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Abstract

At high temperatures the KADOMTSEV - POGUTSE diffusion in tokamaks can
become so large as to cause depletion of trapped ions if these are
replaced with free ions by means of collisions rather than being

directly recycled or injected. Modified KADOMTSEV - POGUTSE diffusion
formulas are employed in order to estimate this effect in the cases of
classical and anomalous collisions. The maximum trapped-ion depletion is
estimated from the PENROSE stability condition. For anomalous collisions
a BOHM - type diffusion is derived. Numerical examples are given for JET-
like parameters (JET = Joint European Torus). Depletion is found to

reduce diffusion by factors of up to 10 and more.



1. INTRODUCTION

In 1970 KADOMTSEV and POGUTSE published their well-known formula of the
anomalous diffusion coefficient due to the dissipative trapped-ion
instability (see KADOMTSEV and POGUTSE 1970, 1971). This formula has
been applied to experimental conditions in tokamaks by FURTH (1973),
PFIRSCH et al. (1974), and GREEN et al. (1974). SAISON and WIMMEL (1975)
extended the diffusion formula to plasmas with an ion charge Ze ,"Z > 1,
with the result that the diffusion coefficient drops approximately in
proportion to 1/Z3 for not too large Z. KADOMTSEV and POGUTSE (1970,1971)
derive their diffusion formula from dissipative continuity equations for
trapped ions and electrons together with the quasi neutrality condition,
in which certain approximate expressions for the free-particle densities

appear.

In deriving their diffusion formula KADOMTSEV and POGUTSE assumed that
the average trapped-ion and electron densities are not affected by the
anomalous diffusion process. It is this assumption that I want to
replace by a more realistic one. A simple estimate shows that, at high
temperatures, the anomalous diffusion can cause depletion of the trapped
ions if these are only replaced with free ions by means of collisions -
COULOMB or anomalous - rather than being injected directly from outside.
It will turn out that for a small degree of depletion (at moderately

high temperatures) the collisions are of the classical COULOMB type.




For depletions larger than a critical value {(at still higher temperatures)
an inverse loss-cone instability develops that leads to anomalous

collisions. The two cases will be studied separately.

The question exactly what set of basic equations should be used in
treating the effect of trapped-ion depletion deserves some special
attention for the following reason. An improved set of trapped-fluid
equations has been established by the present author (WIMMEL 1975) with
corrected expressions for the free-particle densities and the collision
terms, and with additional source terms in the continuity equations. In
particular, source terms coming from Vﬂ£,(6;= equilibrium fraction of
trapped particles) have been taken into account, and the corrected
equations show that the anomalous trapped-ion diffusion depends in sign
on the total density gradient rather than the trapped-density gradient.
This is important near the magnetic axis of the plasma torus. Apart
from this effect, the new equations yield diffusion fluxes of similar
magnitude to those of the original KADOMTSEV - POGUTSE equations for
such values of the aspect ratio as occur in practice. Only in the
mathematical limit of very large aspect ratios does the correction
factor for the diffusion flux become very small compared with unity. For
this reason a corrected version of the KADOMISEV - POGUTSE equations
that includes the Vgo correction will be used as the starting point of

these calculations.




Section 2 presents the basic trapped-fluid equations and the general
expressions for the anomalous trapped-particle diffusion flux. Section 3
gives the formulas for depleted transport with COULOMB collisions. In
Section 4 the inverse loss—cone instability leading to anomalous colli-
sions is studied by means of the PENROSE stability condition. Section 5
gives the formulas for depleted transport with anomalous collisions. In
Section 6 the limiting temperatures separating the different diffusion
regimes are derived. Section 7 presents numerical examples of the
resulting anomalous diffusion as a function of temperature. Section 8

completes the study with a summary and discussion.
2. BASIC EQUATIONS AND TRANSPORT

The trapped-fluid equations in two spatial dimensions, as introduced
by KADOMTSEV and POGUTSE (1970, 1971) but supplemented by a Y7é;

correction term, read:
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Here n,, n_ are the trapped-particle densities,‘l_z is the common E x B
drift velocity, viff’ veff are the effective collision frequencies of the
trapped particles, ® is the electric potential, M,= é;Np and Np are

the trapped and total particle densities in equilibrium; the remaining
notation is standard, except forT:ZTeTi/(Te+Ti). It is assumed that
VB =V(T/NP) = 0, hence V‘_\_}:O . A Cartesian slab model, with the

coordinates x, y, will be used throughout.

