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Abstract

A multiple-time-scale treatment of the development of a Tokamak
discharge in the collisional regime is presented. Self-consistent,
resistive, finite-B, MHD equations are used, with inertial and
viscous effects included to obtain stabilization of the well-known
poloidal spin-up. This stabilization occurs at a plasma state

such that the geodesic speed remains subsonic. Only resistive
(diffusive) time scales are considered. On the fast, cylindrical,
skin time, the field penetrates the plasma, and the poloidal
spin-up instability arises and then saturates due to viscosity.

On the slower, toroidal, skin time, the plasma would move

across the field, and the final density and pressure profiles
develop. In addition, toroidal angular momentum would build up

to a value depending on the extent of poloidal rotation. Present
experiments, however, are unlikely to operate long enough to

reach this final state.



Introduction

The nature of resistive plasma losses in toroidal geometry was
first studied by Pfirsch and Schliiter [ ]:|, who found that toroidal
effects lead to an enhancement of classical resistive diffusion. In
this initial work, use was made of the resistive MHD equations in the
low-B approximation with inertial terms omitted. Self consistent MHD

. N . . = ~ r =
calculations, also neglecting inertia [ 2_|, E 3_|, L.4_|, later
showed that the Pfirsch-Schliiter result is essentially unchanged by

finite-g effects.

Stringer [ 5:] noted that combined inertial and resistive effects
tend to make the low—8 model unstable; in the absence of viscosity, an
initial poloidal rotation would tend to increase until it reached a
critical speed, namely, the sound speed times the ratio of the poloidal

to the toroidal magnetic field.

Inertial effects were also considered by Zehrfeld and Green Eb,if;
they found that rotation tends to enhance diffusion above and beyond

the Pfirsch - Schliiter factor.

Hazeltine, Lee, and Rosenbluth [ 8:| extended the works of Zehr-
feld and Green and of Stringer; using a low-B model, with inertial
effects included, they predicted, in the absence of viscosity, that the
rotational spin-up could be stabilized at the critical speed by a weak

shock. Going further, the same authors [:9:! showed that the rotational



spin-up instability also exists in a self-consistent (finite-f£) Tokamak
model in the limit of negligible inertial effects. In this latter work,
however, they did not suggest the mechanism by which the spin-up might

be stabilized, nor did they follow the development of the plasma beyond

the initial spin-up stage.

A self consistent two fluid model, with resistivity and finite

~

Larmor radius effects included, was considered by Haines E 10 /. He

took inertial effects into account by treating them as small perturbations
within the general solution. Haines once again found the diffusion to be
increased beyond the Pfirsch - Schliiter factor and also found a tendency

for the plasma to rotate.

At about the same time, Greene, Johnson, Weimer and Winsor : 11
treated the low-8, one fluid MHD model of a toroidal plasma by means
of a systematic expansion, employing an ordering scheme which intro-
duced the resistivity in third order in the inverse aspect ratio, €.
Treating the time dependence as a perturbation, they derived a dispersion
relation for small disturbances about a stationary state. Again the

authors found, among other things, a rotational instability.

Stationary toroidal equilibria without resistivity were investigated

by Dobrott and Greene [ 12:1 and Zehrfeld and Green [ I3:1, the former

authors considering a guiding center plasma. Without employing an




expansion, both sets of authors were able to give general conditions

on the flow quantities which allow an equilibrium to exist., However, in
an MHD model without resistivity, ("ideal MHD"), and with significant
fluid motion, four free functions remain undetermined, i.e., these four
functions can be prescribed virtually arbitrarily within the framework

of the governing equations for ideal MHD flow.

In a previous study of this problem [ 14:!, two of the present
authors considered stationary, self consistent solutions of the one
fluid equations, with significant inertia and finite but small resistiv-
ity, employing the standard Tokamak ordering [:9:5. Viscous effects were
neglected in that initial study, but in contrast to Ref. [ ll], the
resistivity was introduced as an independent small parameter. A variety
of interesting results were obtained, many of which can be recovered
(for vanishing viscosity) from results given at the end of the present
paper. Perhaps the most significant result of the early work, however,
was simply that all free functions of ideal MHD become uniquely
determinable when finite resistivity is introduced in such an analysis;
we shall later see that this is also true with additional inclusion
of viscosity. In order to achieve a stationary state in full generality,
sources for the mass— and angular momentum fluxes had to be introduced;
indeed, this early study seemed to offer a generalization of the
special steady-state solution, for no sources, given by Grad and Hogan
E 3:1. The general stationary solutions always included important plasma
rotation, reducing the achievable Bp significantly below the value

indicated in Ref. [13].




Despite the apparently interesting nature of these early results,
their usefulness remained in some doubt, primarily because of two

considerations: 1) the existence of the poloidal spin-up instability C B
left open the question of how - or even whether - the plasma was to
achieve stationarity+; 2) the time required to achieve a steady state

is significantly longer than the total operating time for virtually

all present Tokamak experiments - - hence, a theory that could take

that fact into account was clearly called for.

