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Abstract

Decaying image currents consume energy which has to be supplied
by the field producing electron ring. For very high currents

(T 7'103 A, particle number Ne = 1014) the losses become important
and have to be included in the calculation of the ring dynamics.
Special attention has been given to the focussing effects of the
decaying image currents during compression and to the retarding
force which develops when the ring is moved along a resistive
cylinder. It is emphasized that in the latter case the ring ex-
periences a "run-away-situation", when the ratio of its velocity
to the surface resistivity exceeds a certain limit.




A Introduction

Magnetic fields set up in the neighborhood of conducting walls
induce eddy currents, which owing to the finite resistivity of
the walls lead to energy losses. In . these losses were calcu-
lated for cylindrical geometry in the case of a sudden increase
in the field, such as occurs during the formation of an electron
ring in the electron ring accelerator. If the rise time of the
self-field of the ring is shorter than the penetration time
through the walls, the results of 1 can be applied. The amount
of energy dissipated during the penetration process is less than
1% of the ring kinetic energy for the known compressors, as long
as the particle number is less than 1013. For 1014 electrons the
energy loss, which has to be supplied from the energy of the in-
Jected electrons, 1s pronounced. Considering this effect, the
question arose whether the energy loss during the compression
between side walls or during roll-out along conducting cylinders
is also of the order, and whether its effect has to be taken into
account in calculating the ring dynamics.

This qﬁestion shall be answered in this report for the two separate
cases which correspond to radial compression and axial roll-out

in electron ring accelerators. The program used for this calcula-
tion is an extended version of the one described in l. It is
capable to compute the effects of a ring moving close to resistive
structures, as long as the system is axisymmetric. The problem is
not solved self-consistently; the motion of the ring is prescribed.
Effects of resistive wall instabllities exceed the scope of this

report.

In the course of the calculation 1t turned out that the influence

of the image currents on focussing and acceleration might be much
more important than the energy loss. Much more attention has there-
fore been given to these problems. A paper of P. Merkel B deals

with the motion of a linear beam along conducting walls of arbitrary
thickness and gives an analytical solution in linear geometry. In
section D a short comparison is made between the two calculations.




Section B describes the computational procedure and states its
limits of validity. In section C the case of the compression of
a ring between side walls onto a cylinder is treated and special
attention is given to the effects of focussing. Section D deals
with the motion of a ring along a cylinder and here the main in-
terest 1s focussed on the retarding power originating from the
decaying image currents. Beyond a certain velocity of the ring a
situation develops, where it is almost impossible in practidal
situations to control the acceleration of the ring. The term
"run-away-situation" is used to describe this behaviour of the

ring. It 1s of great importance, to know, how this situation can
be avoided.

B Computational Procedure

The computation is done for axisymmetric geometry. The walls

are supposed to be thin sheets with thicknesses small compared to

the skin depths in question. The current density across the thick-

ness of the walls is therefore assumed to be constant. The assump-

tion that the skin depth 1s larger than the wall thickness 1is

correct, as long as the DC surface resistivity is s[£2/a] = 2,440 (—-3)
HereV is the velocity of the ring parallel to the wall

(radial or axial) in [cm/sec] @ the resistivity in [:Q,mm]

and d the distance of the ring from the wall in [em] . For silver

coatings and velocities of U = 100 [cm/sec] and d = 0.5[cm]

6 would have to be larger than 0.13 [wJIL/D].

The walls are subdivided into flat cylindrical elements numbered
by n . The n -th element 1s assigned a self-inductance Lnn and a
resistance Rn. The elements are interconnected and coupled to the
ring through mutual inductances Mnm' The following formulas >

are used for L, M and R:
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Here r, 1s the central radius and 2z the axial position of the
n-th element and Dn its width. K and E are the elliptic inte-
grals of the first and second kinds and k their argument.

To get the time behaviour of the induced eddy currents in the
elements, one has to solve the following system of equations:
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MnR is the mutual inductance between the ring and the n-th ele-
ment. N is the number of elements. The system was solved for

In with the help of the matrix inversion program MINV, supplied
by IBM, and the currents as a function of time were obtained by
means of HPCG, a predictor-corrector method, also supplied by
IBM.

