for § and a reduction of the distance of the wall to the plasma.

Fixed boundary

For the fixed boundary case YZ is very small. For example, for
o
- . ; 2 -3
€=1/10 and k=1, m =1 we have B =~ 37 resulting in max(YO)'z 10 7 .
With decreasing € the value of 3 becomes even greater so that the growth
rate decreases further on and the toroidal effects predominate.
The instabilities arise here in a more complicated way than in the free
1 1
boundary case. The boundary condition f (Xb) = 0 (Eq. II.7) implies that
m

3 1 1
f (X') changes the sign for a fixed X = X}) and thereby also the current

m

term being proportional to f:_n . ffn . The current term, therefore, consists

of two contributions which almost cancel each other. It is possible, that small
toroidal contributions result in remarkable changes of the current term. With
the given test functions the stability behavior of the toroidal system may be
different from that of the cylinder. Only for very small values of q insta-

bilities can be expected surely, since then the growth rates in the cylinder are

strong.

II.4 Computational Program
The evaluation of the perturbed magnetic fields Qi (Eq.II.2a) and § Bi
(Eq. II.4) and later on of the integrands of § WPL (Eq.I11.13), N (Eq. II.14)
and § WV (Eq. II.20) can be carried out analytically. The expressions, how-

2
ever, are very extensive. The integration with respectto X in 6 W and N
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: . . . . 3
can be performed analytically, while the integration with respect to X~ results

in elliptical integrals because of the functions

1 1/2
r = R(1+——2X . cosX3) s
2
R
: 1 1/2
T = RNIZH (1+2 —333——— cosX3) )
R (1-6)

and products therefrom. In order to avoid these elliptical integrals we expand
such functions into Taylor series. It is known that the expansion of ) s

absolute convergent for real i,j and [27]
1 2
|2X° /R |4 IZXVRzn-m|<1.

The remainder is arbitrary small if sufficient many terms are taken into
account. Thus, the integration with respect to X3 can be performed analyti-
cally with an error being arbitrary small.

The last integration with respect to Xl is done numerically because
of the Bessel functions in II.11, II.17, and II.19. By this procedure it is
possible to evaluate 8§ W and N with a very high accuracy.

The minimization of § W with respect to the constants C:_n (Eq. II.21)
leads to a linear, inhomogeneous system of equations which is solved numeri-
cally. Thus, we get a partition of the computational program into an algebraic
and a numerical part.

Since the algebraic expressions are very lengthy, the algebra is done
by computer using the language REDUCE . The algebraic program contains

the freedom to truncate the Taylor series at a arbitrary high order. In addition



-36-

the number Fourier components is variable., The algebraic calculation is
described in detail in [21] 5 Thereby, in this procedure a check is made
to ensure that the Taylor series are truncated at a sufficiently high order so
that the result is not influenced by the remainders.

We are able to chose all parameters of the equilibrium freely,
especially €. The virtue of our stability calculation is given by the virtue of
the ansatz, but not by an approximation within the procedure.

The numerical program (FORTRAN) contains the evaluation of algorithr
determined by the algebraic program, i.e., evaluation of "operators'' intro-
duced there [21]. In order to reach a high accuracy we separate the
positive and negative parts contributing to § W , i.e., §W = 6W+- (SW_ with
o} Wi = 0, so that cancellations can occur only once, Thereby we get an
estimate about the accuracy required in every part of the program., There are
cancelled 3 to 7 digits (in very few cases 9 digits). The FORTRAN program
uses double precision including the evaluation of the Bessel function [31] and
the solving of the system of equations [30] . The numerical integration is done
with 128 grid points.

The Taylor series are truncated beyond the 12th to 2lst term depending
on the i, j of ;i rj . These integers N=N(i, j) are determined by the re-
quirement that for a aspect ratio e-l = 10 the remainder has a absolute
value smaller than 10-6. With decreasing e-l, N is increased.

The procedure gives the value of the normalized growth rate Yi

accurate to two digits at least.