Such a theory must of course, include time dependence, as well as
a mechanism for achieving stabilization of the poloidal rotation. One
obvious mechanism deserving consideration for the latter purpose is that
of viscosity. Recently, several authors have included viscous effects in
their study of toroidal discharge [ 15:], [ 16:5. For example, Grimm and
Johnson [ 15 | considered the effects of viscosity and heat conduction
on the containment of a toroidal plasma. Unfortunately, an error in their
treatment of the viscous stresses left open the question of how, or
whether, viscous effects were sufficient to stabilize the rotation.

However, the results of Ref. [ 16:|strong1y indicated that such

stabilization was to be expected.

In the present paper we present a model suitable to describe the

gross temporal behavior of a Tokamak; we use the time-dependent, one

+ . . - .
Further calculations, extending the results of Ref. [ 9_J to include
finite inertial effects, were carried out; these showed the plasma

still to be unstable to poloidal rotation in the absence of viscosity.




fluid MHD equations including finite viscosity and resistivity. For our
present purposes we wish to exclude pure MHD effects, especially MHD
waves and instabilities; to accomplish this we assume certain poloidal
symmetries and use flux-surface averages wherever appropriate. Under
these conditions we are in effect looking at the plasma in such a way so
that we do not ''resolve'" time variations as fast as those associated
with the Alfvéen speed; formally, it is as if we were to treat the

Alfven speed as infinite. Our time scales are then the various skin
times, i.e., diffusion times, needed by the field to penetrate the

toroidal plasma and the plasma to set up appropriate fluxes.

We find, as previously noted by Grad and Hogan [ 3:|, that the
behavior of the discharge is characterized by two distinct time scales:
first, on the fast time scale, i.e., that of the skin time associated
with the minor radius, the field penetrates, leaving the plasma
practically fixed - - except for the build up of poloidal rotation
previously noted - -, whereas on the slower time scale, namely that of
the full toroidal skin time, the field stays fixed and the plasma moves
across magnetic surfaces. The second time scale is slower by the square
of the inverse aspect ratio than the first. In principle, an interme-
diate time scale is possible; in the following, however, we show that
our model leads to constancy of all significant quantities over that

time period.




We use Ohm's law in its simplest form+ and do not employ an
energy equation, although the early phase of a Tokamak discharge
is almost certainly governed primarily by energy transport,
radiation cooling, etc., mainly through impurities and such. However,
within our model, temperature, resistivity and viscosity can be
prescribed as arbitrary functions, very nearly constant on magnetic
surfaces. Because of the high parallel thermal conductivity this seems
to present a plausible physical picture. Since the solution turns out
to be remarkably insensitive to the details of the energy profiles we
feel that this approach is adequate for our present purposes, and may
be even more useful than a classical transport model, as we can, in
principle,simulate any temporal history and spatial distribution of

temperature on the time scales considered.

We restrict ourselves to the approximation in which magnetic sur-
faces remain circular cross sections and employ an expansion with
respect to the inverse aspect ratio, following Shafranov. [ 17:|
As in our earlier work on stationary states, the resistivity is not
ordered artificially with respect to the aspect ratio but is treated
as an independent small parameter. Viscous effects are treated together
with resistivity, the two effects are in fact of the same order for
certain Tokamak applications. For the viscosity we use the form given
by Braginsky [ 18 | in the limit wt » 1; otherwise no simplifications

are necessary.

i : . . ’
On the time scales of interest in this problem, the normal Hall term

and electron pressure gradient term tend to cancel. Also, the Qi/at

term and the pseudodyadic terms are neglible. See Ref. [ H)].



1. Basic Equations.

We treat the equations in conservation form,
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where have we used Ohm's law in the form
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Q is a mass source, M contains the momentum source as well as the
viscous forces. For convenient use in the curvilinear coordinates to

be introduced below it is useful to write the viscous force density

in invariant form [19]: _"_4 x 'ﬂ S + _Ey ;
2 3(7. (kb P) ~UD 5 bz 2
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Furthermore, we let
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so that local changes of state are treated isothermally, This
seems justified as we are considering only slow changes. We assume
axisymmetry, and use magnetic flux surfaces as coordinate surfaces.
In general, these surfaces change in time, and this effect will be
self consistently included in the analysis. Let us, however, first
consider a general orthogonal 'r"‘) G)¢system having the topology

of Fig. 1

N
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Fig. 1
We then have the line element
; % 2 2 ; P <
C{S"Z'-‘ ,ﬁ,’_dr’l -f-,Ang L ’A‘Pd‘? 1.8)

For the moment we leave the scale factors, A‘,,}\&, ﬂl¢ undetermined;
the form that they take in a torus, using flux coordinates within our

expansion scheme to 0 (¢), will be described later in this Section.

Using V * B = 0, taking advantange of the axisymmetry, a/adj = 0,

and letting &, be the unit vector in the ¢ - direction, we may write

¢



for the magnetic field:
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and, taking the curl, the current density becomes:
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To rewrite the momentum equations, we use the identity:

- ('f!’_\{ = .V V-(f.\!) + ;9[\7-51-_\‘{ x';gj; 1.