The driving term on the right-hand side %(HMRIR) , allowed
for changes in ring current IR as well as changes in geometry.
For simplicity the ring velocity was always assumed to be con-
stant. Two special cases were considered:

1.) Compression of a ring between conducting side walls. Two sub-
cases have been calculated. The first one assumed, that the
ring has been formed a long time before the compression
starts, such that the ring selfflelds already had penetrated
the walls at the beginning of compression. The second case
starts with the build up of the ring current and performs
compression immediately thereafter. The process of ring form-
ation is assumed to be that fast, that almost no resistive
energy loss occurs during formation time.

2.) Motion of a ring along a cylinder.

In all calculated cases Sp was the same for all elements for
reasons of simplicity. Then eq.l can be divided by s = Sy and

t replaced by T = s * t. The time derivative in the driving term
is expressed by the following relations for the radial or axial

motions respectively:
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For unit distance of ring motion one has:zg=1§.. It follows that

the energy loss per unit distance of ring motion for the same

geometry and constant ring current depends on the ratio of § and V-
only. In addition it can be shown that the results are the same

as long as the geometries are similar.

Fortunately, the full set of equations had to be solved in a limited
regime of V/$ only. For large V/$ as well as for smallV/$ simple
approximations are valid. For large V' /4 the term RMT,\ is small com-
pared to.S%(}LuQIh>. In this case the currents can be obtained by
simple integration after the inversion of the matrix. The current
distributions are then independent of the resistivity and the ring
velocity, but the energy loss per cm is inversely proportional to
\J/s . In the case of high wall resistivity the currents in the
elements are determined by the driving term and the resistivity,
and the left-hand side of eq.l can be neglected.The currents are
then proportional to the velocity of the ring and inversely propor-
tional to the resistivity. The energy loss per unit distance of
ring motion in this case is proportional to\)ys. In between these
two limiting cases the full set of equations has to be solved.

C Compression Between Side Walls

In the case of radial compression of a current carrying ring of
electrons between conducting side walls both the energy loss and



the focussing force depend very much on the specific geometry.
The cases described here may be taken as a paradigm showing the
order of magnitude of the expected effect. The geometry under-
lying the calculations described here, is the following: Two
parallel side plates are at a distance of 5 cm from each other.
The ring is compressed in the midplane between the plates. They
have a major radius of 27 cm and a hole on axis with a radius of
3 cm. Along the axis there is a cylinder with a radius of 2 cm
and extending ¥ 3.2 em in the axial direction. In most of the
calculations this cylinder was present because 1t was anticipated
that it is present in all experiments for suppressing negative
mass effects. The ring with a current of initially 1 A is com-
pressed from 14 cm to 2.5 em. The current in the ring increases
inversely with the radius. At the position of the ring an axial
magnetic field 1s assumed which corresponds to an energy of 2 MeV
at R = 14 cm and increases inversely with the square of the radial
ring position as is exact in a uniform field. For the calculation
of the field index due to the image currents it was assumed that
the axial field produced by the image currents is negligible com-
pared with the main magnetic field. The resulting error in the
field index is less than 5% for injected currents of up to 1000 A.

Fig.l shows the absolute energy loss divided by the square of the
initial ring currentl, as a function of‘JYS. In Fig.2 this energy
loss is related to the kinetic energy Ekin in the ring for an in-
jected beam with 2 MeV in the following manner:
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TZ and.Q¢are the time and the radius at the end of compression
respectively. This evaluation takes into account that the energy
gain during compression is proportional to the energy at the be-
ginning (for the same fields). That is, if the ring loses a cer-
tain percentage of its energy at a certain time, the subsequent
energy gain by the compression is reduced by the same percentage.

The dashed curves in Fig.l and g belong to the case without in-
jection, the full curves represent the case with injection. The




curves numbered 1 give the integrated resistive losses at the end
of compression. The curves numbered 2 give the energy, stored in
the field of the wall currents at the end of compression. This
energy 1s finally dissipated,if the ring stays long enough in the
compressed state. The curves numbered 3 give the sum of 1 and 2.
Fig.2 contalins the same information for the relative losses.