-37-

Computing Time

The computing time for the complete symbolic manipulation with

REDUCE 2 is 40 minutes. This represents a third of the computing time
required in [6], although ten times this figure was first estimated. The
storage requirement for the symbolic manipulation is 720 K bytes.

The computing time for a set of parameters in the numerical program
(FORTRAN) with three Fourier components for the test functions, including
minimization, is:

(a) with vacuum 20 s,

(b) without vacuum 10 s.

In this case, too, distinct optimization has been achieved relative to the
program in [6], which requires about twice these times. For a small aspect
ratio eul ~ 6 the computing times increase to (a) 30 s, and (b) 15 s,
owing to the continued Taylor expansion.

The storage requirement for the complete numerical program is 180 K
bytes (compared with 720 K bytes in the separate programs for ‘6 w and

PL
dW in [6]).
v
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III. RESULTS

In representing the results of the stability calculations we distinguish
between the two cases of a free plasma boundary and a fixed plasma boundary,

The instabilities Occurring are represented by the normalized growth rat
Yi from Eq.(II.22) as a function of the safety factor q =q(0) on the magnetic
axis from Eq. (I.13), and the results are discussed for various values of the
aspect ratio e_l. All cases are calculated with three Fourier components for
the test functions (with m =, m +1) and with the given minimization of §W.

From Y2 we obtain for the growth rate wz in Eq. (II. 8):
) o

P

III. 1 wS = Y2 2 Ethe 6]
o o 2 2

poLo 1+

1
with the plasma radius Lo = Xb o P, and P, denote the pressure and
mass density respectively on the magnetic axis. Thus, Yi =1 with a plasma
2 -10 2
pressure P, = 105 dyne/ecm”, a plasma density Py = 10 g cm 3, and a

plasma radius L =31 c¢m corresponds to a growth rate in the microsecond
o

w =107 (/2(1-8) -1
o 1 2

+ o

range:

1 1
A= XW /Xb is the ratio of the wall radius to the plasma radius and indicates

how far the stabilizing wall is from the plasma boundary.
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Free Plasma Boundary

(a) Aspect ratio e_l =~ 20

For aspect ratios of 20 and higher and with a distinct wall, i.e.,

A > 1.5, there is excellent agreement between the stability behavior of the
torus and cylinder. This agreement is used for the circular plasma cross
section (&¢ =1 and §=0) to check the computer program. The results of
Kiippers, Pfirsch, and Tasso are [6] thus confirmed and, since the class of
test functions is larger, extended.

As Figs., 7-9 show, with A=2 and § =0, we find instabilities for lying
and standing ellipses as plasma boundary with ratios of half axes between
0.1 and 10 for values of q between 0 and 8.

At « > 4 instabilities are still obtained for q > 8. In general, con-
figurations with standing ellipses as boundary curves are unstable in a larger
region for q.

The widening of the instability regimes given by Laval et al. and
Dewar et al. [5], which is particularly pronounced for large ellipticity, is
not found. For k=1 and m = 1, 2, 3, ..., however, the entiré range of
values of g, except for very small regions around integral values, is already
covered with instabilities.

The corresponding instabilities with k=2, 3 which restrict these
stable q ranges even more are not given here, but they do exist.

We are particularly interested in the stabilizing effect of the wall.
Figures 7-9 therefore show the instabilities for various A values with

1< A = 2. It can be seen that perturbations with large m values are less




-40-

stabilized by the wall than those with low values. This stabilization consists
in widening the stability islands, but is really only effective for A < 1.1.

For 1< A < 1.1 we no longer find at k=2,3 the corresponding instabilities,
and so in the context of the perturbations possible here stability islands do in
fact occur for q 2 v (v=1, 2, 3, ... ), preferably for large v = 2.

For a paramagnetic poloidal current, i.e., § < 0, we find roughly
the same instabilities. This case is not discussed further here.

