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Abstract

The results of an analytical and numerical study of some effects

of collective fields upon transverse oscillations of a REB in an
axisymmetric magnetic field are presented. Intra-beam and beam-
beam effects in multiturn systems are included and the various
forms of space charge induced coupling investigated. The situation
described here is relevant to the first revolutions after injection
of intense beams. Special account is given to self-inflection of

a REB in an Electron Ring Accelerator.
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A Introduction

In this report we present the results of analysis and numerical
computation of some effects of collective fields upon the trans-
verse oscillations of intense beams moving in an axisymmetric
magnetic field. We consider primarily beams with substantial
coherent transverse motion, as is present at injection during
beam inflection and capture. The immediate motivation for this
work was the observation of collective phenomena during beam in-
jection in Electron Ring Accelerator experiments. The results
will, however, be applicable also to other cases in which a beam
has coherent transverse oscillations, as may for example develop
from growth of an instability such as the resistive wall instabi-

lity or the trapped charge coupling instability.

It has long been known that capture of charged particles into
closed orbits in magnetic fields, either constant or slowly
varying, can be significantly influenced by particle space charge.
The existence of space charge effects is manifested by a non-
linear dependence of captured beam upon current injected, and in
some cases by capture of appreciable beam without the use of an
imposed time-varying inflection field.

Various collective effects have been suggested as of possible
_importance in the inflection process. One that Kerst L con-
sidered in connection with early betatron experiments was the
change of magnetic guide fields produced by the injected electron
beam.

2)

Samoilov and Sokolov observed electron capture into a fixed-
field betatron. This now seems to be almost certainly the direct
consequence of azimuthal clustering from negative mass effects.
(The authors did not advance this explanation of their observa-

tion.)




In the present report we restrict ourselves to consideration of
the influence of transverse collective beam forces upon betatron
oscillatiohs about a fixed equilibrium orbit. We exclude the in-
fluence of wall images, of the time-varying inflector field, of
time variations in the main guide field, and of possible coupling
to azimuthal motion. By making these exclusions we obtain results
that exhibit clearly the importance of beam space charge alone in
modifying the transverse oscillations. For application to an
actual experiment it may be necessary to extend the numerical com-

putations to include image forces and time-varying applied fields.

Initially we considered only radial oscillations. Axial motion,
taken to be uncoupled and of constant amplitude, was not included
except through its effect on the beam charge distribution. We ex-
plored this one dimensional problem analytically using a simple
rough approximation, and solved it numerically by following the
motion of phase boundaries in r-p. phase space (1D-BOUNDARY MODEL) .
A brief summary of some of these one dimensional numerical results
has already been published as part of a general review on the
Garching ERA experiment 32 Subsequently we have studied in some
detail the effect of coupling to z-oscillations by following
numerically the two dimensional motion of assemblies of inter-
acting macroparticles (2D-PARTICLE MODEL). This work is described
here in the sequence in which it was done. In Section B we outline
the problem and formulate the approximate analysis that indicates
the potential importance of transverse beam fields. We develop
also some general theoretical background. In Section C we present
the computational results. Finally in Section D we discuss the
limitations of the models used and the significance of the results.

Some of the computational details are given in the appendix.




B Analysis

Historically the first effect of the internal transverse beam
field to be calculated was the shift of the individual particle

betatron frequencies 4)3)6)

. We are primarily concerned with
entirely different phenomena that follow from the exchange of
oscillation energy between individual particles or assemblies
of particles. All of the results that we obtain for the change
in phase space configuration of one beam and the even larger
effects of interaction between two beams are simply the conse-

quence of energy exchanges between multiply coupled oscillators.

An exploration of transverse beam coupling was first carried out
here four years ago for two interacting beams treated as parallel
rigid charge cylinders. It was found then that the force between
two 100 A beams in the Garching ERA experiment was adequate to
transfer substantial radial oscillation energy in only a few
cycles, and this interaction could therefore influence particle
trapping.

1. Phase Space Distributions

The one dimensional periodic motion of an assembly of particles

is most conveniently described in an appropriate phase space.

Following standard practice, we represent the one dimensional
radial configuration of the beam by a distribution f (r, pr) in a
two dimensional r-p,. phase space. With fluctuations from short
range forces and coupling to other degrees of freedom excluded,
the function f satisfies the Liouville-Vlasov equation %% =0,
phase density in the vicinity of any phase point remaining con-
stant in time. In particular, if f is initially a positive con-
stant within some arbitrary phase boundary and zero elsewhere, the
system is uniquely defined by the configuration of the phase boun-
dary and the enclosed area is invariant in time. Such . a sharp-

edged distribution may be a rather good approximation to the actual




distribution in many particle beam situations in which the phase
area is limited by apertures and physical walls. It is used in
that part of the present work concerned with radial motion assumed
uncoupled to axial motion.

When a uniform density phase space distribution is bounded by a
phase orbit, which implies for a linear force law that the phase
area is centered on the equilibrium point, it constitutes a sta-
tionary state.

If the motion in the two degrees of freedom is uncoupled, then
points in each of the two separate phase planes move so as satis-
fy Liouville-Vlasov equations and maintain both separate phase
areas invariant. The motion can, however, remain uncoupled in the
presence of space charge only if each phase space distribution
separately constitutes a stationary state, and if charge distri-

bution in the r-z plane is such as to introduce no coupling.

It must be kept in mind that the two component phase plane dis-
tribution taken together do not uniquely specify a state for the
system, and in particular they do not determine the charge dis-
tribution in the r-z plane.