In the case without inflection the losses up to the end of com-
pression (curve 1) tend towards zero for very low and very high
\J/Q. The two straight lines are the result of the approximate
solution of eq.l mentioned in section B. At the V/¢ -value for
their intersection point curve 1 reaches a maximum. The energy
stored in the field of the wall currents at the end of compression
reaches a maximum for large U/S (curve 2) and so does the sum of
dissipated and stored energy (curve 3).

The solid curves for the case with injection show a different be-
haviour. The actual losses at the end of compression go to zero
for high V/S, but tend towards a finite value at low Y/S. This
value for low V/S corresponds to the losses connected with the pe-
netration of the flelds after injection without compression. The
total losses due to compression (curve 3 dashed) are almost
additive to the injection loss.

The maximum energy loss 1s about 2 -« 10~ or 1 A of ring current,
for 103[A]one gets a loss of O,2Dﬂ. This amounts to about 4% of
the kinetic energy of a trapped ring with a radius of 14 cm and an
energy of 2[Méﬂ. The relative losses calculated as described earlier
are seen on Fig.2. For low VY/Sthe relative losses are about 2% for
10°[ Al (It is assumed that the ring is injected with 2[Mev] at R =
14[0@D The total losses with injection reach a flat maximum at
about 5 x 107 [cm/seg/th] , and then decrease for increasing vYS .
The relative losses due to compression only are negligible in most
cases. Due to the fact that the compressing fields have to pene-
trate the side walls also, one will probably tend to work in the
lcmrtvgregime and has to face therefore mainly the losses connected
with the rapid injection of the beam.




In the low 0/5 regime another effect can be important: As the
image currents decay the image charges exert a force on the ring.
For very good conductivity the forces of the image currents and
the image charges almost cancel, 1f the ring is close to the
walls. The force of the image charges after. the decay of the
currents i1s then the same but opposite in sign as the forces of
the full image currents. The force i1tself leads to a change in
the radius of the ring. This has not been calculated, since the
radius of the ring is prescribed. But the derivative of the force
influences the focussing of the ring. Fig.3 shows the change of
the field index divided by the injected ring current An/l"o at
the ring position for the case that the image currents are absent.
(This curve is calculated with injection at time zero.)A positive
sign of Aw[I, means additional axial focussing and radial de-
focussing, a negative sign axial defocussing and radial focussing.
The positive sign at the end of compression, when the ring is
close to the cylinder on axis corresponds to the well-known effect
of cylinders with axial conductivity only, the so-called squirrel
cages 4. Because the frequencies of the negative mass instability
is so much higher than the frequency corresponding to the com-
pression it 1s possible to choose a resistivity such, that a
cylinder acts well conducting as far as the high frequencies of

‘negative mass are concerned and bad conducting and therefore

axially focussing for the low frequencies of compression.

For large ring radii.ZSYLis negative, that is the side walls act
axially defocussing. In order not to loose the ring integrety

during compression, the Field index of the compressing field has
to be kept so large, that the effect of the decaying image currents
is compensated.

D Motion Along a Cylinder

The energy loss connected with the motion of a ring along a resi-
stive cylinder can be of great importance when the ring has to be
transported a long way very close to the surface. Fig.4 gives the




energy loss EL normalized to the square of the current and the
distance of the motion L for different ratios RV of the ring
radius to cylinder radius. The calculation was done for suffi-
ciently long cylinders, such that the end effects could be ne-
glected. The normalized loss 1is independent of the radius of
the ring as long as the ratio RV and the current are constant.
For the same number of particles, however, and the same RV the
losses are less, 1f the ring is on a larger radius. Also for
the same distance of the ring from the cylinder the losses for
large radii at constant current are larger than for small radii.