0 = Vxv

Using the shorthand notation.
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we have the 3 momentum conservation laws:
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the continuity equation
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and the three components of Faraday's law:
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Equs 1.19) and 1.20) may be integrated 1mmed1ate1y.
A
Dy
¥ 1.22)
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where C(t) is directly related to the applied electric field.
In fact, if we solve 1.22) with the boundary condition
1.23)

‘y/ = @ wl r =0
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then

£

27R,

as can best be seen by considering the stationary state and

1.24)

C(t) = E¢"K¢ =

comparing with Ohm's law. C is then time-independent so long as the

applied voltage is held constant.

So far we have considered a general orthogonal coordinate
system. We now introduce flux coordinates so that { depends on r
only i.e., it is independent of €. But then, during the field
penetration phase, the coordinate system becomes time dependent too,
because r = r (t). This does not affect the spatial derivatives, but
the time derivatives above are Eulerian, i.e., they are to be taken
at a fixed point in space where both r and 6 change and the unit
vectors ér and ;e also rotate. This is easily taken into account.

Let ar/at and ae/at be the rate of change of r and 6 at
a fixed point. We then have to substitute

o f of  of or of D6
5’; '? ¢ + dr Sz * 2& ot L322

In vector equations the rotation of R and e, generally also has to be

]
taken care of; however, to the order to which we carry our expansion

scheme we will never actually need to consider this effect. Details

are available in Ref. [ 19 .

+8r/at and ae/at as defined above are opposite to the "velocity" of

the coordinate system.
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In the next Sections we apply the standard Tokamak expansion

with respect to the inverse aspect ratio

R o
G = /R 1.26)

&)

and restrict ourselves to the order in which | has circular cross

sections. The lines r = const. in a cartesian x - y frame are then

rm

circles with a "shifted" origin: I7:|

]

(1'1- ;(i"))‘l'f.z;_'l'?‘l) ;-‘-'-C)(G) 1.27)

and except for an O(e) correction, 6 is the usual polar angle.

Keeping x and y fixed, we therefore have

-E?I - ..k_ D ey - a—E (o] G ‘." O ((:2) 1'28)
At r ot ot
Now
san © = 1Ej'/',,. + C(€) 1.29)
SO
06 D ¢
-—k = 5—_ E—% sin € O(.el) 1.30)

OQur substitution rule to account for the moving coordinate system
then simply reads:
. s -
D‘F%br‘i_g_f"

(DF o - CFf sn @
ot ot ok \ ¢

- e 56 ¢ +O(qeh .30

Our scale factors now are

A = 4 rexcae + OEY 1.32)

r
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2 = F ('-; +CY e G) + C(c?) 1.33)

S
s
]

T + €cer® + (O (e2)
1.34)

EX = - F/(r) 1.35)

-
& = -/ dir o7, 1.36)
¥ = Fi

where of course x and y in 1.32) and 1.33) have nothing to do with
the cartesian frame temporarily introduced in Equ. 1.27) above. From
now on, those two letters will retain the definitions given in 1.35)

and 1.36).

At the end of this Section we give the general Ansatz describing
our expansion scheme, which we will justify by showing that it is
internally consistent and sufficient to determine the solution. The
6 - dependence is listed explicitly, all quantities below are then
functions of r and t only with the exception of A .4 which is a constant;
A..1/4a¢ is just the externally applied toroidal field. The numerical
index gives the € - order, perturbations caused by finite resistivity

are noted by an index “7 :
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This arrangement is identical with the usual Tokamak ordering,
except that we have shifted down the order of the main magnetic
field, and correspondingly that of all other quantities. This has
the advantage that the quantities of main physical interest are
then of order unity. The velocities are ordered so as to give
equal order contributions to v x B. The exceptional behavior of Ve

will become clearer in the following. Recall that, by definition,

MV =0
L)

sciieme by our earlier work on stationary states. E 14 |

in the flux coordinate system. We are led to the above

We now assume that time dependence is caused by resistive effects
only, thereby ruling out all fast MHD motion - together with MHD
instabilities. We treat 1? as a small parameter independent of €

and restrict ourselves to first order effects in 7 only. Our zeroth

. Lo Ty . _
order is then found by putting "&E ‘..‘IZ = (,{c: q =_Il4:0, leading

to steady ideal MHD flow including inertial effects when WyWqsV g and

v are not zero.
2
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2. Ideal MHD Flow.