7) is the one in which the beam has

One case commonly analysed
elliptical cross section and is of uniform density in physical
space. In this case the space charge force increases linearly

with distance from the center of the beam and it introduces no
coupling between the two components of transverse motion. The

only effect of the space charge force is to change the oscillation
frequencies, to reduce them if the beam contains no neutralizing
trapped particles of charge opposite to that of the beam particles.
The usual "space charge limit" is the calculated beam current that
ould shift the oscillation frequencies enough to cause loss of

particles as the result of an accelerator resonance.




Within this limit the motion in the two separate phase planes
remains essentially uncoupled, and with adiabatic variation of
external focussing or of space charge forces, stationary states
remain stationary states despite change in the shap e of the
beam cross-section and of the boundary orbits describing the
distribution in the separate planes. A uniform density distribu-
tion of elliptical cross section in space, togehter with ellip-
tically bounded uniform phase density stationary distributions
in the separate phase planes, is obtained from a uniform sur-
face density of points on a constant energy surface in four

dimensional hyperspace. Then the distribution function F

becomes {(YIR’ 2, ?a} S (E S Eo)
with L L
- E = AAM(:p:.;.P,, .(.4/1&}71 + %&ti’

(The kr and kz include the space charge potential and are separable
for the postulated uniform density elliptical beam.)

This, the well-known microcanonical distribution, does not nece-
ssarily correspond closely to any realizable experimental beam.

In particular it imposes an energy correlation upon the motion in
the two degrees of freedom requiring particles with maximum os-
cillation amplitude in one component to have zero amplitude in the
other, so that all particles have equal total oscillation energy.

2. Linear Decomposition of Coherent Dipole Mode

The simplest non-stationary state of a beam to deal with is the

one produced by the imposition of coherent oscillations on the
entire beam in one or both degrees of freedom. A coherent oscilla-
tion sometimes referred to as a dipole mode is an oscillation in
which the shape of the beam cross-section is unchanged. It is easy
to show that with linear external focussing forces such an oscilla-

tion may be treated as independent of all other motion of beam




particles relative to the mean coordinates of the beam, whether
this other motion be stationary or non-stationary. The total
motion of any particle is therefore decomposable into the sum of
the motion of the center of gravity and the motion of that par-
ticle relative to the center of gravity.

This decomposition theorem, analogous to the similar theorem for
the planar motion of points in rigid bodies, follows immediately
from the equation of motion of a beam particle. Consider the case
in which the coherent oscillation of a beam is radial. We may de-
note the displacement of the ith particle from the equilibrium
orbit ry by X mUh =,

and write the equation of motion . -
mXx, = ‘{"l‘

Let X = X + W X = /\/"Exi y Zu;:O

-~

Write ;: = "*o(x * “4') t C(“i,“:) (w; is the z particle coordinate

relative to the center of mass)

The total force is the sum of the linear external force characte-
rized by kO and an internal collective force described by the
arbitrary function € (M.‘,w.). Since C(M.‘.Wf) is composed of equal
and opposite force pairs between particles, Z é (W, W.')= 0.
If we put the value for ?ﬁ into the eugation of motion and sum
over all particles we get

mx == kX

The center of mass oscillates at the frequency determined by the
external force constant. The beam coherent frequency is the same

as the single particle frequency without space charge.

Next after subracting the terms mx = -kox from the complete
equation we have

mu, = = koug + C(ui,w)

For the arbitrary collective force function C:(uhua)every particle
has a different frequency and there is internal coupling between




the two degrees of freedom. At present we are most interested in
uniform elliptical cross-section beams for which the two degrees
of freedom are decoupled and C (u.-,w,-) :,Q‘ w; - Then the equation

of motion is: %
w u, = "(’Qt" ’&4)“'{'

The individual particle motion relative to the center of mass is
in this case characterized by one "incoherent frequency", reduced
below the single particle frequency by the mutual repulsion. Des-
pite its elementary character (or perhaps because of it) the de-
monstration that the coherent motion is independent of beam inter-
nal behaviour, however non-stationary, is very helpful in facili-
tating the understanding of the beam-beam interactions that we
have studied numerically.

3. Oscillation Frequency of a Quadrupole Mode

Beams that are non-stationary because the phase space boundaries
do not lie on particle orbits are characterized by additional
frequencies. If the non-stationary boundary of a given beam in one
phase plane is an ellipse not too different from the stationary
state ellipse, it can be shown that the non-stationary ellipse
rotates in the phase plane with a frequency intermediate between
the coherent frequency and the incoherent frequency defined in the
preceding section. The resulting oscillation of beam cross section,
observable at a frequency twice the phase space ellipse rotation
frequency, is referred to as a quadrupole mode. In principle such
an oscillation can transfer energy by parametric coupling to the
other degree of freedom, but this energy transfer will be small un-
less the two quadrupole frequencies are nearly equal, as with a
beam of nearly circular cross-section in a magnetic field of index
n close to 0.5.

The frequency of the beam quadrupole oscillation = viewed in the
phase plane as a consequence of rotation of the boundary ellipse -

can be obtained simply from the condition that individual particle



energy variations occur at the rate consistent with the rate at

which the time varying field does work on boundary particles.

For simplicity of representation we scale the momentum so that
"the stationary orbit in the X=Py plane is circular and of radius
a. The non-stationary state is an ellipse of axes ao:f a,

with 4,€ Q, . Phase motion in the z-p, plane is stationary with
amplitude bO and regarded as decoupled from the x-motion. (This
requires the two frequencies to be substantially different and in-
commensurate.)