For a diamagnetic poloidal current, i.e., §> 0 (Fig. 10), it is only
for 5= 3/4 that we find fewer instabilities, preferably for small values
of a, which according to Eq.[I.15] with @=0.1 (e=0.2) means a poloidal
Bp ~ 4, and with @=1/2 (e=1) a Bp = 2. The value of BT is increased by a
factor of 4. According to the estimate [II.26] , however, our ansatz is not
adopted to such values of §, probably because an overestimation of the
vacuum term GWV. Tayler [4] , on the other hand, gives stabilization (for
a cylindrical equilibrium with surface current) when the current distribution
is paramagnetic. The same applies in our calculation for the case where the
stabilizing wall is immediately at the plasma boundary.

An increase of o also causes an increase of BT' but then more
instabilities occur,

The largest value of q for which instabilities are still found is used
to calculate the corresponding value of B according to Eq. [I.14] . These
critical BT values represent an upper bound of the BT ensuring stability.
Stability islands are, of course, not taken into account here. Figure 4 shows

these critical 3T (as BT /52) as a function of the axis ratio e[I.12].
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(b) Aspect ratio € = 10

With a distant wall, i.e., A = 2, we find instabilities for values of q
with 0<q<6, k=1, 2, and m=1, 2, 3, 4. The stabilizing influence of
the wall is shown in Fig. 1l.

The influence of a paramagnetic or diamagnetic, poloidal current is
shown in Figs. 12 and 13. It can be seen that our ansatz is particularly
suitable for the paramagnetic case. Instabilities are found here, preferably
for small values of @, i.e., for lying ellipses as flux surfaces in the vicinity

of the magnetic axis. The critical BT as a function of e is shown in Fig. 4.

Diagram 4. The Critical BT/EZ as a Function of the

Ratio of Halfaxes e.
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(c) Aspect ratio e'l ~ 8

For an aspect ratio of 8 and smaller the test functions of the cylinder
are no longer sufficient alone. In order to detect instabilities in the torus,
we need the minimization procedure, which may yield completely different
perturbations. Figure 14 shows the instabilities for q between 0 and 3 with
k=1, 2,

The instabilities for a paramagnetic current distribution with 0 < q<5
are shown in Fig, 15, It is again seen that the cases with small g values yield
the most instabilities. This makes it clear how well the eigenfunctions of the
problem have to be approximated.

The calculations with diamagnetic current distributions 6 =1/2, yield

no significant instabilities.

(d) Aspect ratio e'l ~ 6

These cases represent,for the time being, the limit of our stability
calculation. Here the absence of instabilities may not be interpreted as stability.
Our method, however, yields with sufficient numerical accuracy instabilities

for values of q between zero and 4, as Figs. 16 and 17 show.

Fixed Plasma Boundary
The conducting wall is located directly at the plasma boundary. The
boundary condition fi (Xi)= 0 fixes the constant B8 from Eq. II.11. The most
important result is that fewer instabilities occur in this case than in the
corresponding cylindrical equilibria. This agrees with the qualitative esti-

mates in Sec. II.3, With the wall immediately at the plasma boundary stabilization
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is extremely effective because instabilities are only found for values of g
smaller than 2 (with o = 6 even only for gq< 0.7).

We make the calculations with k, r%:l, 2, 3, 4, 5, 6 for an aspect
ratio between 3 and 40. The most pronounced instabilities are found for an
aspect ratio between 6 and 8. A paramagnetic current distribution (§ < 0)
has a slightly stabilizing effect, while a diamagnetic distribution is desta-
bilizing in the context of our perturbations. In the circular case a@=1, §=0
instabilities are only found for values of q smaller than 0.25., For highly
elliptic flux surfaces @ =17, 20 instabilities exist up to q = 2, and hence for
q larger than unity, Yz with @ = 4 is about two orders of magnitude smaller
than for perturbations which change the plasma boundary. The growth rate
wo thus decreases by an order of magnitude. For large o values, «o > 4,
small aspect ratio e_ls 8 and a diamagnetic current distribution § > 0
YO asummes a value of almost unity in each case and is then roughly just as
large as in the free boundary case.