In an earlier paper (WIMMEL 1975, henceforth called (I)) it was shown
that the anomalous trapped-particle diffusion following from eqs. (2.1)
to (2.4) and periodic boundary conditions in y is ambipolar and obeys

the general relation for the flux density:

= ~(cT/2eBN, 2p) <3%p  3y¢> (2.5)

with ?:%& -WNe » the pointed brackets denoting a time average. In terms
of critical FOURIER modes the random-phase approximation gave the esti-

mate

P = Z -——‘ﬁ’~"—~—3~——-— < [, | ) (2.6)
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with ZK = number of critical modes of common wave vector K and
frequency &), ; ’Yl"M = FOURIER transform of (M, --'}-'L_-b )y ;;1:.’ being the
time-averaged M; ; and A = cT/ZQBNP. In (I) the mean square

amplitude of M, was estimated by the mixing-length hypothesis in the



form of
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with k)r = l(\a . In the present case of trapped ion depletion we make

instead the plausible ansatz:

Zu K; <|MLK‘Z> ~ ‘V/V_L;IZI (2.8)

2 3
again with KX’ - K,a . This leads to the smaller flux density

s AV{!{ Wy | Var !2. (2.9)

Let us turn to determining the critical mode parameters K_ and wk. In

(I) it was assumed that &)k obeys the linear dispersion equation CU“=C\)(I»<HJ
associated with eqs. (2.1) to (2.4), where () is the real part of the
complex frequency. In the present case one may surmise that the trapped
ion depletion, with ﬁ; <M,, leads to smaller effective values of

(,Uk (K\a) than given by the linear dispersion equation. For simplicity,

the linear dispersion equation will nevertheless be used. In this way

an upper bound for the flux density )))r' will be obtained.

The dispersion equation is given by (see (I))
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of which we use the values of the unstable modes. Here 604 = f(g Y& ,
: = 2 = ﬂ—( -+ L. ) =4 ( - }
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() is the (real) frequency, andov is the growth rate. The critical CJK
in the case of small-scale turbulence (|Kyla > ) and the critical %’
in the case of large-scale turbulence (]Ky|a"vk0, where a is the small
plasma radius, are determined as in (I). In this way, for small-scale
turbulence the flux density becomes
- 2
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For large-scale turbulence one obtains instead
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In order to determine 6{: in eqs. (2.11), (2.13), the particle balance

equation of trapped ions must be used in addition. This balance equation




is obtained by time-averaging and integrating over X eq. (2.1),

whence
X
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Here the term involving vé\o disappears owing to <"\3’x.> = O "

1y

The effects of trapped-ion depletion will be estimated in the sections to
follow by means of a zero-dimensional analysis. This means that I shall
put ’ax_—-} 1/a, where a is the minor plasma radius. Therefore eq. (2.15)

will be used in the form

gl = avig (n- A7),

while eqs. (2.11) and (2.13) will be used in the forms
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In plasma regimes where anomalous collisions are effective ’eff and
viff will be replaced by anomalous values. In addition, for the

numerical examples to be considered, a characteristic LAWSON quantity

Mmty = Q N:/}yxl (2.19)



will be plotted as a function of temperature (and other plasma

parameters) rather than the flux density ))» itself. This will make

an assessment of the numerical results in terms of experimental

performance easier.

3. DE

PLETED TRANSPORT WITH COULOMB COLLISIONS

In the case of small-scale turbulence the diffusion is determined by

eqs. (2.16) and (2.17). Hence, putting f)_fl‘-lz S'LNP, )/X‘ and MU are

determined by
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For large values of K, the solution of eq. (3.3) approaches the

equilibrium value, S;' 2 So

In the case of large-scale turbulence the diffusion is determined by

eqs. (2.16) and (2.18). Hence

3
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with éE determined by
2
&7+ l’(z_ (é\t-&) =0, (3.7)
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Again, for large values of K2 the equilibrium solution of é; is

(3.8)

approached, d}‘* dl .