The beam cross-section is then of uniform but time varying density
within the time varying ellipse

() + (%) < 4

As a preliminary to calculating the rotation rate of the non-
stationary boundary, we note that so long as the boundary remains
elliptical, i.e. so long as it does not develop higher harmonic
deviations from the stationary state circle, the amplitude a must
remain constant. This constancy is required, given the postulative
independence from z-motion, by conservation of total energy and
phase area. Total energy is proportional to the second moment of
the area, wm, = gsz and with constant total area the second
moment determines a uniquely.

The potential of a relativistic beam of uniform charge density
within a long elliptical cylinder is

¢ =—A/0-z. 2-}5(5&24' kyz) :

In the present case charge per unit length (A- S?Qb is const.,

gt 2 (bens)

abla+




/
If b = bo and a = a_ - a, c.oslth then

aé < - 4—. sz A + (a—4 + o >Cb2|wx,+
Raqs d" Qe Qet9ve
SX Qc(ﬁo*")

The calculation of particle frequency W, includes the constant
term h-)/fa.(q,...],,) in the space charge field, and we sub-
stract this to leave the periodic term

a_ ’A X Q, ! = A 2&0+L0
. @ dw, t e VeI
EP ™ -3-—6—,,—— x ' J * at(a,the)
This field does work on the particle of charge q at x = 3'1;4(“&1"*J>
at the rate

- kg q a, ’ iw(wet+d)e w, w(wt+d
é\%/ = tv = J U’q a_ 2Cﬁ2‘“’xt i SM(W.\- * >~?w u;(w )
ltd_zzﬁiﬁgf s 2wk = 2-("0&'*“";\)

1

Initially when t = O, %% is positive and has its maximum value
for f = 45°

{
Integration over a complete period with wy® W, gives the same

, and it has maximum negative value for ’ = -45°,

result. Furthermore all boundary particles from O - 90° ahead of
the ellipse major axis gain energy and all O - 90° behind lose.

This radial motion of boundary particles constitutes a boundary

wave that travels forward relative to the particles themselves,

in effect turning the elliptical configuration at an angular

'
velocity Wy exceeding the angular velocity W, of the particles.

We now calculate the relation between W, and LJ; from the con-
dition that a particle goes from minimum to maximum energy when
relative to the ellipse it moves from the end of the minor axis
to the end of the major axis. With kO and k1 defined as in the

preceding section, the energy iﬁcrease is 2
-4y

oW = % (k- ‘*4) (“e“"qa)z" @0
= Qa.a, (k- &)

This increase is equal to the integral of over the time from

aw
) dt
t = 0 until (Wy=~wg )t = /2. The value of is ¥/2 to corres-
pond to minimum initial particle energy.




(B.1.1)

(B.1.2)

Since gq,€ A, , we may replace the variable particle amplitude

¢ by a,. Then T2 (wy = wy)
2 ' .
t=0
If we set wr Wy = 0( the integral can be written

/ Caa(?w,‘ [Sw@w,ﬂ uoCZocf) COQWH) ’aw(zad 0#

Since W, »°( it is a sufficiently good approximation to replace

Q) miml ) “2uwit
o\ LW, QVV. Wy by its average value, which is O, and 3§ Wy
by its average value, which is 1/2. (The integral can in fact be
done exactly if w,,==h°( .)

T = 4/;_] Swm 2ot ot -.g;‘

J 2 9 ao Q, WK/o( by ZQ. a, (ho" kn)
. % 4> 9
Since (“)bzx = kO/m W = (R - kG)/(M ) k4 = am)

/

Then

we have

2 CS 20°+Lo w s 2(0&
(o, - ) 2 (as+bo) " ’

independent of amplitude a, -

In a beam of circular cross-section 3o bo and we_obtain, writing

all frequencies in units of the gyro-frequency = V’/R
O(/ = 3/ ( yﬂl/ : - ’Q
' 4 Y

For completeness we add the standard formulae for the space charge

shifted incoherent betatron frequenc&es 1/2_
- Wy o - e K__.
W = 2 <4 " /A%(%-“') 5‘;>
(2
- W
= zf = L("" /“b(a,+b) o’")

with = Y = 2 total number of electrons in the ring.
/“ /J R WeJ € 'N o




4., Parametric Drive of Quadrupole Modes

In the preceding section the quadrupole mode oscillation fre-
quency of a single beam was derived taking into account the
collective field of this beam.

In a two beam system this collective field is perturbed by the
presence of the second beam. The perturbing frequency is then
given by the frequency of beam-beam crossings, which is twice the
coherent frequency. It may occur that twice the quadrupole mode
frequency matches with the perturbing frequency, in which case
resonant growth of the quadrupole mode should be observable (para-
metric resonance).

For a single beam resonant drive of a quadrupole mode in one phase
plane is also possible if in the other phase plane a quadrupole
mode is excited with sufficiently strong amplitude. The resonance
condition requires that both modes oscillate with the same fre-

quency.

It is a familiar result of parametric resonance theory that the
frequency matching condition is weakened with increasing strength
of the perturbing force. Besides this it should be also observable
that resonant energy transfer to a quadrupole mode occurs if the
phase shift with the driving force is close to /4.