The results are compatible with Lortz's sufficient criterion for stability
[11], [12] . In regions where the necessary Mercier criterion for localized
perturbations is satisfied [6], [12] there are no instabilities either.

Figures 18-21 show the instabilities for an aspect ratio with 4 = 6—15 20.
For the critical BT /62 as a function of @ (Fig. 6) we obtain in almost all

cases investigated an almost constant value:

2
BT/E ~ 25/1- 6 for §=0 and € =6

2
BT/EMZB for 6(0.




Owing to the finite conductivity ¢ of the metal wall the perturbed magnetic

field can penetrate to a depth d:

In most experiments the discharge time is longer than the time taken by the

perturbations to penetrate the wall, The conducting wall then no longer has

any stabilizing influence. A wall with finite resistence cannot produce complete

stabilization but at most damping of the growth rates, as is shown in [17] .

2
Diagram 6. Critical BT/(—: as a Function of a=e N1-§

for a Fixed Plasma Boundary .
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Discussion of Results

With a free plasma boundary there are instabilities below and above
the Kruskal-éhafranov limit. This result is valid for every aspect ratio in-
vestigated, i.e., for e-1> 5.

With an aspect ratio larger than 10 and with the wall far from the plasma
(A >1.5) the stability behavior of the torus and cylinder are the same if the
poloidal current is not too high. In general, equilibria with highly elliptic
cross sections are more unstable than those with circular cross sections.
With standing ellipses this is particularly valid for diamagnetic current dis-
tributions and for lying ellipses particularly for paramagnetic current dis-
tributions. As the cylindrical solution is only exact in the circular case, it
is to be assumed that the test functions are more favorable for the circle than
for ellipses with large ellipticity. More instabilities are therefore expected
particularly for ellipses.

The wall only has a strongly stabilizing effect if it is in the immediate
vicinity of the plasma boundary. According to our calculations stabilization with
a decreasing aspect ratio is already effective at larger distances. It is also
possible, however, that our ansatz is not favorable for these cases, probably
owing to an overestimation of the vacuum integral, and so an improvement in
the test functions may yield new instabilities.

Stabilization with the wall immediately at the plasma boundary is
particularly pronounced for equilibria with a ratio of half axes of the cross

sectional areas smaller than 4 since instabilities only occur here for values of




q smaller than 0.7, and at the same time the growth rate W is reduced by at
least one order of magnitude relative to the free boundary. By comparison,
standing ellipses with a larger axis ratio are more unfavorable.

The belt pinch for our equilibria is characterized by an aspect ratio
of 10, an axis ratio of 10, and only a small poloidal current. For a fixed value
of g such an equilibrium has a high beta BT ~ e2 and a high toroidal current
jd) ~ e . But, the stability behavior is more infavorable owing to the increase in
instabilities and poor wall stabilization. The growth rates are in the micro-
wave range B (1-10). 105 5-1 .

We can summarize that for this class of instabilities the favorable
equilibria are given by the parameters 0.8 < g < 3; 00 A=1.2:
g= 3, and e_l = 8. These are equilibria with diamagnetic current dis-
tributions, slightly D-shaped cross sections with ratio of half axes between
l and 3, and small wall-to-plasma distances. In this case the critical
BT/e2 ~ 0.1-1,

For JET (Joint European Torus) it is planned to have an aspect ratio
of 2.5 and a D-shaped cross section with an axis ratio of 1. 7. Our results are
only valid for JET if it is assumed that the stability behavior is approximately
the same for 5_1: 2:5 to e-]': 8, which some experiments suggest. This
equilibrium is then favorable in our sense, but this, of course, does not mean
complete stability,

In our calculation strong instabilities are given by YCZ) ~ 1, and weak
ones by YCZ) ~ 10 7. For the experiments, however, growth rates in the milli-

2 -
second range are still dangerous, which means Yo ~ 10 =~ . Whether such
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marginal values can be calculated with sufficient accuracy seems questionable
since a cancellation in § W of 7 to 12 places has to be expected and since, on
the other hand, the cancellation and the rounding error are increased owing
to the many Fourier components necessary. This should also be true for other
stability calculations.