As in the radial compression case the losses go through a
maximum as a function of V/$ which shifts slightly to larger Y/$S
for smaller RV. For lBOO[K]in the ring at the end of compression
the energy loss at the maximum for RV = 0.8 and a distance of
motion of EO[cm]is O.73[iL which corresponds to ~ 7.3% for a ring
at a radius of 2.5[cnﬂand a kinetic energy of IBLMe@. If ithexring
is moved at a V/S about an order of magnitude from the worst
value, the energy losses are negligible in most cases, at least
if one does not go to extremely high current. The straight lines
in Fig.4 give the asymptotic behaviour for low and high v/s.

The linear calculation of:a fits rather well with the curve for
RV = 0.95. For RV = 0.8 the linear calculation gives already a
value 60% larger than the calculation for the cylindrical case.

For an infinitely long cylinder a stationary distribution of the
image currents develops. As long as the resistivity is zero and

the velocity unrelativistic, this distribution is symmetric

around the z-position of the ring. For finite0781ﬂmaimage currents
decay and even change thelr sign behind the moving .ring. The dis-
tribution is unsymmetric. At the position of the ring a radial
magnetic field develops, which together with the azimuthal velocity
of the ring electrons exerts a retarding force on the ring in

axial direction. The scale at the right hand side of Fig.4 gives
the radial magnetic field seen by the ring. (In the stationary
state the retarding force equals the energy loss per cm. For

finite length cylinders the radial magnetic field has to be cal-



culated from the current distribution.) Even for rings with
moderate currents retarding fields can be produced,which are by
far larger than the radial magnetic fields of a few GauB, which
can be applied in expansion acceleration in present day electron
ring accelerators. For example with 1500[@, RV = 0.8 and a ring
radius of 2.5[cmathe maximum retarding force corresponds to

Be = 103[GauB]. This maximum occurs for values of V/g = 2.26'108
[cm/sec/JUn] . To accelerate a ring up to the peak velocity an
external radial magnetic field (or corresponding electric field)
larger than the one produced by the image currents is required.
If the external field is less than the maximum image field the
ring can only be accelerated to a velocity, at which the external
field equals the retarding field. Because the retarding field
depends on the current in the ring, the velocity to which a ring
can be accelerated depends on the quality (current) of the ring
for a given external field.

If the external field is larger than the peak retarding field

and the ring is on the right hand side of the peak, the situation
is even worse: If the ring gains velocity the retarding force is
reduced. If the external field does not decrease repadly enough

in space the accelerating field - that is the difference between
the external and the retarding field - on the ring gets the larger
the faster the ring is. Fig.5 shows an example of the radial field
seen by a ring, which moves along a cylinder in an external field
composed by an homogeneous field in axial direction and a spatially
constant radial field, which increases in time to finite values,
above which it remains constant. The peak velocity is 2.25 - 108
cm/sec, the maximum retarding field Br = 112.5 GauB. If the exter-
nal field reaches only values below the peak, the effective Br
seen by the ring stays small and goes to zero, when the external
field got constant in time. But even if the external field is only
slightly larger than the peak field, the radial field seen by the
ring finally increases to very large values, which for the quality
of the rings obtained so far, is far beyond the value, up to which
ions would stay in the ring.




Although it seems possible to construct an external field such,
that for certain conditions of the ring and the external field
the acceleration stays inside the limits, posed by the achieved
quality of the rings, small deviations from these conditions

lead to uncontrollable accelerations. This situation on the

large UVS side of the peak might be well described by calling it
run-away-situation.

This run-away-effect does not allow to use conducting cylinders in
the accelerating region of an electron ring accelerator - at least
if high velocities should be obtained. In the roll-out phase

these cylinders might be used, if%¥/S stays on the left hand side
of the peak. But the rings have to cross the end of the cylinder
slowly, to ensure that the retarding forces stay inside the limits.
(For large V/S the end of a conducting cylinder - image charges
neglected - acts accelerating for a certain distance, whereas for
low V/s the force is always retarding. Calculations to the end
effect shall be given in a separate report.)

If only velocities up to the value of V/s for the peak field are
required and if the Jjitter in the velocity does not bother - this
jitter in a typical example was of the same order as e.g. the
jitter in ring current - conducting cylinders might be used. For
a surface resistivity of 20 /@] axial velocities up to 4 - 107
[cm/sec] can be obtained. One has, however, to have in mind,
that in this case a big fraction of the electron energy is lost
to the walls and cannot be given to the ions.