5. Collective and Single Particle x-z Coupling

As we described in the preceding section density variations in one
phase plane may affect quadrupole modes in the other phase plane
through the action of collective fields. This is an example for
collective x-z coupling, which in general shall be understood as
coupling between collective types of motion, i.e. motion for which
the phases of individual particles are in some way ordered. Of
different nature is the single particle x-z coupling. It may in
principle already occur in stationary distributions if the trajec-
tory of a particle in the x-p, plane depends on its initial con-
ditions in z-p,-




C Numerical Results

1. Models

Computer calculations were done using the following idealized model
of the real physical situation:

a) through a snout at radius Ton relativistic electrons with mass
are injected into a magnetic mirror with field index
W‘-‘% %R’ they oscillate (coordinates x, z) about an equi-
librium orbit with radius Ro and it is assumed that ]’, 7 RO
are independent of time.

b) transverse collective forces are calculated neglecting radiation
effects, image effects and beam curvature. Thus, the total space
charge force may be assumed 145‘; times the electric force bet-
ween charge ! rods in free space.

Although transverse beam interaction is a two-dimensional problem
including x-z coupling, a few important mechanisms may be already
investigated in a one-dimensional picture involving only the x-
degree of freedom, which shall be described first (for more details
see Appendix 1):

1D - BOUNDARY MODEL

In this model the assumption was made that in X=Py phase space
the den51ty within an area representative of the beam is unfi-
form. A number of particles on the boundary of this area were

chosen and their motion calculated by integration of the rele-
vant equations of motion.

The space charge forces acting between particles (rods) were
calculated at given time intervals by re-evaluating the phase
space figure whose contour can be drawn through the boundary
particles, and assuming that the charge density is proportional
to the px—width of that figure at a given value x.




This way the behaviour of a large number of electrons in the
interior of the beam was simulated by using only a small number
of particles on the contour and by making use of the properties
of phase space representation.

This model was used in sections C.1 and C.3 to demonstrate that
quadrupole oscillations and beam-beam energy transfer are essen-
tially 1-dimensional phenomena.

The disadvantage of this model is the occurrence of boundary fila-
mentation (which causes computational problems) and the elimination
of x-z-coupling. For this reason a 2-dimensional model following

an assembly of macroparticles with x-z coupling was set up (details
Appendix 2):

2D - PARTICLE MODEL

At a given cross-section of a beam the transverse forces are
calculated as forces between many infinitely long parallel
cylindrical rods into which each beam is subdivided. These rods
may be considered as "macroparticles" in x-z, carrying a small
fraction of the total current. They are injected into the mirror
field (linearized about the equilibrium orbit) with arbitrary
initial distribution in X=P,~2-P, - In section 6) allowance is

given for stripping of particles at the injection snout.

In most of the cases the initial distribution COR was applied,

in which 144 macroparticles per beam were symmetrically distri-
buted in X-P,~Z~P, with a correlation such that the total initial
energy Ex + Ez was equal for all particles. Only in sections 2)
and 6) a distribution UNCOR was used, for which 49 macroparticles
were distributed in X=p,~z-P, in such a manner that Ex and EZ

are uncorrelated. COR is closer to a microcanonical distribution
and gives a fairly uniform density. UNCOR has a density with a
slight peak in the center and initially rectangular beam cross-

section.
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Concerning the plots we remark that each macroparticle is
labelled by a combination of two numbers or a number and a
letter. The print-out indicates the position of the particle
centers. If the output points lie closer than the line printer
spacing then only the last point is given.

Computer runs were performed with the following parameters, allow-
ing for variations as indicated below

R, = 15 cm (equilibrium radius)

n = .4 ... .65 (field index)

/& = 4 (relativistic mass factor)

Jj = O ... 600A(beam current p.turn)

s = 15 ... 18cm(radial position of injection snout)
dSn = 1.5 cm (snout diameter in x)

dsnx = 1.5"¢em (snout diameter in z)

Aavii (initial velocity spread in x)

zxvz (initial velocity spread in z)

Unless the contrary is said, & v_, ZLVZ are chosen such as to

X
have stationary beam cross sections in the absence of space charge.

& number of particle revolutions
T number of injected turns

In contrast to a real experiment the injection snout shall not
cause particle loss, except in section 6) where optimum conditions
for self-inflection are looked at.

The results of computer runs shall be presented in the two phase
planes X-v, and Z=V_ with a scaling for the velocities that makes

the initial emittances circular.
2. Quadrupole Modes, Linear and Non-linear Regime
Single beam runs with phase space distributions (referring to the

motion relative to the center of mass) that deviate from stationary
are shown in fig.la for the 1D-BOUNDARY MODEL.




These examples were in good qualitative and quantitative agree-
ment with runs using the 2D-PARTICLE MODEL, for which currents in
the range of O ... 600 A were investigated. We observed that for
currents in this range the lowest harmonic of the phase wave
(quadrupole mode) was largely dominating for several betatron
periods which allows a check of the validity of formula (B.1.1)
for the phase wave speed. This shall be done here for tﬁe radial
mode, where the initial emittance was chosen such that at zero

current the beam cross section is exactly stationary.

400

3 strongly non-
J [AJ 200 400 600 . shah. el thanae

)‘xavr-: (n = .55) A 617 .67 367 67

coherent radial

frequency
2& single particle 5% .44 535 =5
with theor.space

charge shift
;Z single particle £55 .46 .4 =
time-averaged

from computer runs
QA average half .8 .85 .95 1.05
radial beam diameter

Ibm]

q1 amplitude of .05 & 5. S5
quadrupole oscilla-
tion - [enm]

°Q$" theor.relative .091 .25 .50 =

shift of mode
Ve frequency

o(/j-(’- computational rela- .091 .15 w25 -
tive shift of mode

N4
[}
x

frequency

);' computational .60 #53 .50 .57

mode frequency

Table 1. Quadrupole modes for 2D-PARTICLE MODEL




We observe good agreement of the theoretical and computational
values for‘%ﬁi for small amplitude modes. For larger amplitudes
the theoretical values are too high, as one should expect.