In our calculation the numerical accuracy according to Sec. II.4,
and [21] is very good. A calculation with 5 or 7 Fourier components is, there-
fore, also possible. The calculation presented here will be extended using
a more general set of global expansion functions and an improved minimization
procedure.

In order to allow a stability calculation for numerically determined
equilibria, the equilibrium solution has, in our experience, to have a relative

exactness of 10_5 to 10-9.
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SUMMARY

The stability of tokamak equilibria with volume current has hitherto
been investigated only approximately. The critical points involved are:

(1) Validity of the surface current model.

(2) Restricticon to perturbations with fixed plasma boundary.

(3) Validity of the expansion with respect to the inverse aspect ratio.
In an exact calculation without these restrictive assumptions we show that
MHD instabilities occur in the tokamak equilibria investigated. The stability
investigation is made by means of the energy principle using test functions.
In this method the stability limit remains undetermined. The exact tokamak
equilibria investigated have an almost constant volume current in the toroidal
direction and, in addition, a poloidal current which generates a diamagnetic
or paramagnetic current distribution. The plasma cross sections are ellipse-
like with arbitrary axis ratios. The plasma pressure decreases outward. The
plasma is surrounded by a vacuum extending to a perfectly conducting wall,
The ansatz for the test functions is derived from the eigenfunctions of the
corresponding cylindrical equilibria and suitably modified. The perturbations

essentially consist of three coupled modes in the cylinder [4] . The strength

of the coupling is determinated in such a way that § W assumes its minimum
value.

The extensive algebraic calculations are done by computer using the
REDUCE programming language. All parameters of the equilibrium solution
can be arbitrarily varied., Evaluation is mainly for aspect ratios larger than

5, axis ratios of the cross sectional areas between 0.1 and 10 and values of
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the safety factor between 0 and 8. The wall-to-plasma distance is thereby
varied. The normalized growth rate of the instabilities is plotted as a function
of the safety factor q. The growth rates of the unstable perturbations are in
the microsecond range. With a free plasma boundary there are instabilities
below and above the Kruskal-Shafranov limit for every aspect ratio investi-
gated (i.e., e-l > 5). In general, there are more instabilities in equilibria
with strongly elliptic cross sections than in those with circular cross sections.
For an aspect ratio larger than 10 and with the wall far away the stability
behavior of the torus and cylinder are the same if the poloidal current is not
too high. A small aspect ratio and a highly diamagnetic current distribution
have a stabilizing effect on perturbations which change the plasma boundary.
This, however, does not mean that such equilibria are stable, because improve-
ment of the test functions can yield new instabilities.

If the wall is located immediately at the plasma boundary, the insta-
bilities found are compatible with the sufficient criterion for stability formulated
by Lortz [12].

The instabilities determined yield a "critical" (ET) which represents
an upper bound of the BT values permissible for stability. The equilibria that

are favorable in the context of these investigations have a

- 2
BT/G & Dl =1 .
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Y" as a Function of the Safety Factor without Poloidal Current
o

>

(6 =0) for Fixed Plasma Boundary.

The Normalized Growth Rate

Diagram 18.
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The Normalized Growth Rate Y _  as a Function of the Safety Factor with Poloidal
= 20’ for Fixed Plasma Boundary .

Diagram 19.
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as a Function of the Safety Factor with Poloidal
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The Normalized Growth Rate Y

Diagram 20.

= 10, for Fixed Plasma Boundary.
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This IPP report is intended for internal use.

IPP reports express the views of the authors at the time of writing and do not necessarily re-
flect the opinions of the Max-Planck-Institut fiir Plasmaphysik or the final opinion of the authors
on the subject.
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1. Gives any guarantee as to the accuracy and completeness of the information contained in
this report, or that the use of any information, apparatus, method or process disclosed there-
in may not constitute an infringement of privately owned rights; or

2. Assumes any liability for damage resulting from the use of any information, apparatus, me-
thod or process disclosed in this report.