The integrated part of Faraday's law, Equ. 1.22) yields now
Vs
v,y = O 2.1)

justifying our Ansatz for v_ . Here and in the following a prime
denotes Cb@‘r. With the definition
— /
= & W 2.2)
we consider the lowest € orders of our equations of motion. The
r — component of momentum, Equ. 1.15) then gives to 0(1) and O(e)

respectively:

e . N AR
(ctp) = -/}I_c [/\__1A4 " (rF)J 2.3)

) é pwt o+ (8 Rq),: _j,_, {/]-.TA;, " A€ [4--1/1; e E(HT)’)}

~ %, 2.4)
= e A
o Lary],

where L.A"'lfJiis the coefficient of cos 8 in the expansion of A’Vi &

o . / = /
[A"z,z-_]_? =-26xL (rF) +F L& (g—x-?)J 2.5)
The 6 - component of momentum gives to O(e):

7
Y w2 - ¢*R, -::./-‘-'l-u /]__1 /\2 2.6)




while the ¢ — component, to 0(e?), gives

—p (vywy tvw o€z )uw) C Ry

L]

- i r— 2.7)
=~ L FA
R, 2
The continuity Equ. 1.18) and the ¢ - component of Faraday's law
yield the following 0(e) and O (e2) results:
15, + L-R“ + ¢ 1.]11' = 2 2.8
o j'_}_ g (_X‘f ) 1 - ”' ')

and

/., (v, e (x-1)vy ) + [F (cw=-wy)=0, ;.4

respectively. Higher order terms than the ones just considered would
introduce new terms in the expansion, but we now have exactly enough

information to express all MHD perturbations in terms of the free

functions f)) bv) u}} [~ . We first write them in terms of ieﬂ?)
Equ. 2.8) above then gives:
—qu BN
F e e ol i g . r
'?.'; = [f‘ + & ('x'r-?)‘ v, 2.10)
If we then introduce the "geodesic speed"
v = fl"1 v,
/ = = 1 2.11)
we can rewrite Equ. 2.9) in the form
R N 3,1
W, = €W = 4 (';;1 + 2C) 2

Equ. 2.6) determines /1 , so Eju. 2.7) may be solved for Wyt
A

\/w"’ = ¢ W (w Y) - C‘T'PE’
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If we now eliminate vv1between the last two expressions, we find

R, = % o 2‘/()’"&")

fg cr o \/.2 2.14)

We still have to consider the two Equs. 2.3) and 2.4) describing
the r - component of momentum to 0(1) and O(e). The first
determines A‘1whereas the second will give us the Shafranov shift, F'
and therefore determine our scale factors. By using 2.6) to
eliminate /lzwe can rewrite 2.4) in the form
2B ['Fc"'(i-i-ﬂ.. )J -"t“[[j l.}r] 2,15
2er
where we have also used 2.3). Finally, inserting [A‘Q«]from 2.:5)
and using (-,,.y = ':_r.ét_ . (::X.'-*'f ’, we find Shafranov's equation
for the shift modified by inertia:

(r[.‘.'l-ex), - Qe[f,ci Tf' w )J

2,16)

The remaining components of Faraday's Law integrate in the ideal MHD
limit to yield simply §’= Y, _1-' wil- to 0(1).+Higher order
corrections to ﬁneed not concern us here. The solution still contains
four free functions which we will determine in the following sections.
Inertial effects are seen to influence the shift of the magnetic
surfaces as well as to introduce 6-dependent contributions to density
and velocity. The magnetic surfaces are therefore no longer pressure

+ since g% =u = 0 in this Section, E (ideal) = - V ¢ and Er = ¢’ (r)
o

to lowest order
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surfaces but the solution is still symmetric with respect to the
equatorial plane. As already indicated by our Ansatz, resistive
effects will destroy this symmetry. We furthermore see that the
geodesic speed is limited by the sound speed, i.e., there is a
sound barrier. The next Section deals with resistive effects

together with time dependence.




3. Introducing Resistivity.

As indicated in the formal Ansatz of section |, finite
resistivity will introduce new perturbations with different
8 - symmetry. We furthermore anticipate different time scales

and introduce a multiple time scale formalism by writing

f - t+r et tett reo - t) tf) tz 3.1)

We introduce the 7 -perturbations of our general Ansatz and consider
first the fast time scale, a/Bt = 007). In the sequel we restrict
ourselves to first order terms in-v only. Then, to 007), the

¢ = component of momentum and continuity yield respectively

.Q(fw):o' 2 = 0D 3.2}
ot J P Y = :
soJo and w do not change on the fast time scale. The 007) part of

the flux equation 1.22) reads:

]
vt AHe ¥

: i / ud.
ry’) - —= 3.3)
RTR,

and we have the very important result that {, and therefore F,
depends solely on the external voltage U0 and on the behavior of
the resistivity 7 . It is only through 7 » M o and c? that the
energy transport, which we do not consider in any detail here,
couples to the rest of the equations. This is further reason for
our feeling that it is useful here simply to simulate all detailed

energy behavior by arbitrarily prescribing ‘7)‘ﬂ and c? as
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functions of r and t.

Asj:and w do not change on the fast time scale, the r, t
dependence of A} is completely determined by relation 2.3). and
also from relation 2.14)the shift is known as a function of r
and t, once the solution of 3.3) for F(r,t) is known. In other
words. the toroidal field and also the coordinate system follow
from the solution of the simple diffusion equation 3.3) for ¥
or F(r,t), which is independent of the rest of the equations.

If the voltage U0 is kept constant, the solution reaches a
quasi equilibrium provided the temperature does soj the details
of this state depend strongly on energy losses and on the initial

conditions.