!& was theoretically determined from (B.1.2) with an averaged
value for agr bo taken from computer runs.

The theoretical and the computational values for the single par-
ticle frequency (); andz ) differ for increasing current. This

is due to the fact that the phase velocity of particles oscillates
with the frequency of boundary oscillations. The time-averaged
value 2 then shows less space charge influence than the theoreti-
cal & determined from a corresponding stationary distribution

(obtained by time-avering the dimensions of the fluctuating beam).

The qualitative features of phase wave propagation in the non-
linear regime (large amplitude mode, a1KaO) are displayed in

fig.2 for a run with 400 A, n = .55 and an initial radial emittance,
which was stretched in Py and compressed in x by a factor of 2.

We observe the following characteristics (for the motion relative
to the ©c.o.m.).s

a) single particles rotate in X-p, with strongly oscillating phase
velocities. Already during the second phase revolution the
boundary ellipse starts developing tails, which are slightly
accelerated compared with the main body of the distribution.
Particles with large initial amplitude and favorable phase are
locked in the tails and rotate with the mode frequency

b) the relative shift‘ﬂ& of mode frequency is less than for small
amplitude modes, where it was independent from the amplitude
a-.

Maximum aplitude particles locked in tails may be in resonance with

the mode frequency &' for many periods. They can be driven then to

still larger amplitudes and disintegrated from the bulk of the dis-
tribution.




In addition to this we found a change in amplitude of the axial
quadrupole mode. From an initial value of .1 cm it grew to
approximately .3 cm within the first two betatron periods. During
this time the z-phase wave was on the averqge 45° ahead of the
x-phase wave, which favoured parametric amplification of the z-
mode due to the dependence of the axial space charge force on the
radial beam dimension. The same run with small initial radial mode
amplitude has not shown such x-z-coupling, because J{ was not
close enough to y'

2
variation in radial beam dimension (which gave the strength of the

(linear regime for the mode frequencies) and the
driving force) was too small.

The parametric action of a large amplitude quadrupole mode in one
degree of freedom on a quadrupole mode in the other degree of free-
dom is an example of intra-beam collective coupling via electro-
magnetic fields. Independent hereof is the single particle coupling
which shall be discussed in the next section.

3. Single Particle x-z Coupling

Single beam runs with 200 A were done at n = .5 (fig.3) and

n = .55 with the 2D-PARTICLE MODEL and initial distribution UNCOR.
The density being slightly peaked in the center of the beam, some
coupling between x and z was expected in this case and we observe
the following characterisitics:

a) phase slip; particles with equal initial position in X-p, but
different amplitudes in z-p, show after some time a phase slip,
which is maximum for vanishing z-amplitude. This reflects the
fact that the x space charge force averaged over the radial ex-
tent of the beam is maximum at z = O.

b) x-z energy exchange; particles, whose phase angles in x-px and
z-p, differ by an amount close to 90° exchange energy between
both degrees of freedom if the field index n equals .5. In this
case the amount of energy exchange is of the order of 5% per
phase revolution, whereas n = .55 show® no directed energy ex-
change.




4. Beam-beam Energy Transfer and Self-inflection

With an initial coherent x-amplitude (R = 15 cm, E_piP 16 or
17 cm) the energy transfer between two sequentially injected
beams as well as the distortion of individual beam's phase space
areas is shown in runs with 200 and 400 A at different n-values.

1D - BOUNDARY MODEL:j = 200 A; Lini® 16 cm; n = .55

An extra distortion of the phase space areas visible after one
revolution comes from the external force which was not chosen
harmonic in this model and leads in the X=P, plane to a

slight acceleration of particles with larger amplitude (fig.fp).

2D - PARTICLE MODEL:j = 200, 400 A; Eos ™ 17, 16 cm;
400 A (n = .55)
after two betatron periods of interaction of the first and

second turn the amplitude of the c.o.m. of the first turn was
reduced by a factor 1.72 and for the second turn was increased
by a factor 1.22. The phase angle between the two turns re-
mained nearly unchanged (i.e. 120° degrees) , whereas they both
lagged in phase by 30° (compared with zero current). This
corresponds to a reduction of the coherent radial betatron fre-
quency of~ 4% due to beam interaction (£fig.5).

200 A (n = .55)
the exchange of energy and the phase lag where half of the full

current values.

400 A (n = .45)

after two betatron periods of interaction the amplitude of the
c.o.m. of the first turn was reduced by a factor 2.16 and for
the second turn increased by 1.26 with a practically unchanged
phase angle between the turns (fig.6).

n= ,4 (400 A)
after two betatron periods of interaction the c.o.m. amplitude
of the first turn was reduced by a factor of 2.4 and for the




second turn increased by a factor of 1.28. The phase angle
between the two turns (initially 81°) was gradually decreas-

ing.

n = .4 (500 A)
the energy transfer during the first two betatron periods is
stronger than before, but during the third period it stops

because the phase difference between the turns gets zero.

The general conclusion for the influence of the field index n on
self-inflection is the following: The (initial) energy exchange
between the turns is more intensive if the phase angle between
them is small. As soon as they have very different coherent ampli-
tudes their phase difference becomes unstable; it decreases (and
reverses sign) if it was initially substantially less than 90°¢

At zero phase difference energy transfer (per betatron period)

is zero and changes its direction. This shows that for optimum
energy exchange a phase difference of about 90° is most favorable

because of its good stability.