The results of this sectionhold in the absence of anomalous collisions,
i.e. for trapped-ion densities greater than the critical density given

in the next section, eq. (4.14).



4, INVERSE LOSS-CONE INSTABILITY

Only for trapped-ion depletions that are not too large do the collisions
of ions and electrons remain classical. For larger depletions an inverse
loss-cone instability develops that will provide for fluctuating electric
fields and anomalous collisions. This instability will be referred to as
"inverse loss—cone' because here the "loss-cones' actually remain filled
with circulating particles, while the complementary volume in velocity
space becomes partially depleted of trapped particles. In the following,
the critical depletion for the onset of the instability will be estima-
ted from the PENROSE criterion (PENROSE 1960, McCUNE 1965). A rough
approximation for the ion distribution function will be employed and
only perturbations with K | Eo will be considered because for other

directions of K the PENROSE criterion does not apply in the presence of

B F o

The PENROSE criterion yields instability if and only if

+ o0 |
M > 0
W - U,

T=: P

— o

J (4.1)

with

Flw) = ?; C";v SOKZ-\L )Qy (YL;‘*) (4.2)

/
and F (ULD) = O Because of symmetry we have uo"-:o. Putting F = E

+ l—g | I:I.-} 1;, a Maxwell distribution of electrons (no depletion) yields
L
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(4.3)
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For the ions we make the ansatz of a step function in velocity space,
with overpopulation in the loss-cone region (circulating ions) and

underpopulation for the trapped ions, viz.

oy = S5 e (B [ Yy g - £u)
+an(s -k e)] A dy. o

Here \{ is the HEAVISIDE step function, and

2 wm; 2 Tt my 2
fa. - _——QT{ v, Vl = T W, (4.6)
cos = 3, ), Smp Z O %.7)

(A_gi)/(/f-@o)} (4.8)
A-K = é\;/cgo ) (4.9)
hence fi satisfies the relationms
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It follows that

2 —n" LT
Rl dy = QLW-;—K et -(4-4) < /% dy

and

‘Ii - _ L!-'H'NP 225/7—'{ (4.12)

S = (&—&o +6::SO)/ &,2, (4.13)

Evaluating the PENROSE conditionI>0 yields instability for depletions d}

< 80 , With

8. = 45}0 (4~ 34, ;——) , @10

2

5. DEPLETED TRANSPORT WITH ANOMALOUS COLLISIONS

For overcritical depletion of trapped ions, i.e. for S{< é\c Eee eq.
(4.114):| , anomalous collisions of ions and electrons will be produced
by the inverse loss-cone instability. The anomalous effective collision
frequencies of trapped ions and electrons will be called ))ﬂ.;ah and

pY) one respectively. A rough estimate of them is gained by assuming

2
BROWNIAN motion in velocity space with Kﬁﬂ?‘w and k)_b'\’/’ , viz.

D;gah ~ —%?‘ AP (To./TL }3/2 ) o
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V‘fw ~ — X CJFQ ) (5.2)
V]

where X = EZ/(YWNP'T; . Putting, for example, X~ 40_2w0u1d lead

to Vﬂ'fﬂm ~o C\)P;_ >> )/,;ﬁ . This shows that ¢¢ will easily

adjust itself in such a way that the trapped-ion density is pre-

vented from dropping below the critical density as determined by

eq. (4.14). Hence one is justified in putting (gl‘k cf‘c and deter-
mining the anomalous collision frequency )/".{M from the trapped-

ion particle balance. In addition, it is seen that

U V. = (omefone)E (T /TR

The following procedure is now followed in order to compute the
depleted diffusion in the regime of anomalous collisions. In egs.
(2.16) to (2.18) the quantities V‘\e and Ve# are replaced by V_;FM
and U‘{M" . Then U% is eliminated by means of eq. (5.3). After
that, eq. (2.16) together with eq. (2.17), or (2.18), provides a
system of 2 equations for the unknowns ))X'- and M‘fo«, , while 171:: is
fixed by /ﬁ-; =M, = CS; NP . One notices that this approximate
procedure is largely independent of the specific instability res-
ponsible for the anomalous collisions, as long as the relations
K-D.& }V G » KRD"‘/’ are satisfied; with the exception that the
critical depletion é:__ was determined on the basis of a specific

jon distribution function roughly describing trapped-ion depletion.