The rest of this Section is devoted to finding an equation
for the one remaining free function of Section 2 which changes
on the fast time scale, viz. vj. Now the flux equation just considered
has an O(ﬂ ¢) part where the effect of the changing scale factor

appears as given in Eju. 1.31).
b7 N [(A* Y =
- e = . ¥ 9, - = i
- (X~ Mo LA 1} ],1 ‘ 71 3.4)
Returning to Equ. 2.15), we find immediately

E e E e Ly, .. Wt ¢
Ly = ~% R, 'F_:,_ [1"' SR )] *T% =

where the r.h.s. contains only known quantities. It is this part of

the radial velocity that leads to Pfirsch - Schliiter diffusion.
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We now treat the ¢ - component of Faraday's law, Equ. 1.21).

The 0(4{) contribution is

. ; _ U,
/i__,[(‘r“'q-:) L "‘71 ].- W’Z{ = C

3.6)

To 0(1 €) new terms would appearyg however)the 8 - average of the

corresponding equation is simply

J‘“o::‘ - __(,zr

<j‘°’/\u'> 3.7)

and this yields, to the required order,

.
> /A / :
a g - ;o -1
21 s 1A, /0 (uya + S (y-1) 2]3.8)
o € "(o

As BAllat is known from 2.3) with 3.3), this result simply serves

to determine the second contribution to the radial velocity which

corresponds to the so-called classical diffusion:
r

o % Ay e e -LoLf
u“l"l-/‘(’g ;{‘1 'f'zﬁ‘( ¥ 1 /l.-’r_al"

L P

A.' t."\
> “r 3.9)

We now turn to the 6 - component of momentum Equ. 1.16). Viscous
forces enter here; we use the results given in appendix A to obtain

their lowest order contributions. To 007) we find:
R A A RY

1 a P 10

L Rlz /’fp ...1 '7’ 3 )

with

,gsid[

wip

R, .
}';’ + C'] 3.11)
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If we consider the same equation to O(qle) and average with respect
to ©we obtain the time derivative; conveniently, the influence of

the moving coordinates is still one order higher and can be neglected.

Thus

L (F W Wy + L f{’,zw*)f f'.-(f‘v/\_lﬁ %45)3’)]

rP e 2 A2)
Now the r - component of momentum to 0(11) just produces the
r-derivative of Equ. 3.10) above, so nothing new comes from it. The
fact that this is also true for the viscous term is confirmed in

Appendix A.Contributions not yet considered are those of the ¢ -

component of momentum and of continuity to 0(175); these formally

. . . 9
bring in the time scale t; as well as EE :

We therefore conclude

- (Ig L\") e (:; 3.13)

and
. ] i 4
P (W kR g Fme e 5L (ew)) F ()

. . Y . 3F
+ (F‘)’rvf FP VR W + pU Wy /E’ /1’1-1 F /\__,}{\/

3.14)
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Similarly we find from continuity

op - Ie 3.15)
D¢,

and

IR 2f - . 4 - o
l’( 1-'-5‘3.?)*((?”"{1) *R’Iltffm‘?? ¢ 3.16)

/
We may now use Equ. 3.6) to eliminate (r “1‘1) + 'v.,”
and Equ. 3.10) to eliminate /-:(— N ,A ,from the last two results.
¢ - 5
Thus
6.‘21 9 H,'! { é_g ] lf: w W
i B LR a (F A

R . 1 9% / E .
r .E_Et + P at}q—r‘ut.,“f +K‘Irw7 + R,I = U

To separate time derivatives, we subtract w times the last equation

from the first:
[ (cwf . E..iw +li,i1W,).)+]7'U'1 w,I = = /’1—:- (QIR’]—J.‘EY)
~7

We now introduce the shorthand notation:

DR IR, . e % . ’
-5;’ = gz‘ * L33 T )f 3.17)

as well as

l_j__f_‘_'f = é:_v‘.,+ (Qf+u71)w —,Z- £‘_\_/
Dt Ot A, tF 3.18)
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I1f we further use 3.10) to eliminate /171 from Equ. 3.12), we have
finally the following system of three equations containing time

derivatives on the fast time scale:

‘ _ i rY v
r 3";:1“ + €& [ww 1[(_&;1‘&) Z'FJ R ¥ 3.19)
D w, N = By
r =7 VW F /—I-‘,t - o 3.20)
L QB’ + L Wy Ry v, = 0 3.21)
P nt Ny i

But in the previous section, we found that Ry and w) are determined
in terms of the functions w and Y, so their time derivatives are not
free in view of 3.19). We therefore use the last two equations above

to determine the two remaining ~# — perturbations R and w
g P 1

iy * Ry . .A'7 -Z%l - Dw:
(o) R e forp (X280

= P bt 3.22)

"‘YL) Wy = .A' (/DW, -

<
o F Uve 3,233

Before we use these results in Equ. 3.19), we rewrite it in the form

of an equation for the "geodesic speed" Y. From the definition of Y, and

the flux equation 3.3), we can write

26 L E [ 4 LY (3 (k)
ot A., Lot 3.24)

Ao 1=

Finally, introducing

& /],.7

—
—

- 3.25)
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we find from Equs. 3.19), 3.22) and 3.23):

;% +;{- FLEL(H‘)‘, *

LB AL {‘_l DB [y (e -en] - 2 [y ]

et-Y?* F f Dt Df:
= € A, &Y

3.26)
: . . R & v .
Finally we list the time derlvailves f Ry and w), since they

follow from the results of Section 2 remembering that J:and w do

not change at the time scale considered here:
ak’ d v (1 i
(‘C - Y ) —1 = 2z a—Z [y (--;-1-}-2&) "'G'W] 3.27)

and

o)

(:(_ bw’ = b g

e & ey

2

3.28)

Equ.3.26) requires not only that we substitute in it 3.27) and
3.28) for portions of Dﬂt 'andDW" ) but it also requires
B e

Pe
knowledge of 3?7at, according to the definitions 3.17) and 3.18).