We remark that with the amplitudes of coherent motion obtained
after two betatron periods the total energy in coherent motion is
slightly reduced. This defect in energy apparently is related to

the excitation of a quadrupole z-mode (to be studied in section 4).

The lowering of the coherent amplitude of one beam by beam-beam
interaction opens the possibility of self-inflection, which will

be discussed more extensively in section 6).

For 1 cm coherent amplitude (rSn = 16 cm) beam-beam interaction
assumes a pronounced nonlinear character which results in distortion
of the phase space areas for high current. This behaviour is un-
favorable to energy exchange. See fig.7 for the 2D-PARTICLE MODEL
and fig.1b for the 1D-BOUNDARY MODEL.




5. Parametric Drive of Quadrupole z-Mode - Two Beams

Two 400 A beams were sequentially injected 2 cm off from equili-
brium radius. n varied between .45 ... .65 and the initial dis-

tribution COR was chosen.

Fig.8 shows a parametric drive of a z-quadrupole mode for either
beam. At n slightly larger than .5 the frequency of subsequent
x-crossings of the beams is expected to be twice the z=-quadrupole
mode frequency which yields optimum resonance conditions. Accor-
dingly the n = .55 run shows maximum growth of the mode amplitude,
which is doubled within approximately four revolutions of the

second beam.

At n = .45 no noticeable growth of the z-quadrupole mode was ob-
served; at n = .65 a slight growth occurred. At n = .45 in fact
the z-mode frequency is too low to match with the driving fre-

queny, whereas at n = .65 a high enough current can in principle
give matching of frequencies if the space charge shift is taken

into account.

For 200 A beams (at n = .55) the effect was reduced according to
the lowered driving force which results in about half the growth
of amplitude compared with 400 A.

At small coherent x-amplitudes the nonlinear character of beam-beam
interaction mismatches the resonance condition and there is no pure

quadrupole mode growing (see fig.8d).
6. Parametric Drive of Quadrupole x-Mode - Two Beams

The same mechanism leading to amplification of a quadrupole z-mode
may in principle also drive a guadrupole x-mode. In fact the run
with n = .45/ = 400 A mentioned in the preceding section showed
growth of this mode by a factor of 1.5 during the first three re-
volutions of the second beam (fig.6). At n = .55 (fig.5) and more

evidently at n = .65 no particular growth of the x-mode was observed.




In view of our theoretical understanding this behaviour should
be looked at in the following way:

In order that growth of an x-mode can occur its frequency (in

phase space) must be close to half the driving frequency. An
initial phase relation between driving force and mode can thus

be maintained for at least several mode periods. If in addition

the initial phase difference was such that energy transfer to the
mode is favoured (d\F\" ?'[q,) , we may expect a net growth of amplitude
during only few periods of the mode.

The latter requirement is demonstrated in a comparative run

(n = .45/ = 400 A» where the initial ellipse in X-p, was rotated
by 90°. In this case practically no growth of the x-mode amplitude
was observable, although the frequencies matched well.

Phase and frequency of the driving force result.. from the combined
effects of radial beam crossings and of oscillations of the axial
beam width. If the amplitude of axial oscillations is large as in
the case n = .55 where parametric excitation occurred, they may
shift the phase of the resultant driving force and thus destroy the
growth conditions for the radial mode. This effect should contri-
bute to the case n = .55 where nearly no growth in the amplitude

of the radial mode was observable.

At n = .65 mismatching of frequencies can easily be identified as
the reason why no growth of the radial mode occurred.

For weaker current - where the resonance condition is satisfied
even more accurately - amplification of the radial mode is lowered

according to the weaker driving force.
7. Self-inflection in Multi-beam Systems
To establish optimum conditions for self-inflection within the frame-

work of the present model several principles have to be taken into

account. These principles also have an important bearing on active




inflection, which they may alter substantially in many cases if
the current is high enough.

a) Beam-beam energy transfer is most favorable if the initial
phase difference between the beams is about 90,

b) Axial growth of the beams due to parametric excitation can
be avoided if n< .5. This favours on the other hand radial
growth of the beams which, however, is less harmful to the
holding power than the observed axial growth.

In the following the initial distribution COR with 49 macroparticles
per beam is used and allowance is given for particle stripping at

the injection snout.

Two-beam system:

It is clear from above observations that a two-beam system can at
most achieve self-inflection of one beam (the first beam, unless

n‘> .75, where the situation reverses).

Optimum self-inflection (~ 70% of the first beam) was obtained
computationally at n = .4 or .45 (j = 400 A, r = 17 cm), see
fig.8. Complete inflection of the first turn failed because of the
large quadrupole oscillation amplitude of the beam (parametric
effect) during the fourth and most dangerous passage at the snout,
which indicates that higher current cannot increase the rate of

inflected current.

At larger distance snout-equilibrium radius (rSn = 18 cm, n = .4,

j = 400 A, (see fig.9))energy transfer was too weak. Although 60%

of the first beam was saved after the fourth revolution, it had a
coherent amplitude of 2 cm. This shows that the snout should be

so close to the equilibrium orbit as to just leave enough space for
the (inflected) beam to pass - of course taking into account the

growth it experienced owing to space charge and parametric effects.




Three-beam system:

With about 90° phase difference between the beams (n = .4, .45,
fig.10) the first injected beam lost energy as in the corresponding
two-beam system. It transferred energy to the second beam, which
gave nearly all gained enerqgy to the third beam. Therefore, the
first beam could again be well inflected (to 75%), whereas the
third beam was lost and a small part (30%) of the second beam was

trapped at a coherent amplitude of ~ 1 cm.