For small-scale turbulence the results are as follows:
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and " given by eq. (4.14). As is seen from eqs. (5.4), (5.5), this is

BOHM-type diffusion.

For large-scale turbulence one has instead

e = avipan Ny (8o-40)
2 (T T j <N
- (a0 el

r 77%: (é\o-&c)ég 6eB (5.7)

and
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with a different value of Lﬁﬁ“*’ viz.

. (5.9)

Vg = _4,(@_)4{ _7]__3'5 é\(f T
o T Ame) | To ds (- 5‘) oteB

This again is BOHM-type diffusion.

6. LIMITING TEMPERATURES

In Sections 3 and 5 four different diffusion formulas have been given
for the cases of small-scale and large-scale turbulence, with COULOMB
and anomalous collisions, respectively. In order to apply these formu-
las, their ranges of validity in parameter space must be known. For

this purpose the limiting temperatures of the four ranges are given in
the following. Which of these are applicable for a specific plasma will
be determined for the numerical examples considered in the next section.
Because the limiting temperatures follow by elementary calculations from

the formulas of Sections 3, 4, and 5, the results are simply listed.

For small-scale turbulence the limiting temperature between the ranges

of COULOMB collisions and anomalous collisions is found from the
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condition cg_—: S to be
1 c

2y P e 1)

(=

1

3/40 Ao
[ fersta-a0) ™ (2]

where the following expressions for yeff and yiff have been used:
-2 3 an
up = A0 N2y [T (6:2)
- tog /) e %

D"& =0 22(N %apg/T3/z ) Q/Amc)4/z- e

All formulas are in c.g.s. units. For large-scale turbulence one has

= 2 () [

_ /e
LA 22 2Q,C5N %:_% ( :lr}” 6.4)

as the limit between the ranges of COULOMB and anomalous collisions.

instead

In the range of COULOMB collisions the limiting temperature between the

ranges of small-scale and large-scale turbulence is obtained, from the

condition ’I(;m.t[ = 7}"/(;\, , as:
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On the contrary, in the range of anomalous collisions a limiting
temperature Teu between the ranges of small-scale and large-scale

turbulence does not exist. Independent of Te , the turbulence is small-

—~scale or large-scale for

=2 ZT[24,(5,-4,)]

c

A
2

.

L®

a4 .
W I) t _:I;_ & SE',1 (6.6)
S /

respectively.

In addition, two more characteristic temperatures will be given that
determine whether certain necessary conditions for the validity of the
diffusion formulas are satisfied. Neglecting any effects of LANDAU
damping, one necessary validity condition requires that the critical
wavelength be greater than an ion gyroradius. For smaller critical

wavelengths the drift approximation breaks down. This is satisfied for

TYEr -2 aN, 2 L%
T.>Tee = -@—fn-r—'—* [40 ETS‘%#(/H%) (67

This limiting temperature has been evaluated only for the case of

small-scale turbulence with COULOMB collisions. This suffices for the
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numerical examples considered in the next section. Another necessary
validity condition requires that the frequency of the critical modes be
smaller than the transiting frequency of the untrapped ions with respect
to the minor circumference of the torus. One reason for this requirement
is to justify the unequal treatment of trapped and untrapped particles

in the basic eqs. (2.1) to (2.4). The condition is satisfied for

A

= ZL
To> T = (el ) T2 Ralo 2 I

(6.8)

)

where R 1is the major torus radius, and q = 2%71 is the usual safety
factor. Again, this limiting temperature has been evaluated only for
small-scale turbulence with COULOMB collisions because this is sufficient

for the numerical examples to follow.
7. NUMERICAL EXAMPLES

In order to illustrate the practical consequences of the above

formulas, I shall present two numerical examples. The parameters used

are as follows: Np = 1013 and 1014 cm_3, B=3x 104 G, Ti = Te’

ZEff =1, a =100 cmy, R = 300cm, q = 2.5, 3;= 0.5. The functions

plotted are1ft(1;); see Figs. 1 and 2.