%g., however, is known from %% , because of the Shafranov relation
/
/
2.14), and, from 3.3), L (21- (FF)) , as we already have
ot B
noted in deriving 3.24) and 3.26). In this way we see that our

problem can be reduced to a single but rather complicated looking

equation for Y.

In summary of this Section we find that the fast time scale

determines F and Y, the two other "free" functions of MHD remaining
]
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undetermined. We know, however, that the latter quantities also
do not change on the time scale £y We will see later on that
they are determined only on the time scale ty and that this time
scale will lead ultimately to a unique equilibrium. The next
Section, however, discusses the behavior of Y on the fast time

scale and the rotational instability described by it. [:9:1, [ 19:|
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4, The Rotation.

The final result of the last Section describes the detailed
behavior of Y or v, - In particular our derivation is valid during
the penetration phase of the poloidal field (E # 0), which may give
new and interesting results,since in Ref. [:9:| and related works the
electrostatic approximation was used. Here, however, we indicate only
how such a complicated equation lends itself to analysis without
actually having to integrate it, for we are mainly interested in the

time—asymptotic behavior of the solution.

The last three equations of the previous section may be
combined formally to yield
¥ v s
e S } (’y; ,‘/) 4.1)
et
where we only list the time dependent parameters, since the others
are simply constants on the time scale considered. We first look
; . oY :
for stationary solutions :rE = 0., The last two equations of the

ral

previous Section then tell us immediately that

9w oK
.T__f = i_TT = O ¢ 4.2)
ot 3 5 4

thus f(Y,F) is relatively easily given explicitly and its zeros can
be determined. As the function cannot change sign between its zeros,
the solution there will either be purely growing or decaying. To

determine what is actually happening in such a region, it is sufficient
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to analyze the neighbourhood of a zero itself; in other words, a
stability analysis of the stationary solutions is all that is
required. Care is necessary at possible double zeros, but they
probably do not occur here. At simple zeros, f must, of course,

change its sign, further facilitating the analysis.

Here we only sketch the procedure for the special case
w = 0 and with complete field penetration already having taken

place, i.e.,

(2 (] " =0, Sh=c

¥ 4.3)
s0
Dwi . . 2F wy
' P 4.4
D Ny opr )
.P..E' % u, f/ 4.5)
Dt 1
Stationary solutions are therefore found by solving
: ] ‘ <
_?_;__z A"I {uq., L & *F fi. }‘\/: %ﬂ"_l/z..s)
i~Y7. F P N rp = orp
or

‘\/{r%ugz’fl*'%‘%(.;'f' y/sz)}'::o 4.7)
Clearly Y = O is a stationary solution, stable or not. In fact
it would be the only one if k = O (no viscosity). For convenience
in the following we repeat

Fag 'z Ry '
b= = [-— - -l-e] 4.8)
r., o
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and e "
K, Y
— (3
Foors = 45 (w=e)
1 _Y/‘:L 4.9)
so
& b [ ord
4 - FAa c 1 % (Y 7)
rA. _ ye 4,10)
{ 7 /ct.
The stationary solutions different from Y = O are therefore found
from
X 2
_ 4 €* F 3+ Y7)
r% u"“ f‘ e 'Z' /T ;—‘{; ( Y:'L — O 4.11)
-7 } == /(-_l'
or

CEEYY A,
(‘—? . = -

rtg u ! 4.12)
I =Y. A& F Yo f

&

Now the left-hand side equals 3/2 for Y = 0 and increases monot-
ically with Yz/ cz. We recall that L(?f o~ - (cvp)I so the
r.h.s. is always positive provided the pressure- and density-
gradients are in the same direction. If this term is <3/2, no real
solution Y # O exists and Y = O remains the only stationary value.
Otherwise there is only one solution for Yz/cz, and, furthermore,
it is always on the subsonic branch, Y2<c2. All 3 possible roots
are simple, so %% changes sign there. In order to study the

stability it therefore suffices to concentrate on Y = 0. We may

now proced by retaining only linear terms, taking care to properly
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. . . ; oY
treat the time derivatives of v and Rl‘ In this case F ~Y , so

AR

— 2= £ 4.13)
et
and
0w
01 » -z &L

¢ ot 4.14)