With 120o phase difference (n = .55,fig.11) between the beams the
distribution in X=Py, has the highest symmetry, which is most un-
favorable to energy exchange. Neither beam is well inflected, but
only fractions of each beam are trapped at amplitudes of ~ 1 cm.

This trapping is possible owing to the growth of the x-quadrupole
mode.

The number of beams in the system effects upon the occurrence of
parametrically driven x- or z-quadrupole modes. In the presence

of two further beams each beam suffers four beam-crossings per
betatron period. These crossings in general do not occur at

equal time intervals. Therefore the perttrbing force resulting from
them is very unlikely to act on the modes in a resonant way. In-
stead of growing amplitudes of pure quadrupole modes as in the
(resonant) two-beam system we obtained rather incoherent beam
growth in x or z respectively. This leads, however, to a similar
weakening of the holding power (when comparing two- and three-beam
systems with equal current per beam).

For systems with a higher number of beams a similar arguing holds
and one can easily derive qualitative features of the self-inflec-
tion mechanism.

In an active inflection-system one might be interested in reducing
self-inflection effects. With the foregoing observations this
should be possible to some extent by a convenient choice of n for
a given number of beams.




The 400 A current per beam used in the examples of this section
was optimum in the sense that higher injected current did not in-
crease the rate of inflected current. This expresses the self-
limiting nature of self-inflection.




D Conclusion

Transverse collective interaction of relativistic electron beams
in magnetic mirrors has been studied using a numerical model with
interacting macroparticles. It was found that collective inter-
action may substantially alter the distribution of particles in

phase space. The main consequences of this interaction were:

(1) energy transfer between beams affecting their c.o.m. motion;
the amount of exchanged energy depends on the phase shift
between the beams.

(2) energy transfer between the c.o.m. motion of one beam to a
quadrupole mode of another beam; if phase and frequency of
the c.o.m. motion and quadrupole mode are in resonance con-
dition, resonant energy transfer is possible.

(3) energy transfer between quadrupole modes of one beam in
either degree of freedom; again resonant energy transfer is
possible.

In practice these modes of interaction do not occur separately,
which makes the picture more complicated because of their mutual

perturbation.

The quantitative features of beam-beam and intra-beam interaction
depend on the beam current,current density and the time available
for interaction. The current range investigated here (200 - 400 A
per beam) was intermediate in the following sense: for less current
the interaction-induced change in beam quality observable after
typically five particle revolutions is a minor effect. For higher
current and all other parameters unchanged, interaction assumes
strongly nonlinear features which may result in rapid filamentation
and an increase of effective phase space. Thus space charge density
gets more stationary and transverse interaction effects saturate,
of course on the cost of bad beam quality. This shows the self-

limiting nature of the transverse collective effects studied here.
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Appendix 1: 1D BOUNDARY MODEL

a) Space Charge Forces

Since in this mode the x-z coupling was not considered, assume
that, in real space, the beam has constant z-width w.

Slice the beam in ribbons of width w and thickness dR in radial
direction. If is the charge per unit length of the beam at the
ribbon, under the assumption that the charge density in phase

space is constant, it is

R ) OUQ
) T ?3: <

(1)

j is beam current, W the width of a slice of the phase space beam
area, S this area.

To calculate the space charge forces due to a ribbon on an electron
in P at a distance R, slice each ribbon lengthwise into wires of
cross section dR.dZ ° and add up all the contributions in P,
by taking only the radial component of the electric force and in-
troducing a factor (1 - 82) to allow for the partial cancellation
of electric and magnetic forces. Moreover, average over all z-
positions of electrons in the beam. The radial space charge force

per unit rest mass is then
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b) Equations of Motion

The relativistic equations of motion in this one-dimensional case
can be written (vX radial velocity component) :
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The term gw represents the external forces acting on the beam.

The guide field was expressed as
~-h

(4) Bz' 30(4+§-)

with constant field index n.
c) Beam-beam Interacticn

The same (2) was used for the space charge forces. Only the inte-

grals in R and Z were extended cover both beams.
d) Computational Procedure

Take N electrons on the boundary of an initial phase space ellipse.
Integrate the equations of motion (3) for each particle. After a
(short) time interval draw the new phase space boundary through
the new coordinates of the particles and re-calculate the space
charge forces by means of (2).

A check made on the phase space figure has shown that the area S
remains constant for several phase space revolutions within 1.5%,
in a typical run with N = 12 electrons and boundary re-evaluation
after every 5° in phase space. This result was encouraging for the
use of such a small particle number and the resulting very short

computer time.

The computation, performed on the IBM 360/91 of the IPP Institute
in Garching, made use for the integration of the IBM-SSP predictor
corrector routine HPCG.




Parameters for the Computation

electron kinetic energy
equilibrium radius
injection radius

initial phase = space area
(emittance)

field index

beam current

beam size in z

No. of boundary electrons
ribbon thickness

2 MeV
15 cm

16 cm

.75 cm x 30 mrad
«DD

O - 400 A

1 cm

12 - 16

.1 cm




Appendix 2: 2D-PARTICLE MODEL

a) Equations of Motion for Macroparticles

The relativistic equations of motion for small oscillations of an
electron about an equilibrium orbit Ro in a magnetic mirror with
field index n are:

S bY
" dve Q)}(A-K)X = é(E,‘&é)+ﬁBz(m)>

at 4
P §
(2) é.‘f‘. + w: wea = ﬁ (ttt&?) - p 3,(('&‘9
ot .