In order to construct the graphs of Figs. | and 2, one must first

determine which of the four formulas of eqs. (3.2), (3.6), (5.5), (5.8)
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apply in what temperature range. Hence the critical temperatures
Te1' Te2' Te3’ and the quantity f must be evaluated. For the case

13 . =3

N = 10" em ~ one obtaines T , = 12.0 keV, T , = 6.65 keV, T _, = 12.4
P el e e

2 3
keV, f = 0.929 < 1. It follows that for Te<: Te1 small-scale turbulence
with COULOMB collisions obtains, while for Te>'Te1 small-scale turbulence
with anomalous collisions obtains. The critical temperatures Te2 and

'I‘e3 do not have physical significance here because the conditions for
their validity are not satisfied in the pertinent temperature ranges.

-3

For the case NP = 10M em - the discussion is analogous, the critical

values being Te1 = 30.1 keV, T , = 16.7 keV, Te = 31.1 keV, £ = 0,929,

3
Figures | and 2 each show three diffusion regimes, viz. undepleted
KADOMTSEV-POGUTSE diffusion at low temperatures, with COULOMB
collisions effective; then depleted KADOMTSEV-POGUTSE diffusion at
higher temperatures, still with COULOMB collisions in effect; and,
finally, depleted BOHM-like diffusion, with anomalous collisions. The
extrapolated curves (broken lines) show, first, that for Teﬁs're1
the effect of depletion reduces the particle losses by a factor of
approximately 10 in the examples considered, and, second, that without
anomalous collisions, MT‘(I,") would show a minimum value near Te = Te1
and increase again for larger temperatures, Te:>Te1. In addition to Te1,
the critical temperatures Tes and Te6 have been indicated, showing

that the corresponding necessary validity conditions of the theory are

satisfied in the temperature range of interest.
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8. SUMMARY AND DISCUSSION

It has been shown that at high temperatures the anomalous diffusion
due to the dissipative trapped-ion instability causes depletion of
trapped ions if these are not directly replaced by injection from out-
side. This depletion leads to lower diffusion than that according to
the formula of KADOMTSEV and POGUTSE. At high depletion an inverse
loss-cone instability develops and induces anomalous collisions. In
this regime a BOHM-like diffusion law is obtained. The numerical
examples presented in Section 7 show that under experimental conditions
of current interest the depletion effect is potentially important
because it leads to reductions of the diffusion by a factor of 10

and more.

In keeping with the original theory by KADOMTSEV and POGUTSE only the
case of ions with Z = | and no impurities present has been considered.
As is known from previous work (SAISON and WIMMEL, 1975; DOBROWOLNY,
1974), a multiple ion charge Ze, with Z > 1, or the presence of
impurities with Z > | may reduce the anomalous diffusion considerably.
Under such conditions, therefore, the depletion of trapped ions usually
will not be a large effect. This justifies the restriction to Z = 1 in
the present study. As has been mentioned elsewhere (WIMMEL, 1975),

BOHM diffusion due to the collisionless trapped-ion instability

may be superimposed on the regimes of large-scale turbulence’depending
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on whether the former can be stabilized or not. In the numerical
examples considered above this problem does not arise because only

small-scale turbulence occurs there.

The above analysis of the depletion effect is zero-dimensional.
Generalizing to a l1-dimensional analysis will change the particle
balance equation, eq. (2.16), into a differential equation, with
the flux 3%0 expressed by density gradients. A solution in closed
analytical form is then impossible. Rather a numerical transport
code must be used. Also the untrapped particles must then be
described in a selfconsistent way, and the use of the necessary
boundary conditions will require that external particle sources,
charge exchange, and additional diffusion mechanisms be included

in the code. It may even be necessary to use spatially averaged
gradients in the computation in order to represent the nonlocal
character of the turbulent diffusion. It appears that such a
program would have its main interest in the application to specific
machine studies. In order to obtain a general result in the way of
an order-of-magnitude estimate, the present zero-dimensional treat-

ment clearly is more appropriate.

Acknowledgment: The author thanks Drs. D. BISKAMP and H. TASSO for

useful discussions.
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FIGURE CAPTIONS

Fig. 1 The function M’E(TL) for JET-1like parameters with

i o= 10" em =,
p

Fig. 2 The function ’WC'(T&) for JET-1like parameters with

B & 1o s,
P
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