Then Equ. 3.26) reads approximately

oY | ' - 3 g '
'a' é. ‘i.ﬂ.ﬂ{i u,”J:’Y -f.;g_e.(_Y +E_f__ _'g_:/ __,GA-”QY 4.15)
r e ol ZP b
f A rp| 2F rp
or, regrouping
< B g | 4.16
(H-Z‘z a1 /-1 U £ 3e.£ y.:o )
b L L
f* pFooc Yy
It is interesting to note here the presence of Pfirsch-Schliiter
factor, 1 + 2 q2.
Thus, using only the leading term of k from Equ. 4.10), we
find that Y = O is unstable provided
b / 3 : F }_
rrg u, pl o = AL < C
R (DA N ’ 17

which, incidentally, is also the condition that the other two roots

gL hanges
il

are real; further, since the latter roots are also simple,
sign there, so they themselves are then stable. In other words, when
Y = 0 is stable the other two roots do not exist, whereas if Y = O
is unstable the other roots do exist, and are stable at Y2 < c2.

For the special case discussed here we therefore find that viscosity

always suffices to stabilize the rotation at either Y = O or at some
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v ; 2.2 ..
finite value with Y"/c < 1. From the analysis it also follows that
it is the inertial contribution to the viscous force)i.e., that part
s n ; s 5
proportional to Y | h2 1J which effects the stabilization no matter

how small/g.( 18, provided/cl #O0of course.

This example is intended to demonstrate that our equation 3.26)
is amenable to analysis even in its implicit form if care is taken.
Now for the fast time scale, it is probably sufficient to treat the
case w = 0, as this is a natural initial condition, but we shall see
below that on the slow time scale w will change, especially if we
introduce sources and Y # O, Particularly if the source yields plasma
with the local velocity, w grows and saturates at a value different
from zero, so the stability analysis for Y is necessary for all the
w values found under way. Furthermore the effect of changes in the

poloidal field are interesting in themselves. [:19:
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5. The Long Time Behavior

Up to now we have determined two of the four free functions
of Section 2): F is governed by the external applied electric
field, and reaches an asymptotic final state at the end of the
fast time scale if UO = const. We have also studied the behavior
of v, (or Y) for the special case w = 0 and full field penetration
as an illustration of a method for obtaining information about the
poloidal spin-up. Asymptotically, Y is either O, or if that state !

is unstable, Y saturates at a finite value Y2 <e 2 depending on

viscosity. Furthermore, p and w keep their initial values during
the fast time scale and in addition were shown not to depend on the
intermediate time scale £

We have to go to time scale ty in order to find the behavior

of p and w. We multiply the ¢ - component of momentum and continuity,

Equs. 1.17) and 1.18), by hr he h¢ , and, taking the average over 6,
find the 0(-7152) contributions. We assume the short time behavior
to have reached its time asymptotic state, so g%- = 0., Since p and

w do not depend on the intermediate time scale t,, we then have

1
formally

<

<“e\r‘g\9£\:.§: (-FV;;;))GL = = (('w'} + <%'(R1w.r fw,,jc.c)@s.l)

ot
Q Lh.2*awl
. . w
*‘a‘tf rha 2"(,090 )>’Z°'l
so the derivatives with respect to t, average out. The same is true for
the continuity equation, and both results hold to O(n ezl Ub is allowed

to vary on the £ time scale.
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We therefore find

2 (pu)+ L2 fr[punaw +duny (pry # R k€ @rydpllf

= Py KAk Ry
and

B . oo g o i ' : Jite
g:i-lf *%a%{"[f Upy Tz U (Ry ¢ e (‘?'H)f)J} °Q

5.3)

where P?) is the (average) source of ¢ - directed momentum. Now if ub=c0nst-
none of the quantities in 5.2) and 5.3) with the possible exception
of R, and w

1 1 depend on the intermediate time scale t,. Therefore we

1
must conclude that neither Rl nor w, (and therefore neither Vv, nor Y)
can depend on ts since all three quantities are interrelated through
the ideal MHD relations. Consequently the time scale t though

formally necessary, in no way affects our final results}to the order

studied, unless Ub is allowed to vary with time.

Actually, viscosity averages out exactly in the toroidal angular

momentum equation 5.2 see Appendix A, Equ. A.16).

From the above we see that we may take the asymptotic state of
the fast time scale as initial conditions for our equations evolving
on the slow time scale. If our source yields plasma with the local

speed

P‘? = Qw 5.4)

For the dependence on R] of the viscous term in 5.2) and 3.14) see
Equ. 4.8) or Appendix A. However, as pointed out in the paragraph below

5.3), the flux average of Fv¢ as defined in 5.2) actually vanishes exactly,

i.e., to all orders in the expansion.
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we see that the state w = 0, although being a solution if Y = O is
stable, is unstable by itself, i.e., any initial perturbation

would grow, since the source simply delivers angular momentum at the
local value. w will therefore tend to a limit # O with this special
source arrangement. The density however always changes, until t2 + o,
and the time-asymptotic state is reached. This final state is

unique - it does not depend on the initial conditions or on the

state reached at the end of the fast time scale.