For the numerical treatment each beam is represented as an
assembly of N straight parallel cylindrical rods, each carrying

a fraction (j/N) of the total charge and current. The motion of
each rod, called macroparticle, obeys (1), (2), with the electric

and magnetic self-fields Es, B°

computed as sums of interaction
forces with all other macroparticles. This procedure is convenient
for the present study of such collective phenomena which show their
characteristic features already at a relatively low number of

macroparticles.

If the radius of a macroparticle is_g and its charge per unit
length 3 , the repulsive force between two of them is a function
of the distance s of their centers. One can easily compute the
force between a macroparticle of radius g and one of zero radius,
both carrying equal line charge “ S

(4
A 2
g 5 ‘ga Sio:8
= 3
A A
If both macroparticles have radius 9 the interaction force is
weakened in the range 34423 because of the partially overlapping

charges. The following formula yields a good approximation for the
correct force:

2
{a %t .3%.}.::5 (04 §¢ X)




The total self-force on a macroparticle is then

T X X = s s
o % o= BZ sorey = e PR

s 2 2-2 N S N ' 4
(4) _'.F? — 2—5%\ ZJ: 82*'@-*3)14'@.}}.)1 =5 ?((gt (33,‘)

As follows from the definition of this force, it includes only

I

interaction between near-by particles, i.e. all particles staying
at the same azimuth.

b) Computational Procedure and Initial Distributions

Trajectories of macroparticles are computed by solving (1), (2)

8)

using an improved polygon method with recalculation of (3), (4)

at each integration step.

For our purpose it is convenient to distribute the initial con-
ditions for the macroparticles of one beam as symmetrically as
possible in phase space in order to get smooth space charge densi-
ties. This is realized in two different distributions which are
obtained in the following way:

(1) COR consists of 2 x 72 particles: six (twelve) points
symmetrically placed on a circle of radius 1/2 (1) in the
X=V_ plane are combined with twelve (siX) points symmetrically
placed on a circle of radius 1 (1/2) in the z-v, plane.

2
(2) UNCOR consists of 7 particles: six points on the unit circle
and one in the center of each phase plane are combined with
each other.

The x and z widths of the distributions are adapted to the injec-
tion snout aperture, whereas the vx and vz widths are chosen so
that the resulting emittances are stationary with absence of
space charge effects (except fig.2).




Sequentially injected turns start with the same initial con-
ditions. Electrons at a given cross section of one turn are

allowed to interact with those electrons of all other turns that
stay at the same azimuth.

The radius of macpoparticles is chosen just so small that in the

initial x-z-projection no overlapping of particles occurs.




Figures

fig.1: Computational results for 1 D-BOUNDARY MODEL

fig.2 - 12: Computational results for 2 D-PARTICLE MODEL

(phase space representations)




171 R [cm]
161
0 rev.
157 -
30 ViImrad]
14+
2 rb 3 rev.

fig.1a x-quadrapole oscillation n=55 j=200A r.=16cm one beam
Rimit—~._ 1D BOUNDARY MODEL

167 |

P
s ~

\\_—_—-—’

\\ \\
3 \
dle
\
/ \
I A 1Y / I
S = h
~ ! / /
7 /4 /
// // /
- /// / // 7
/ 7 & 7
I/ /// &// (\ ,///
DI, %
L ! 3rev. fisy

fig. b beam-beam interaction (nonlinear) n=55 j=200 A
n=16cm two beams 1D BOUNDARY MODEL




X "'Vx

P i, i it Rt R T TN

. K6 6L
Jh

16 SL

H6

O rev.

R 2L
.

4L L
(3 €
!

+

i

|

-1

.

1

!

|

+

U

!

|

P T o
\

1
*
|
!
cé |
el +
ES 1
|
|
+
!
t
1
.
|
|
1
*
CcCh 1
|
BED6 |
L R e S L L L LTt Kemomotoconnoy
A6 !
AL 1
21586 +
1LK22ES 1
3L 1
LLA 1
*
|
€L P64 1
6J |
KESLYULL +
1
G6U {
1
J6H6Y +
1
I44 U
I5 !
+
2 rev. !
'

e f e e P n m e - — -

Bl e T .

[o{ o4
L4Ls
LEBBS
1H
""""""""""""""""""""" 113486
3 A6
KS3LL -
3u7D5S
D6
55L
55J2XIn
Js 2L
Js
607
GAUREFES
GS
HE UIH
45 U6
HLFES
PU
16 .
15
rev.

- -y e

5

1
2

fig. 2 nonlinear phase wave n=.55 j=400 A r,,=17cm

77

temmmfmmcccmeeee ke e ———————

77

i
]| X=Vy
..5':'27 . ®

! .

i

i
17 ===mmmmmme mmmmmm e mmamem go-  e-e 51

|

| 57

| 56

| 47 55

|

|

|

757

t 0 rev

z[cm]; Z-v,

1 : e
| * 5
| ’

|

e e PO WAL 15

| 5

fl T4 5%

| O rev.

strongly nonstationary emittance

17

>
e P - —

~
A

)
[]
]
]
(]
[}
1
]
)
*
)
[]
]
]
]
[]
]
[]
)
[]
]
)
+
—
~

-
o

5

71
25
26
27
21
------------------------ *-
26
35
37
21
1rev.

1rev. |

fig. 3 single particle x-z coupling n=5 j=200A r, =l5cm

( stretched in v, , Vv, )




fig.5 beam-beam interaction n=55 j=400A r,=17cm
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