E Summary and Discussion

For ring currents hitherto achieved energy losses of the induced
image currents in resistive walls during compression seem to be
unimportant. Only if the intended larger currents should be ob-
tained, the losses have to be taken into account for the correct
evaluation of the ring dynamics. During roll-out and acceleration
it has to be ensured that the velocity is not for a long distance
close to the value for the peak losses.



Important, however - even for moderate ring currents - appears
to be the influence of the decay of the image currents on the
focussing during radial compression. For a ring current of 400[K]
(7, 8% 1012 electrons) and a realistic geometry as described
in section C the effective field index n changes by An = 0,12,
when the image currents fully decay. Resistive side walls act
defocussing axially, a resistive cylinder focussing axially.
Because of the big difference in frequency for the compression
cycle and the electron revolution a resistive cylinder could be |
used for suppressing the negative mass instability as well as

for providing axial focussing.

Even more important are retarding forces originating from the
decaying image currents during roll-out and acceleration of the
>ring along resistive cylinders. The retarding forces in realistic
cases can be much larger than the allowed effective accelerating
forces. Beyond a certain speed the retarding forces decrease with
increasing velocity, which provides a run-away-situation for the
ring. This effect could be avoided if the desired velocity is
below the critical one. This would be the case ifV is kept below
y - 109[cm/seé]for surface resistivities of the cylinder of
20£QJHL In this case one has to live with a jitter in the obtained
velocity, which is of the order of the jitter in the ring current.

Since the conducting structures are introduced to suppress the
effects of the negative mass instability, the cylinder could be
removed in the accelerating region only in such cases, where the
negative mass instability is not considered to be serious. Under
these circumstances the conducting cylinder could end in the
neighbourhood of the spill-out point. One, however, has to ensure
that the end of the cylinder is crossed with low speed because
otherwise the image currents in the end produce a similar run-
away effect.

The program as described in section B has been used to calculate
two idealised examples. It is, however, capable to compute much
more complicated systems as long as they are axially symmetric and
the thickness of the walls does not exceed certain limits.
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Figure

Captions

Fig.1:

Fig.4:

Filg.b:

Energy loss E per injected currentIa‘1 in Joule/A2

as a function of the compression velocity v divided

by the surface resistivity & of the sidewalls. Solid
curves: with injection; dashed curves: without injection.
Curves numbered 1: Energy lost during{ERS.ﬁE?pression.
Curves numbered 2: Energy stored in theYwall currents at
the end of compression. Curves numbered 3: the sum of
curve 1 and 2. The straight dashed lines give the asymp-
totic behaviour for the dashed curve 1. The dotted line:

estimate.

Relative energy loss E,e divided by the injected current

To as a function of V/g. Otherwise the same as Fig.1

The difference in field index Awn at the ring position
divided by the injected beam current Io as a function of
radius R or time t for a compression velocity of U =
106 cm/sec. Full curve: with injection, dashed curve:
without injection. Compression between 14 cm and 2,5 cm*
a cylinder at a radius of 2 cm. Positive values are
axially defocussing, radially focussing, negative values

axially focussing, radially defocussing.

Energy loss E divided by the distance of motion L and the
square of the ring currentI2 for the motion of the ring
with a velocity v along a cylinder with a surface resisti-
vity § as a function of Yg . RV = cylinder radius to ring
radius. The scale at the right side gives the radial magne-
tic field seen by a ring with radius Rring and current T
due to the decaying image currents.

B,
Effective accelerating fieldYas a function of time seen by
a ring, which moves along a cylinder with s = 1-2Ja in a
constant Bz—field, to which an increasing radial field
constant in space is added. At certain levels, indicated

exterual
at the curves, theYfadial field becomes constant in time.




The maximum retarding field is 112.5 GauB. For external
fields below this value, the effective Br at the ring

stays rather low and goes to zero, when the external field
got constant. If the external field is only slightly larger
than the peak retarding field, the effective Br at the

ring finally increases almost up to the value of the ex-
ternal field.
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