We briefly consider here, as an illustrative example, the final

state for the special, source - free case:

D - - 5-5
lc,é & Q 0 )
Letting é% = 0 and subtracting w times the continuity equation

2
from the momentum equation, we find

w, + cw= 0 5.6)

We may rewrite this result using Equ. 2.12):
. N 'R; ; =
W, + 6w = zew——Y(F r2e) = O

and using Equ. 2.14) for Rl:

ze* (w-Y) - Yw* =0 5.7)

We are mainly interested in the solution under the assumption Y/c <1,

SO

5 , Y*
w=Y (1+3 ‘-_'-;,-rw) 5.8)
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Thus, apart from an inertial correction due to the rotation, w = Y,
asymptotically. The flow in that case becomes parallel to the magnetic
field and the r-component of the JI - independent (ideal MHD)electric
field SFzr](see below 2,16) vanishes asymptotically on the slow time
scale. Thus it is clear, even with no sources, that wr would

tend to grow from an initial value of zero unless Y = 0 and remains

S0.

The final density profile now follows from continuity, The only

solution regular at the origin is

5.9)

f Uy, t e (R,t—e(h—y)f) 6

which, on rewriting ¢4, . and uﬁ according to Equs. 3.5) and 3.9), reads

1

T e oy w
PRV N N G Tep+ Y=o > 10}

-1 RZCE

We finally use the ideal MHD relation 2.3) to eliminate /1fJ
Equ. 3.14) to eliminate R,,and replace w everywhere according to

Equ. 5.8), keeping all quantities correct to first order in Yzf‘c2

(‘*J’) "'““g Ltf( s )] [H- ]+ :(r‘FJ’t:O 5.11)

The final pressure profile therefore depends on whether or not the

plasma rotates.

The last term in 5.11)}is simply the q?pxj3 force due to the

toroidal current, and if we define a local poloidal B value simply
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as the ratio of the pressure gradient to that part of the I xB force

needed to balance it, we find, for a nonrotating equilibrium, [13-

P =

For a rotating equilibrium, the relation becomes more complicated;

1

’ ; 5.12)
7+13*

but, qualitatively, it is easy to see that Bp would be reduced

by inertial effects.
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Appendix A: The Viscous Force.

With reference to Equs. 1.5) and 1.6) [19:| and taking into
accountiik:o and a/3¢ = 0, the components of the viscous force
entering the terms M in our equations of motion are:

01 2
Foos ﬁi "%} -3D (_bf_ ke | be 24y

ﬂ,ri«.ea‘“ .L,h‘;. or
— _ | D -
I_VE'MI%" + 22 (o bD)
&rheh¢39
~ 3D ( be 24y
hghg 28
S N
Fv¢ ’Ar‘e ‘h;. E«— (‘e‘r}{“P Le’ "¢ D)
with 3
b = '_/B

D contains velocities, but we only need to consider the ideal

contributions independent of lz , as the coefficient/lt is

itself considered 0(:7 ).

A1)

A.3)

D :/'([ be 3V9 ¥ .EQ.EO(" _B__Vs, ‘ bd 32*;(‘/9[,?{_.%5 ) -

«glg 39 -'t?le oG h¢, ae
|
Ay

rTe

(J,L By V, )]

i
3

A.4)
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Now

- : = 1: 2
b¢_1+0(e)) 4. b, /‘_+O(e)

-7

Sorting out orders’we find D has no 6 —-free part, so
T =0(p) F,, = O(eD,
F,,=0(0), Fy=0(D)

to lowest order. Also D is Og/itét). We want to order such that
viscosity enters the equations of motion at the earliest possible
time (maximal information ordering). But the 6 - component of
momentum, Equ. 1.16), has an 0(7) part, so D itself should be

0(-7 ), i.e.

y/% - C} (12//é 2 ) A.5)

In our expansion, we need the lowest orders in € of Fv
directly,but the next order only averaged over 6 . In all cases,

D itself is required to lowest order only:

e

. ¥ . P g ; i Ve A,
D% g w6 L (wve(Y-w)) o [exenVeg o
-1

From our ideal MHD results, we may eliminate Ui by Equ. 2.6)

%= - (F e o)y

or

, |
: [€ (n'?)‘/+?_—}"1fz]="é'-§’y A7)




_A3.-.-

and using Equ. 2.12), viz.,
\V4 ﬁ?
W, - €w = */(—-’ *26)
S
we find

D= A [% -;‘L‘ + e)‘/’m@

rll__,

Let us introduce the abbreviation

A = “ [.’:,R_’-}-e]

rh, L3p

= CJ'L;(@ ‘) = O CTYT)

We may now collect the results needed in Section 3:

D= AYsm© +--
A F, = - (&Y)'s0i@
AL@ ﬁLe = =LkY B ..
Ay Bg = %E-f&YwEi-

And finally the two needed mean values (see, for example, 3.12)

;é <(‘£‘e Faﬁs >> = %: ekY .

and
Lo by By p = O

where this last result is exact —— cf. Equ. A.3)

A.8)

A.9)

A.11)
A.12)
A.13)

A.14)

A.15)

A.16)
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We see that k becomes a known function of the '"free functions"

of ideal MHD.
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